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Low Level Vision Problems

= Estimate label at each pixel
— Stereo: disparity
— Restoration: intensity
— Segmentation: layers, regions
— Optical flow: motion vector




Pixel Labeling Problem

= Find good assignment of labels to sites
— Set L of k labels
— Set S of n sites

— Neighborhood system NCS8xS between sites
e Consider case of (four connected) grid graph

= Undirected graphical model
— Graph ¢g=(S$,X)
— Discrete random variable x; over £ at each site |

— First order models
e Maximal cliques in ¢ of size 2
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Markov Random Field

= Labels are values of hidden states, X,

— Not observable
— Posterior probability of labels given observed
data, o;

= Reachability in graph corresponds
to conditional dependence of random

variables
= 1D: hidden Markov model

oo oMo
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Form of Posterior

Observations o, hidden states x

Posterior distribution of labelings given
observations

Pr(x]o) « Pr(o|x)Pr(x)
For first order model, prior factors as
Pr(x) o« [ jyenV(XiX;)
Further assume likelihood factors
Pr(x]o) o [1icsDi(%) 1 jyenV(Xi:X;)




Estimation Problems

= Marginal probability at each node
Pr(x;lo)
= Maximize posterior (MAP)
argmax, [l;.sDi(x;) 11 jerV(XisX;)
= Not computationally tractable
— NP hard for 3 or more labels and robust V

= Various methods for approximate solution

— Annealing, variational techniques, graph cuts
using a-expansion, loopy belief propagation, ...
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Belief Propagation

» [terative local update technique
— Message passing, “nosy neighbor”
= Two forms
— Sum product for estimating marginals
— Max product for MAP estimation
= Exact solution when no loops In graph

= Update messages until “convergence” then
compute distribution at each node

— Sum product for marginals
— Max product then max at each node for MAP

@
1(gg)f) Cornell Universit
5%%?2" ornell University




Sum Product

= At each step node j sends each
neighbor a message, In parallel

— Node j’s view of I’'s labels
m;_,i(X) = ij(Dj(Xj) V(X %)
e wgniMisj(X5))
= After T iterations compute

belief at each node

— Using messages from neighbors
and local data

b;(X;) = D;(X;) [icagymisj(X)
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Max Product

= Min sum form with cost functions D’,V’
proportional to negative log potentials

= Message updates
m’_i(Xp) = minxj(D’j(Xj) + V'(Xj, X))
+ ke xNM ki (X))

= After T iterations compute label
minimizing value at each node

argminxj (D'j(X) + ZicxgyM'ini (X))
— Simple approach of separately minimizing at
each node can be problematic
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Three Techniques

= Memory requirements of BP large
— Using bipartite form of graph can halve usage

= For vision problems V(X;,x;) generally
function of difference between labels

— Enables computation of (discrete) messages in
linear rather than quadratic time
= Number of iterations generally
proportional to diameter of graph
— Propagate information across grid

— Using multi-grid methods can reduce to small
constant number
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Bipartite Graph (“Red-Black’™)

= Checkerboard pattern on grid defines a
bipartite graph, V=AuB

= Alternating message updates of sets A,B
yields messages m nearly same as m

— Update messages from A on odd iterations and
from B on even iterations

— Then can show by induction when t odd (even)
mt_; =|mt; ifiin A (iin B)
mtijj otherwise
— Converges to same fixed point with half as
many updates and half as much memory
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Fast Message Updates

= Pairwise term V measuring label difference

= Sum product
— EXpress as a convolution
— O(klogk) algorithm using the FFT

— Linear-time approximation algorithms for
Gaussian models

= Min sum (max product)
— EXpress as a min convolution

— Linear time algorithms for common models
using distance transforms and lower envelopes
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Sum Product Message Passing

" When V(X;,X;)=p(Xj-X;) can write message
update as convolution
m;_i(%) = 2, (p(X-x1) h(x;))
= p*h
— Where h(x;)= D;(X;) er./\/(j)\imk—>j(xj))
* Thus FFT can be used to compute In
O(klogk) time for k values

— Still somewhat large constants

= For p a (Imixture of) Gaussian(s) do faster




Fast Gaussian Convolution

= A box filter has value 1 in some range

b, (X) = |1 If O<xsw
O otherwise

= A Gaussian can be approximated by
repeated convolutions with a box filter

— Application of central limit theorem,
convolving pdf’s tends to Gaussian

— In practice, 4 convolutions [Wells, PAMI 86]
b,,,(X)*b,,,(X)*b,,(X)*b,,(X) » G,(X)
— Choose widths w; such that >.(w;?>-1)/12 ~ 2
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Convolution Using Box Sum

= Thus can approximate G_(x)*h(x) by
cascade of box filters
b,,,(X)*(b,,(X) * (b,,,(xX) * (b,,,(x) *h(X))))
= Compute each b, (x)*f(x) Iin time
Independent of box width w — sliding sum

— Each successive shift of b,,(x) w.r.t. f(x)
requires just one addition and one subtraction

= QOverall computation just a few operations
per label, O(k) with very low constant
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Max Product Message Passing

= Can write message update as

m’_,;(X) = minxj(P’(Xj‘Xi) + h'(X)))
— Where h’(Xj) — D,j(xj) ZkeJV(j)\im,k—ﬂ(Xj))
— Formulation using minimization of costs,

proportional to negative log probabilities

= Convolution-like operation over min,—+
rather than > ,x [FHOO,FHKO3]

— No general fast algorithm like FFT
— Certain important special cases In linear time
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Commonly Used Pairwise Costs

= Potts model p’(x) = |0 If x=0
d otherwise
= Linear model p’(x) = c|x|
= Quadratic model p’(x) = cx?
= Truncated models
— Truncated linear p’(X)=min(d,c|x])
— Truncated quadratic p’(X)=min(d,cx?)
=  Min convolution can be computed In linear
time for any of these cost functions
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Potts Pairwise Model

=  Substituting in to min convolution
m’;_i(X;) = minxj(p’(xj—xi) + h'(x;))
can be written as
m’;_i(x) = min(h’(x), minxjh’(xj)+d)
= No need to compare pairs X;, X;

— Compute min over x; once, then compare
result with each x;

= O(k) time for k labels

— No special algorithm, just rewrite expression
to obtain alternative (fast) computation
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Linear Pairwise Model

=  Substituting In to min convolution yields
m’_i(Xp) = minxj(C|Xj‘Xi| + h'(x;))
= Similar form to the L, distance transform
min, (1x;-x;] + 10x))
— Where 1(X) :{ 0 when xeP

o otherwise
IS an indicator function for membership in P

= Distance transform measures L, distance
to nearest point of P

— Can think of computation as lower envelope
of cones, one for each element of P
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Using the L, Distance Transform

Linear time algorithm

— Traditionally used for indicator functions, but
applies to any sampled function

Forward pass

— For X; from 1 to k-1
m(X;) < min(m(x;),m(x;-1)+c)

Backward pass T

— For x; from k-2 t0 O
m(X;) < min(m(x;),m(x;+1)+c)

Example, c=1
- (3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)




Quadratic Pairwise Model

= Substituting in to min convolution yields
m’; (X)) = minxj(c(xj—xi)2 + h'(X;))

= Again similar form to distance transform

= Compute lower envelope of parabolas

— Each value of x; defines
a quadratic constraint,
parabola rooted at (X;,h(X;))

— In general can be done In
O(klogk) [DG95]

— Here parabolas are same
shape and ordered, so O(k)
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Combined Pairwise Models

= Truncated models
— Compute un-truncated message m’

— Truncate using Potts-like computation on m’
and original function h’
min(m’(x;), min,.h’(x;)+d)

= More general combinations

— Min of any constant number of linear and
quadratic functions, with or without truncation

e E.g., multiple “segments”
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Fast Message Update Methods

= Efficlent computation without assuming
form of (discrete) distributions

— Requires prior to be based on differences
between labels rather than their identities

= Sum product

— O(klogk) message updates for arbitrary
discrete distributions over Kk labels using FFT

— O(k) when pairwise cligue potential a mixture
of Gaussians using box sums

= Max product
— O(k) for commonly used cligue potentials
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A Multi Grid Technique

= Number of message passing iterations T
generally proportional to diameter of grid

— Propagate information across the grid
= Use hierarchical approach to make
Independent of graph diameter

— Previous work does this by changing the
graph, building quad-tree with no loops [WO02]

= Qur approach is to define a hierarchy of
problems with original graph structure

— Initialize messages based on coarser levels
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Hierarchy of Grids

Consider min sum case, rewrite
minimization in terms of grid I

E(X) = 2i.jyerDij(Xi ) + 2 jereV X j=Xir1,j)
+ 2 penaY (XX j+1)
— Where C,R last row and column of grid
= Can define family of grids I'°, T1, ...

— An element of I'¢ corresponds to exe block of
pixels, where g¢=2¢

— Labeling x¢ of I'* assigns the pixels in each
block a single label (from same set £)
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Problem Hierarchy

=  Minimization problem i B
at each level of the T T
hierarchy I T

Ee(xe) p— Z(i,j)ereDeij(Xei,j) level O level 1

+ Z(i,j)el“e\eeve(xei,j_xeﬁl,j)
O/l 4
+ Z(i,j)erﬁ\fkév (X ij~ X i,j+1)
=  Multi grid: final messages at one level as
Initial condition for next level, and so on

— Small number of iterations If initial conditions
close to final value
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Hierarchical Data Term

= Finite element approach

= Assigning label a to block (i,)) at level ¢
equivalent to assigning o to each pixel In
block

Deij(a) — ZOSU<SZOSV<8 D8i+u,8j+V(a)
— Sum costs for all pixels in block

= Corresponds to product of probabilities,
likelihood of observing pixels given label o

= Captures preference for multiple labels




Hierarchical Discontinuity Term

= Boundary between blocks length ¢
— Sum along boundary

= Separation between blocks ¢
— Finite difference, divide by separation

* Produces different form depending on V
— Linear, V¢{(x)=c| x|

— Quadratic, V{(x)=cx?/¢
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Multi Grid Method

= Number of levels in hierarchy proportional
to log Image diameter

— S0 propagation time small constant at top
= Same label set at each level
— In contrast to pyramid methods

* |n practice converges
after a few Iiterations

— Note each iteration

Energy

just 1/3 more work
than standard single

level
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lllustrative Results for Restoration

* Image restoration using MRF with
truncated quadratic discontinuity cost

— Not practical with conventional techniques,
message updates 2562

= Quadratic data term with no penalty for
masked pixels S

= Powerful formulation
now practical
— Largely abandoned

except for small
label sets

Gaussian noise and mask
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lllustrative Results for Stereo

= Truncated linear cost functions

D;(x;) = min(dy, [IL(Pi1,Pi2)-R(Pi1-Xi:Pi) |)
V(Xi,X;) = min(dg, [x-x;])

— Runs in under a second for 30 disparity levels

» Used for many of top methods in
Middlebury stereo benchmark




