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Stereo Matching

= Given two or more images of the same
scene or object, compute a representation
of its shape

= Some applications
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Face modeling

* From one stereo pair to a 3D head model
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Z-keying: Mix Live and Synthetic

= Takeo Kanade, CMU ( )




View Interpolation
* Spline-based depth map
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Input depth image novel view
= [Szeliski & Kang ‘95]
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Stereo Matching

= Given two or more images of the same
scene or object, compute a representation
of its shape

= Some possible representations
— Depth maps
— Volumetric models
— 3D surface models
— Planar (or offset) layers
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Stereo Matching

= Possible algorithms
— Match “interest points” and interpolate
— Match edges and interpolate
— Match all pixels with windows (coarse-fine)
— Optimization:
e [terative updating
e Dynamic programming
e Energy minimization (regularization,
stochastic)
e Graph algorithms
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Outline

= Image rectification
= Matching criteria

= Local algorithms (aggregation)
— Iterative updating
= Optimization algorithms:

— Energy (cost) formulation & Markov Random
Fields

— Mean-field, stochastic, and graph algorithms
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Stereo: epipolar geometry

= Match features along epipolar lines

= y/\

\/ewmg ray
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Stereo: Recall Epipolar geometry

= For two images (or images with collinear
camera centers), can find epipolar lines

= Epipolar lines are the projection of the
pencil of planes passing through the
centers

= Rectification: warping the input images
(perspective transformation) so that
epipolar lines are horizontal
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Rectification

= Project each image onto same plane,
which is parallel to the epipole

= Resample lines (and shear/stretch) to
place lines in correspondence, and
minimize distortion
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Rectification

BAD!

ia) Original image
pair overlayed with
several  epipolar
lines.

(hy  Image pair
transtormed by the
specialized projec-
tive mapping H,
and H),. Note that
the epipolar lines
are now parallel 1o
each other in each
image.



Rectification

(c)  Image pair
transformed by
the similarity H,
and HI. Note
that the image pair
is  now  rectified
(the epipolar lines
are  horizontally
aligned).

(dy Final image
rectification  after
shearing transform
H, and H,. Note
that the image pair
remains  rectified,
but the horizon-
tal distortion  is
reduced.

GOOD!

@ Cornell University




Choosing the Baseline

Large Baseline Small Baseline
*What's the optimal baseline?

— Too small: large depth error
— Too large: difficult search problem
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Matching Criteria

Raw pixel values (correlation)

Band-pass filtered images [Jones & Malik
o2]

“Corner” like features [Zhang, ...]

Edges [Many 1980’s methods...]
Gradients [Seitz 89; Scharstein 94]
Rank statistics [Zabih & Woodfill 94]
Slanted surfaces [Birchfield & Tomasi 99]




Finding Correspondences

= Apply feature matching criterion (e.g.,
correlation) at all pixels simultaneously

= Search only over epipolar lines (many
fewer candidate positions)
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Block Based Matching

= How to determine correspondences?

— Block matching or SSD (sum squared
differences)
E(z,y;d) = Y [p(a'+d,y)—Ir(', )]
(z,y')eN(z,y)

d is the disparity (horizontal motion)

= How big should neighborhood be?
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Effects of Block Size

= Smaller neighborhood: more detalls

= Larger neighborhood: fewer isolated
mistakes
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Plane Sweep Stereo

= Sweep family of planes through volume

<— projective re-sampling of (X,Y,2)

input imag

composite

virtual camera

— each plane defines an image = composite homography
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Plane Sweep Stereo

= For each depth plane
— Compute composite (mosaic) image — mean

— Compute error image — variance
— Convert to confidence and aggregate spatially

= Select winning depth at each pixel
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Plane Sweep Stereo

= Re-order (pixel / disparity) evaluation
loops

i 3 - N\

for every pixel, for every disparity
for every disparity for every pixel
compute cost compute cost
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Stereo Matching Framework

= For every disparity, compute raw matching
costs

EO('CU) Y, d) — p(IL(:I;, + d, y,) — IR(:E,a y,))

= Robust cost functions
— Occlusions, other outliers

= Combine with spatial coherence or
consistency
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Stereo Matching Framework

= Aggregate costs spatially

E(z,y;d) = > Eo(al,yl,d)
(z",y")eEN(z,y)
; \3 v
= Can use box filter A \ =\ \
(efficient moving average AN =\ \/
Implementation) R/ == \
= (Can also use weighted average, '

[non-linear] diffusion...
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Stereo Matching Framework

= Choose winning disparity at each pixel
d(z,y) = arg min E(x,y,d)

* Interpolate to sub-pixel accuracy

E(d)

d* d
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Traditional Stereo Matching

= Advantages:
— Detailed surface estimates
— Fast algorithms using moving averages
— Sub-pixel disparity estimates and confidence

= Limitations:
— Narrow baseline = noisy estimates

— Falils in textureless areas
— Gets confused near occlusion boundaries
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Stereo with Non-Linear Diffusion

= Problem with traditional approach:
— Gets confused near discontinuities

= Another approach:

— Use Iterative (non-linear) aggregation to
obtain better estimate

— Turns out to be provably equivalent to mean-
field estimate of Markov Random Field

é‘f@j@ Cornell University
s




Linear Diffusion

= Average energy with neighbors + starting
value

E(z,y,d) + (1—-4XN)E(z,y,d)+X > E(z+k,y+1,d)
(k,1)EN,y

+/B(EO($7 Y, d) — E(:ana d))

e -

= window diffusion

%f;né)? Cornell University




Feature-Based Stereo

= Match “corner” (interest) points

* Interpolate complete solution
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Data Interpolation

= Glven a sparse set of 3D points, how do
we Interpolate to a full 3D surface?

= Scattered data interpolation [Nielson93]
= Triangulate
= Put onto a grid and fill (use pyramid?)

= Place a kernel function over each data
noint

= Minimize an energy function




Dynamic Programming

= 1-D cost function

E(d) Y pp(dytiy —dey) + D Eolx,y; d)
mﬂy

T,y
E(z,y,d) = Eo(z,y;d)+

nzi!rn (EH'('CE — 1: Y, d,) + pP(de,y o d;_l,y))
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Dynamic Programming

* Disparity space image and min. cost path

al

d)

e}

Fig. 4, This figure shows () aomodel of the stereo slopimg weddimg cake that we will nse as atest example., (bl adepth profile through the center
of the stoping wedding cake, (o) a simulated, nosse-fres image pair of the cake, (d) the enhanced, cropped, cormelation 73 5T representation
For the image pair in ), and (e) the enhanced. cropped, cormelation DSI for a noisy sloping wedding cake (SNR = 18 dB). In (d), the regions
labeled <1 mark dingonal gaps in the moching path cavsed by regions occhuded inthe lefl image, The regions labeled <V mark vertical
jumps in the path cansed by regions occluded in the right image.
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Dynamic Programming

= Sample result
(note horizontal
streaks)

a)

= [Intille & Bobick]

b)

cl

Fig. 12, Resolis of to steneo algorithms on Figure 1. (a) Original left inage. (b) Cox et al algonthm| 14], and (¢} the algonmtbm deseribed
11 Lhag paper.
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Dynamic Programming

= Can we apply this trick in 2D as well?

No: d,,,andd,,, may depend on different values of d, ; ,
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Graph Cuts

= Solution technique for general 2D problem

Etotal(d) Edata(d) ‘|‘ )\Esmoothness(d)
Edata(d) — Z fm,y(d.’ﬁ y)

Esmoothness(d) = Zp(dm,y dy— ]-ay)

+ Zp(dm,y — az,y—l)
L,y

(a) original image (b} observed image () local min wort.  (d) local min w.r.t.

standard moves  o-expansion moves
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Bayesian Inference

= Formulate as statistical inference problem
= Prior model pPp(d)
= Measurement model  py(l., Iz] d)
= Posterior model
" pu(d | 1, 1g) o< pp(d) py(lL, Ir] d)
= Maximum a Posteriori (MAP estimate):
maximize p,(d | I, IR)
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Markov Random Field

= Probability distribution on disparity field
d(X.y)

PP(d:r:,y|d) — pp(dib’,y|{dx’,y’7 (33’7 y,) S N(:E:- y)})

pP(d) — 7 e P ‘ ‘

P

Ep(d) = Z PP(dx—I—l,y _dw,y) +pP(dx,y+1 - d;r;,y)
Ly

= Enforces smoothness or coherence on field
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