

Computer Vision

- Machines that "see"
 - Broad field, any course will cover a subset of problems and techniques
- Closely related fields of study
 - Artificial intelligence and machine learning (CS)
 - Spatial statistics (Math/Stats)
 - Image processing (EE/CE)
 - Algorithms and optimization (CS/OR)
 - Optics and reflectance models (Physics)
 - Human visual perception and cognition (Psych)
 - Animal vision (Neuroscience)

Preparation

- Background in
 - Algorithms and data structures
 - Writing code with attention to efficiency
 - Basic probability
 - Linear algebra
- Some degree of mathematical sophistication
 - Ability to learn new math along the way without too much effort

Course Requirements

- Readings for class
- Short in-class quizzes
- Two programming assignments
 - Probably easiest in C/C++ because of libraries such as OpenCV
- Open ended final project on topic of your choice

Applications of Computer Vision

- Computer vision increasingly useful as digital images become ubiquitous
 - But still many simple-seeming problems still beyond state of art
- Wide range of areas
 - Image and video enhancement for consumer and entertainment applications
 - Automatic detection of faces and license plates for privacy, recognition for security
 - Automated inspection for industrial applications
 - Robotic automation and user assistance

Applications

- Industrial inspection
 - Wide range of industries from electronics to product labels to food
 - Match images to ideal prototypes
 - Highly controlled imaging conditions

Applications

- License plate reading
 - Roads and parking
 - E.g., garages, central London
 - License plate finding and character recognition
 - Structured location of plate

Applications

Applications

- Face detection and recognition
 - Finding faces in cluttered images
 - Recognizing faces (more controlled conditions)
 - Obscuring for privacy
 - E.g., Google's Streetview

Applications

- Image cleanup (inpainting)
 - Replace pixels by filling in surrounding image
 - Model as diffusion or spatial statistical process
 - Texture challenging

stitching together

multiple photos

Image compositing

and synthesis

Applications

- Robotics
 - Ego-based and environment-based cameras
 - Integration of different sensing modalities
 - · Lidar, radar, ir

Active Sensing Helps But...

- Lidar data provides cloud of points
 - Still "image-like" but with distances instead of intensities (or both)
- Still a vision problem
 - Analogous to working with stereo data

Applications

- Driving assistance (limited)
 - Monitor freeway lane change and forward vehicles

Visual Road Following

Mobileye lane departure warning product

Computer Vision Algorithms

- Making things run fast an important part of practical computer vision techniques
 - Both algorithms and attention to coding details
- Dynamic programming (DP) common
 - Methods that cache solutions to sub-problems rather than re-computing them
- Applies to problems that can be decomposed into sequence of stages
 - Each stage expressed in terms of results of fixed number of previous stages

Basic Example

- Consider following problem
 - For every pixel in an mxn image, sum all the pixel values in a wxh window around the pixel

- Naïve method takes O(mnwh) time
 - 4 nested loops
- Solve in O((m+w)(n+h)) time
 - · Low constants, faster even for small windows

Simplify: What About 1D?

• For every element in an n-vector sum all elements in a width w interval

1 0 1 2 3 2 0 1 1

- w=3
- Running sum slide window of width w
 - Add entering element, subtract exiting one
 - Time independent of width w

2D Sums from 1D Sums

- Compute horizontal sums using sliding window
- On result compute vertical sums
 - This gives overall sum

- Running time independent of w,h
 - Just add 2 and subtract 2 elements per pixel
- Extension to variable size windows

Filtering

Course Outline

- Visual motion/optical flow
- Parametric motion
- Structure from motion
- Stereo
- Markov Random Fields for stereo
- MRF Inference
- Image segmentation
- Face Recognition, Subspace MethodsObject Category Recognition
- Flexible template models
- Tracking by Matching

