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Last time: Edge detection

e Convert a gray or color image into set of curves
» Represented as binary image

e Capture properties of shapes




A problem with edges

e Edges are insensitive to intensity changes, but not to
other image transformations




Enter interest point detection

* Goal: Find points that are stable across scaling,
rotation, etc.

= e.g. corners
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SIFT Features




Corners

e A corner is characterized by a region with intensity
change in two different directions

_

 Use local derivative estimates
= Gradient oriented in different directions

* Not as simple as looking at gradient (partial
derivatives) wrt coordinate frame

v




Corner detection: the basic idea

e At a corner, shifting a window in any direction should
give a large change in intensity

“flat” region: “edge”: “corner’:
no change in no change along significant change
all directions the edge direction in all directions



A simple corner detector

* Define the sum squared difference (SSD) between an
image patch and a patch shifted by offset (x,y):

S(x,y) = Z Zw(u, v) (Hu,v) = [{u—z,v— y)}g

where w(u,v) =

1 in window, 0 outside Gaussian

e If s(x,y) is high for shifts in all 8

directions, declare a corner.
= Problem: not isotropic




Harris corner detector derivation

e Second-order Taylor series approximation:
S(z,y) =2y wlu,v) (I(u,v) = I(u—z,0—y))
1
S(x,y) ~ i(m y)ﬂ_. (:ﬂ)
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= where A is defined in terms of partial derivatives I,=dl/0x and
[,=0l/dy summed over (u,v):
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» For constantt, S(x,y) <tis an ellipse



Eigenvector analysis

* The eigenvectors v, v, of A give an orthogonal basis
for the ellipse

= |.e. directions of fastest and slowest change

= for A, >\, v, is the direction of fastest change (minor axis of
ellipse) and v, is the direction of slowest change (major axis)

direction of the v, direction of the
fastest change slowest change
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Classify points based on eigenvalues

* Classification of image points using eigenvalues of M:

Ay




Harris corner detection (1988)

 Smooth the image slightly

e Compute derivatives on 45° rotated axis ><
= Eigenvectors thus oriented wrt that grid
= Eigenvalues not affected

* Find eigenvalues A,,A, of A (A<M, )

= |f both large then high gradient in multiple directions
+ When A, larger than threshold detect a corner

» Eigenvalues can be computed in closed form

{a b] A= Y2(a+c-V(a-c)2+4b2)
b ¢ A= Ya(a+c+v(a-c)2+4b2)
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Harris corner detection

» But square roots are expensive

= Approximate corner response function that avoids square roots:

2
R =A’1 Az - k(ﬂ.1+ﬂ.2)
with k is set empirically

» After thresholding, keep only local maxima of R as corners
= prevents multiple detections of the same corner
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Harris detector, step-by-step




Harris detector, step-by-step

e Compute corner response R




Harris detector, step-by-step

* Threshold on corner response R




Harris detector, step-by-step

e Take only local maxima of R




Harris detector result




KLT corner detector

e Kanade-Lucas-Tomasi (1994)

e Very similar to Harris, but with a greedy corner
selection criterion
= Put all points for which A, > thresh in a list L
= Sort the list in decreasing order by A,

= Declare highest pixel p in L to be a corner. Then remove all
points from L that are within a DxD neighborhood of p

= Continue until L is empty
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Harris detector properties

e Rotation invariance

» Ellipse (eigenvectors) rotate but shape (eigenvalues) remain
the same

= Corner response R is invariant to image rotation
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Harris detector properties

e Invariant to intensity shift: I’=1+b
= only derivatives are used, not original intensity values

 Insensitive to intensity scaling: I’ =

S RM .

threshold / J w \ \/ \/ \
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X (image coordinate) X (image coordinate)

e So Harris is insensitive to affine intensity changes

= |.e. linear scaling plus a constant offset, '’ =al+b )



Harris detector properties

e But Harris is not invariant to image scale
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All points will be Corner !
classified as edges



Experimental evaluation

e Quality of Harris detector for different scale changes

1

Harris —-—
. L] I H ! e
Repeatability rate: i mpHarris
08 |
# correspondences

# possible correspondences

06

04 r

repeatability rate

02 r

---------
......

1 15 2 25 3 35 4 45
scale factor

23
C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



Experimental evaluation
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Scale invariant interest point detection

e Consider regions (e.g. circles) of different sizes around a point
* Regions of corresponding sizes will look the same in both images

=
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Scale invariant detection

* The problem: how do we choose corresponding circles
independently in each image?
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A solution

e Design a function which is “scale invariant”

= |.e. value is the same for two corresponding regions, even if
they are at different scales

= Example: average intensity is the same for corresponding
regions, even of different sizes

e For a given point in an image, consider the value of f as
a function of region size (circle radius)
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A solution

e Take a local maximum of this function

»= The region size at which maximum is achieved should be invariant to
image scale

* This scale invariant region size is determined
iIndependently in each image
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Choosing a function

e A good function for scale detection has one sharp peak

(e e A Vs

>
>
region size region size region size

A function that responds to image contrast is a good
choice

= e.g. convolve with a kernel like the Laplacian or the Difference
of Gaussians
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Laplacian vs. Difference of Gaussians

e Common choices:
= Laplacian:

= Difference of Gaussians:
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Differences of Gaussians

Difference of
Gaussian Gaussian (DOG)

31



Two approaches: Harris-Laplacian vs. SIFT

!
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» Harris-Laplacian’ finds sgale = 8
local maximum of = ,‘_4;
= Harris corner detector in S
image space — > —
= Laplacian in scale space < Harris = x|
 SIFT (LOW9)2 finds local scale ’l\
maximum of A ‘ &
= DoG in image space - O
= DoG in scale space -
A~ |
>
«— DoG — X
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Scale invariance experiments

» Experimental evaluation of detectors
w.r.t. scale change
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