
Corner detectionCorner detection

Lecture 4
CS 664 – Spring 2008



2

Last time: Edge detectionLast time: Edge detection

 Convert a gray or color image into set of curves
 Represented as binary image

 Capture properties of shapes
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A problem with edgesA problem with edges

 Edges are insensitive to intensity changes, but not to
other image transformations
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Enter interest point detectionEnter interest point detection

 Goal: Find points that are stable across scaling,
rotation, etc.
 e.g. corners

SIFT Features
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CornersCorners

 A corner is characterized by a region with intensity
change in two different directions

 Use local derivative estimates
 Gradient oriented in different directions

 Not as simple as looking at gradient (partial
derivatives) wrt coordinate frame
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Corner detection: the basic ideaCorner detection: the basic idea

 At a corner, shifting a window in any direction should
give a large change in intensity

“flat” region:
no change in
all directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions
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A simple corner detectorA simple corner detector

 Define the sum squared difference (SSD) between an
image patch and a patch shifted by offset (x,y):

 If s(x,y) is high for shifts in all 8
directions, declare a corner.
 Problem: not isotropic

orwhere w(u,v) =

Gaussian1 in window, 0 outside
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Harris corner detector derivationHarris corner detector derivation

 Second-order Taylor series approximation:

 where A is defined in terms of partial derivatives Ix=∂I/∂x and
Iy=∂I/∂y summed over (u,v):

 For constant t, S(x,y) < t is an ellipse
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Eigenvector analysisEigenvector analysis

 The eigenvectors v1, v2 of A give an orthogonal basis
for the ellipse
 I.e. directions of fastest and slowest change
 for λ2 > λ1, v1 is the direction of fastest change (minor axis of

ellipse) and  v2 is the direction of slowest change (major axis)

direction of the
slowest change

direction of the
fastest change

(λ2)-1/2

(λ1)-1/2

v2

v1



10

Classify points based on Classify points based on eigenvalueseigenvalues

 Classification of image points using eigenvalues of M:

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2;
E increases in all
directions

λ1 and λ2 are small;
E is almost constant
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region
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Harris corner detection (1988)Harris corner detection (1988)
 Smooth the image slightly

 Compute derivatives on 45° rotated axis
 Eigenvectors thus oriented wrt that grid
 Eigenvalues not affected

 Find eigenvalues λ1,λ2 of A (λ1<λ2 )
 If both large then high gradient in multiple directions

 When λ1 larger than threshold detect a corner

 Eigenvalues can be computed in closed form

a b
b c

λ1= ½(a+c-√(a-c)2+4b2)

λ2= ½(a+c+√(a-c)2+4b2)
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Harris corner detectionHarris corner detection

 But square roots are expensive
 Approximate corner response function that avoids square roots:

with k is set empirically

 After thresholding, keep only local maxima of R as corners
 prevents multiple detections of the same corner

( )
2

1 2 1 2R kλ λ λ λ= − +
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Harris detector, step-by-stepHarris detector, step-by-step
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Harris detector, step-by-stepHarris detector, step-by-step

 Compute corner response R
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Harris detector, step-by-stepHarris detector, step-by-step

 Threshold on corner response R
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Harris detector, step-by-stepHarris detector, step-by-step

 Take only local maxima of R
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Harris detector resultHarris detector result
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KLT corner detectorKLT corner detector

 Kanade-Lucas-Tomasi (1994)

 Very similar to Harris, but with a greedy corner
selection criterion
 Put all points for which λ1 > thresh in a list L
 Sort the list in decreasing order by λ1

 Declare highest pixel p in L to be a corner. Then remove all
points from L that are within a DxD neighborhood of p

 Continue until L is empty
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Harris detector propertiesHarris detector properties

 Rotation invariance
 Ellipse (eigenvectors) rotate but shape (eigenvalues) remain

the same
 Corner response R is invariant to image rotation
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Harris detector propertiesHarris detector properties

 Invariant to intensity shift:   I’ = I + b
 only derivatives are used, not original intensity values

 Insensitive to intensity scaling:   I’ = a I

 So Harris is insensitive to affine intensity changes
 I.e. linear scaling plus a constant offset, I’ = a I + b

R

x (image coordinate)

threshold

R

x (image coordinate)
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Harris detector propertiesHarris detector properties

 But Harris is not invariant to image scale

All points will be
classified as edges

Corner !
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Experimental evaluationExperimental evaluation

 Quality of Harris detector for different scale changes

Repeatability rate:
# correspondences

# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000



24

Experimental evaluationExperimental evaluation

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000
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Scale invariant interest point detectionScale invariant interest point detection

 Consider regions (e.g. circles) of different sizes around a point
 Regions of corresponding sizes will look the same in both images
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Scale invariant detectionScale invariant detection

 The problem: how do we choose corresponding circles
independently in each image?
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A solutionA solution

 Design a function which is “scale invariant”
 I.e. value is the same for two corresponding regions, even if

they are at different scales
 Example: average intensity is the same for corresponding

regions, even of different sizes

 For a given point in an image, consider the value of f as
a function of region size (circle radius)

scale = 1/2
f

region size

f

region size
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A solutionA solution

 Take a local maximum of this function
 The region size at which maximum is achieved should be invariant to

image scale

 This scale invariant region size is determined
independently in each image

scale = 1/2
f

region size

f

region sizes1 s2
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Choosing a functionChoosing a function

 A good function for scale detection has one sharp peak

 A function that responds to image contrast is a good
choice
 e.g. convolve with a kernel like the Laplacian or the Difference

of Gaussians

f

region size

bad

f

region size

bad

f

region size

Good !
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Laplacian vsLaplacian vs. Difference of Gaussians. Difference of Gaussians

 Common choices:
 Laplacian:

 Difference of Gaussians:
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Differences of GaussiansDifferences of Gaussians
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Two approaches: Two approaches: Harris-Laplacian vsHarris-Laplacian vs. SIFT. SIFT

 Harris-Laplacian1 finds
local maximum of
 Harris corner detector in

image space
 Laplacian in scale space

scale

x

y

← Harris → ←
 L

ap
la

ci
an

 →

• SIFT (Lowe)2 finds local
maximum of
 DoG in image space
 DoG in scale space

scale

x

y

← DoG →

←
 D

oG
 →

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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Scale invariance experimentsScale invariance experiments

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

 Experimental evaluation of detectors
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences


