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Last time: Edge detectionLast time: Edge detection

 Convert a gray or color image into set of curves
 Represented as binary image

 Capture properties of shapes
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A problem with edgesA problem with edges

 Edges are insensitive to intensity changes, but not to
other image transformations
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Enter interest point detectionEnter interest point detection

 Goal: Find points that are stable across scaling,
rotation, etc.
 e.g. corners

SIFT Features
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CornersCorners

 A corner is characterized by a region with intensity
change in two different directions

 Use local derivative estimates
 Gradient oriented in different directions

 Not as simple as looking at gradient (partial
derivatives) wrt coordinate frame
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Corner detection: the basic ideaCorner detection: the basic idea

 At a corner, shifting a window in any direction should
give a large change in intensity

“flat” region:
no change in
all directions

“edge”:
no change along
the edge direction

“corner”:
significant change
in all directions
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A simple corner detectorA simple corner detector

 Define the sum squared difference (SSD) between an
image patch and a patch shifted by offset (x,y):

 If s(x,y) is high for shifts in all 8
directions, declare a corner.
 Problem: not isotropic

orwhere w(u,v) =

Gaussian1 in window, 0 outside
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Harris corner detector derivationHarris corner detector derivation

 Second-order Taylor series approximation:

 where A is defined in terms of partial derivatives Ix=∂I/∂x and
Iy=∂I/∂y summed over (u,v):

 For constant t, S(x,y) < t is an ellipse
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Eigenvector analysisEigenvector analysis

 The eigenvectors v1, v2 of A give an orthogonal basis
for the ellipse
 I.e. directions of fastest and slowest change
 for λ2 > λ1, v1 is the direction of fastest change (minor axis of

ellipse) and  v2 is the direction of slowest change (major axis)

direction of the
slowest change

direction of the
fastest change

(λ2)-1/2

(λ1)-1/2

v2

v1
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Classify points based on Classify points based on eigenvalueseigenvalues

 Classification of image points using eigenvalues of M:

λ1

λ2

“Corner”
λ1 and λ2 are large,
 λ1 ~ λ2;
E increases in all
directions

λ1 and λ2 are small;
E is almost constant
in all directions

“Edge”
λ1 >> λ2

“Edge”
λ2 >> λ1

“Flat”
region
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Harris corner detection (1988)Harris corner detection (1988)
 Smooth the image slightly

 Compute derivatives on 45° rotated axis
 Eigenvectors thus oriented wrt that grid
 Eigenvalues not affected

 Find eigenvalues λ1,λ2 of A (λ1<λ2 )
 If both large then high gradient in multiple directions

 When λ1 larger than threshold detect a corner

 Eigenvalues can be computed in closed form

a b
b c

λ1= ½(a+c-√(a-c)2+4b2)

λ2= ½(a+c+√(a-c)2+4b2)
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Harris corner detectionHarris corner detection

 But square roots are expensive
 Approximate corner response function that avoids square roots:

with k is set empirically

 After thresholding, keep only local maxima of R as corners
 prevents multiple detections of the same corner

( )
2

1 2 1 2R kλ λ λ λ= − +
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Harris detector, step-by-stepHarris detector, step-by-step
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Harris detector, step-by-stepHarris detector, step-by-step

 Compute corner response R
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Harris detector, step-by-stepHarris detector, step-by-step

 Threshold on corner response R
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Harris detector, step-by-stepHarris detector, step-by-step

 Take only local maxima of R
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Harris detector resultHarris detector result
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KLT corner detectorKLT corner detector

 Kanade-Lucas-Tomasi (1994)

 Very similar to Harris, but with a greedy corner
selection criterion
 Put all points for which λ1 > thresh in a list L
 Sort the list in decreasing order by λ1

 Declare highest pixel p in L to be a corner. Then remove all
points from L that are within a DxD neighborhood of p

 Continue until L is empty
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Harris detector propertiesHarris detector properties

 Rotation invariance
 Ellipse (eigenvectors) rotate but shape (eigenvalues) remain

the same
 Corner response R is invariant to image rotation
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Harris detector propertiesHarris detector properties

 Invariant to intensity shift:   I’ = I + b
 only derivatives are used, not original intensity values

 Insensitive to intensity scaling:   I’ = a I

 So Harris is insensitive to affine intensity changes
 I.e. linear scaling plus a constant offset, I’ = a I + b

R

x (image coordinate)

threshold

R

x (image coordinate)
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Harris detector propertiesHarris detector properties

 But Harris is not invariant to image scale

All points will be
classified as edges

Corner !
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Experimental evaluationExperimental evaluation

 Quality of Harris detector for different scale changes

Repeatability rate:
# correspondences

# possible correspondences

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000
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Experimental evaluationExperimental evaluation

C.Schmid et.al. “Evaluation of Interest Point Detectors”. IJCV 2000
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Scale invariant interest point detectionScale invariant interest point detection

 Consider regions (e.g. circles) of different sizes around a point
 Regions of corresponding sizes will look the same in both images
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Scale invariant detectionScale invariant detection

 The problem: how do we choose corresponding circles
independently in each image?
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A solutionA solution

 Design a function which is “scale invariant”
 I.e. value is the same for two corresponding regions, even if

they are at different scales
 Example: average intensity is the same for corresponding

regions, even of different sizes

 For a given point in an image, consider the value of f as
a function of region size (circle radius)

scale = 1/2
f

region size

f

region size
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A solutionA solution

 Take a local maximum of this function
 The region size at which maximum is achieved should be invariant to

image scale

 This scale invariant region size is determined
independently in each image

scale = 1/2
f

region size

f

region sizes1 s2
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Choosing a functionChoosing a function

 A good function for scale detection has one sharp peak

 A function that responds to image contrast is a good
choice
 e.g. convolve with a kernel like the Laplacian or the Difference

of Gaussians

f

region size

bad

f

region size

bad

f

region size

Good !
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Laplacian vsLaplacian vs. Difference of Gaussians. Difference of Gaussians

 Common choices:
 Laplacian:

 Difference of Gaussians:
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Differences of GaussiansDifferences of Gaussians



32

Two approaches: Two approaches: Harris-Laplacian vsHarris-Laplacian vs. SIFT. SIFT

 Harris-Laplacian1 finds
local maximum of
 Harris corner detector in

image space
 Laplacian in scale space

scale

x

y

← Harris → ←
 L

ap
la

ci
an

 →

• SIFT (Lowe)2 finds local
maximum of
 DoG in image space
 DoG in scale space

scale

x

y

← DoG →

←
 D

oG
 →

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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Scale invariance experimentsScale invariance experiments

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

 Experimental evaluation of detectors
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences


