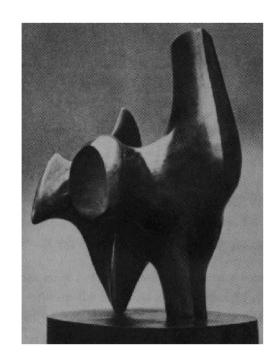
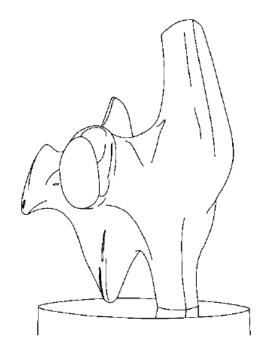
Corner detection

Lecture 4 CS 664 – Spring 2008

Last time: Edge detection

- Convert a gray or color image into set of curves
 - Represented as binary image
- Capture properties of shapes



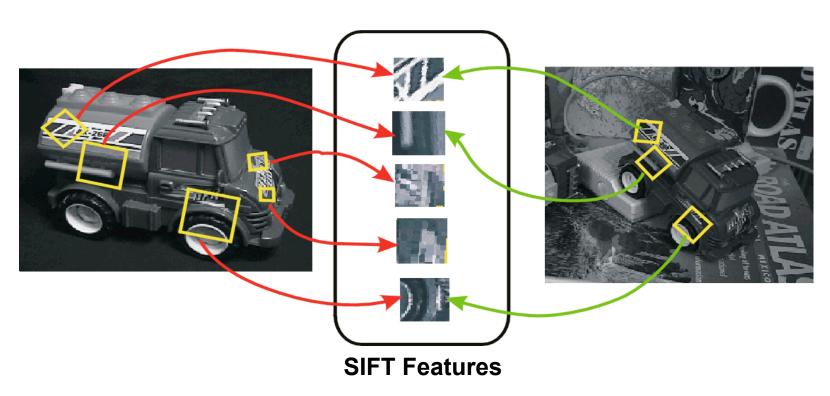


A problem with edges

 Edges are insensitive to intensity changes, but not to other image transformations

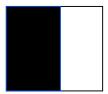
Enter interest point detection

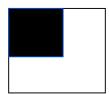
- Goal: Find points that are stable across scaling, rotation, etc.
 - e.g. corners



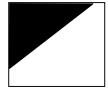
Corners

 A corner is characterized by a region with intensity change in two different directions



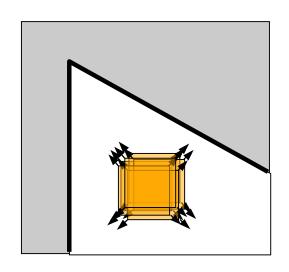


- Use local derivative estimates
 - Gradient oriented in different directions
- Not as simple as looking at gradient (partial derivatives) wrt coordinate frame

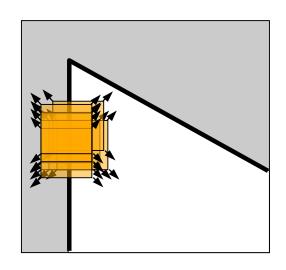


Corner detection: the basic idea

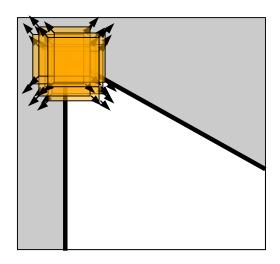
 At a corner, shifting a window in any direction should give a large change in intensity



"flat" region: no change in all directions



"edge":
no change along
the edge direction

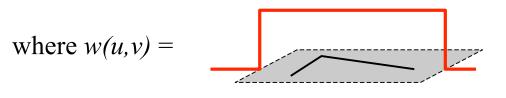


"corner": significant change in all directions

A simple corner detector

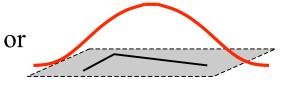
 Define the sum squared difference (SSD) between an image patch and a patch shifted by offset (x,y):

$$S(x,y) = \sum_{u} \sum_{v} w(u,v) (I(u,v) - I(u-x,v-y))^{2}$$

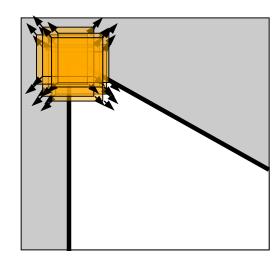


1 in window, 0 outside

- If s(x,y) is high for shifts in all 8 directions, declare a corner.
 - Problem: not isotropic



Gaussian



Harris corner detector derivation

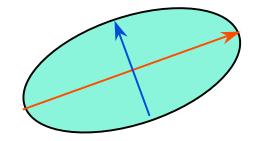
Second-order Taylor series approximation:

$$S(x,y) = \sum_{u} \sum_{v} w(u,v) \left(I(u,v) - I(u-x,v-y) \right)^{2}$$
$$S(x,y) \approx \frac{1}{2} \begin{pmatrix} x & y \end{pmatrix} A \begin{pmatrix} x \\ y \end{pmatrix}$$

• where A is defined in terms of partial derivatives $I_x = \partial I/\partial x$ and $I_v = \partial I/\partial y$ summed over (u,v):

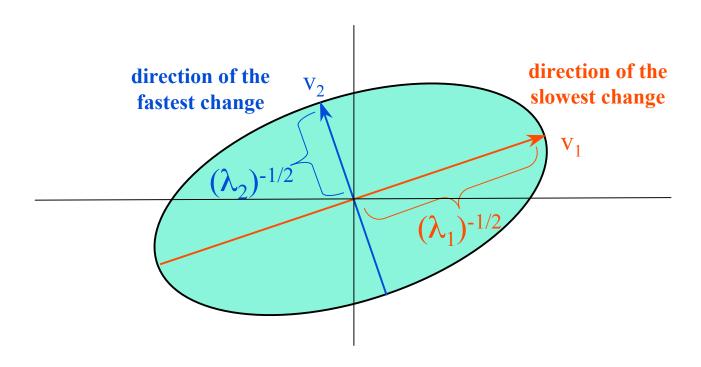
$$A = \sum_{u} \sum_{v} w(u, v) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

■ For constant t, S(x,y) < t is an ellipse</p>



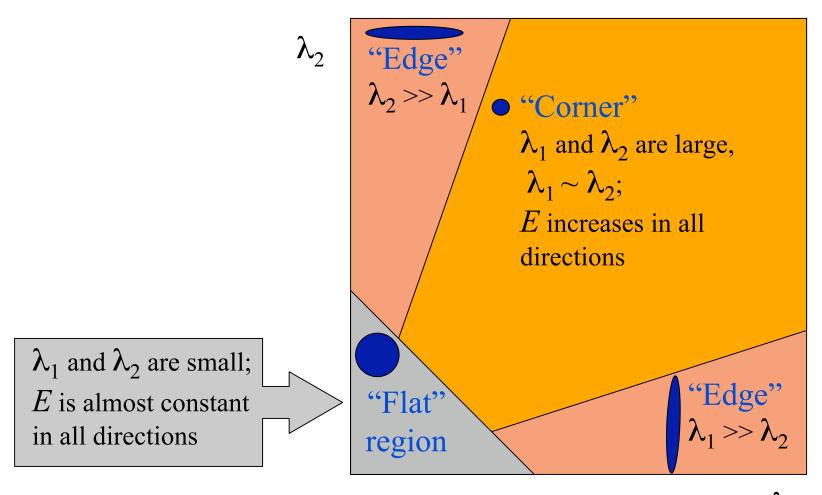
Eigenvector analysis

- The eigenvectors v₁, v₂ of A give an orthogonal basis for the ellipse
 - I.e. directions of fastest and slowest change
 - for $\lambda_2 > \lambda_1$, v_1 is the direction of fastest change (minor axis of ellipse) and v_2 is the direction of slowest change (major axis)



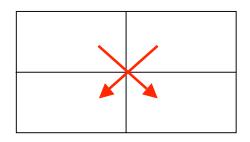
Classify points based on eigenvalues

• Classification of image points using eigenvalues of *M*:



Harris corner detection (1988)

- Smooth the image slightly
- Compute derivatives on 45° rotated axis
 - Eigenvectors thus oriented wrt that grid
 - Eigenvalues not affected



- Find eigenvalues λ_1, λ_2 of A $(\lambda_1 < \lambda_2)$
 - If both large then high gradient in multiple directions
 - When λ₁ larger than threshold detect a corner
 - Eigenvalues can be computed in closed form

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} \qquad \lambda_1 = \frac{1}{2}(a+c-\sqrt{(a-c)^2+4b^2})$$

$$\lambda_2 = \frac{1}{2}(a+c+\sqrt{(a-c)^2+4b^2})$$

Harris corner detection

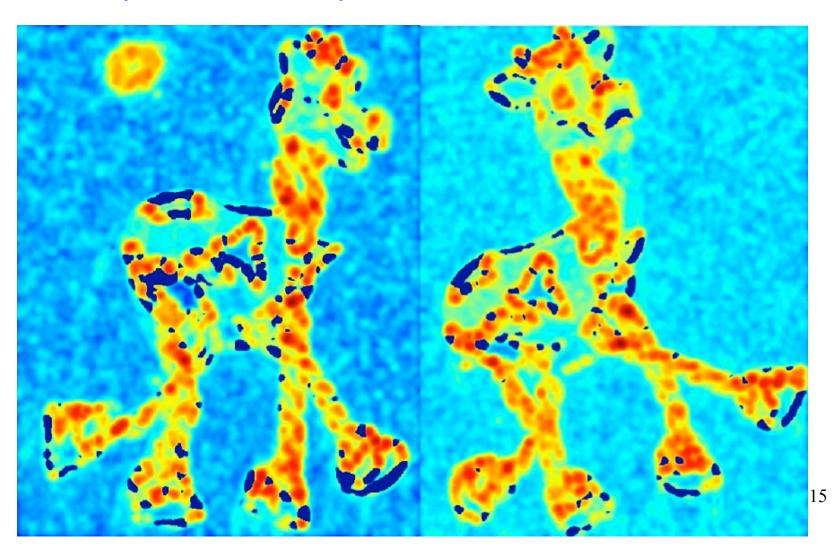
- But square roots are expensive
 - Approximate corner response function that avoids square roots:

$$R = \lambda_1 \lambda_2 - k \left(\lambda_1 + \lambda_2\right)^2$$

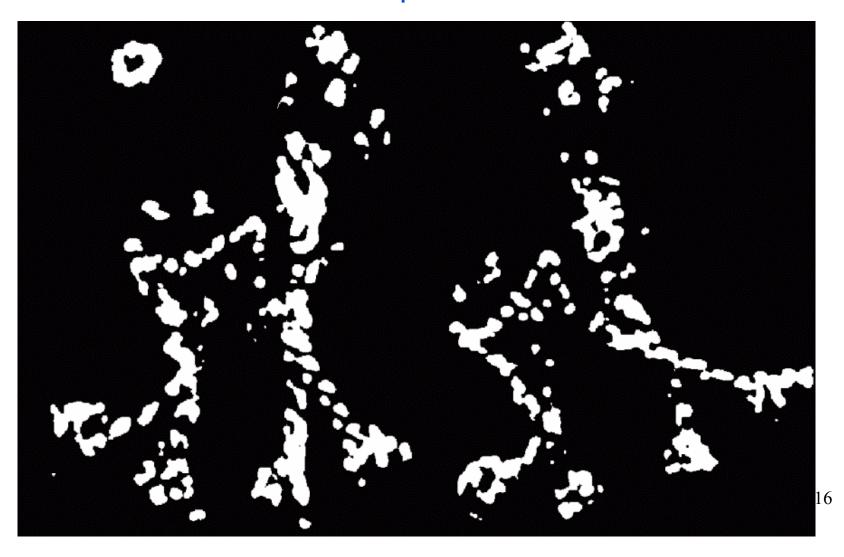
with *k* is set empirically

- After thresholding, keep only local maxima of R as corners
 - prevents multiple detections of the same corner

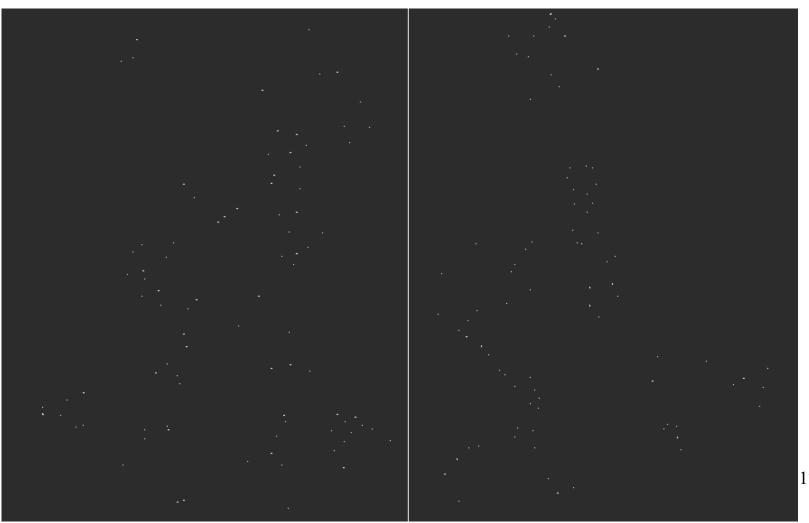
• Compute corner response R



• Threshold on corner response *R*



• Take only local maxima of R



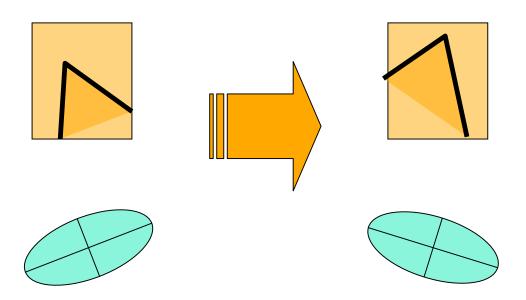
Harris detector result

KLT corner detector

- Kanade-Lucas-Tomasi (1994)
- Very similar to Harris, but with a greedy corner selection criterion
 - Put all points for which λ₁ > thresh in a list L
 - Sort the list in decreasing order by λ_1
 - Declare highest pixel p in L to be a corner. Then remove all points from L that are within a DxD neighborhood of p
 - Continue until L is empty

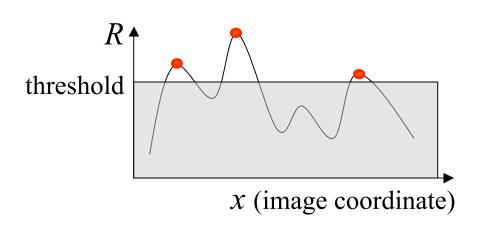
Harris detector properties

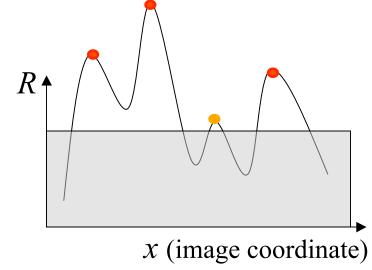
- Rotation invariance
 - Ellipse (eigenvectors) rotate but shape (eigenvalues) remain the same
 - Corner response R is invariant to image rotation



Harris detector properties

- Invariant to intensity shift: I' = I + b
 - only derivatives are used, not original intensity values
- Insensitive to intensity scaling: I' = a I

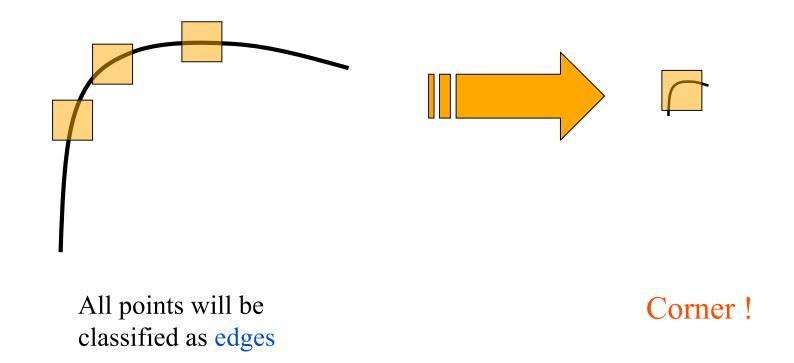




- So Harris is insensitive to affine intensity changes
 - I.e. linear scaling plus a constant offset, I' = a I + b

Harris detector properties

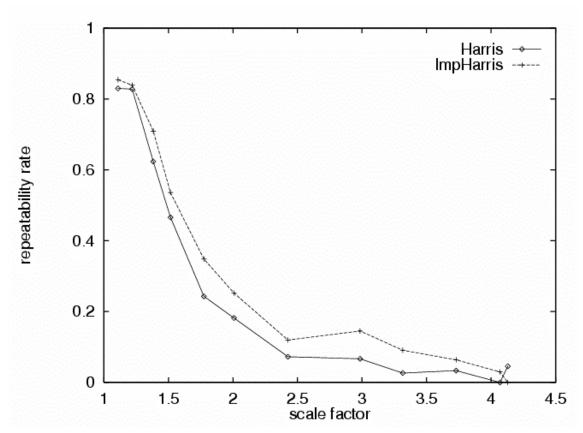
• But Harris is *not* invariant to image scale



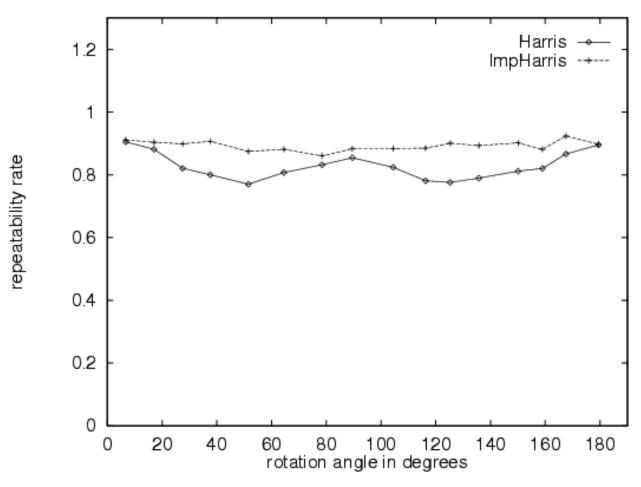
Experimental evaluation

Quality of Harris detector for different scale changes

Repeatability rate: # correspondences # possible correspondences



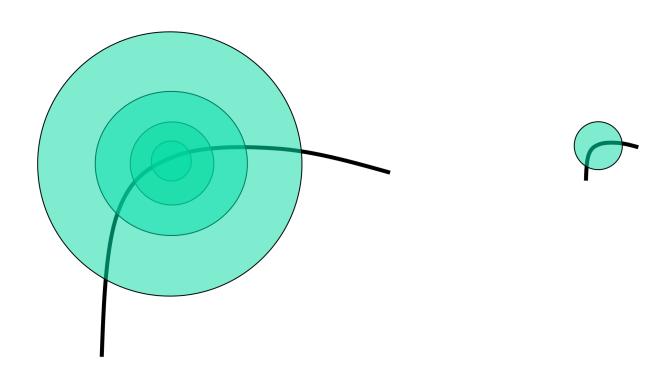
Experimental evaluation



C.Schmid et.al. "Evaluation of Interest Point Detectors". IJCV 2000

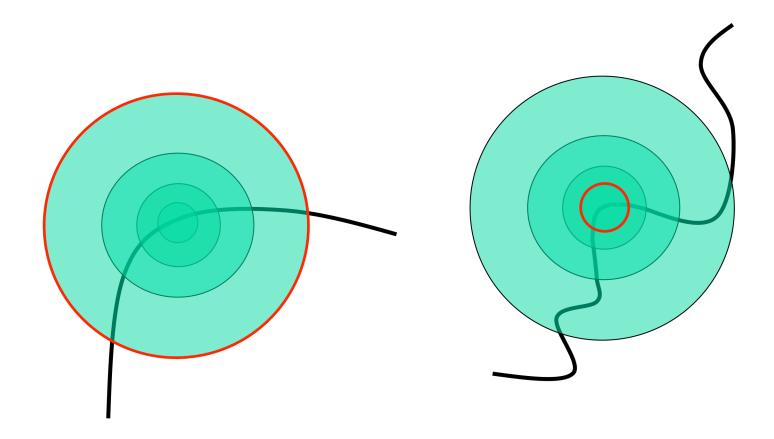
Scale invariant interest point detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images



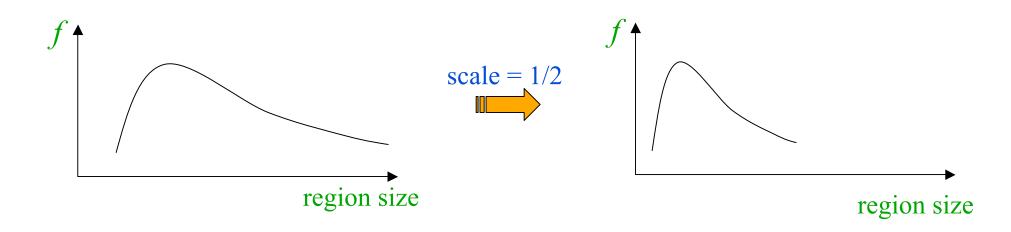
Scale invariant detection

• The problem: how do we choose corresponding circles *independently* in each image?



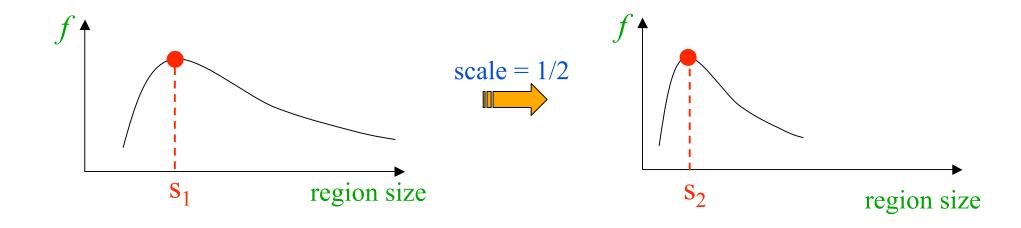
A solution

- Design a function which is "scale invariant"
 - I.e. value is the same for two corresponding regions, even if they are at different scales
 - Example: average intensity is the same for corresponding regions, even of different sizes
- For a given point in an image, consider the value of f as a function of region size (circle radius)



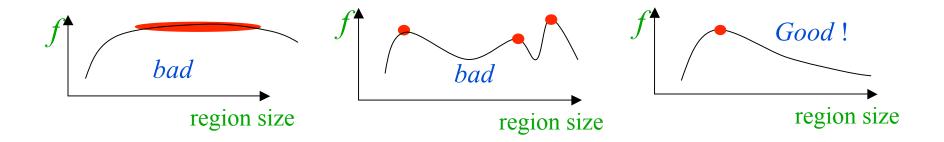
A solution

- Take a local maximum of this function
 - The region size at which maximum is achieved should be invariant to image scale
- This scale invariant region size is determined independently in each image



Choosing a function

A good function for scale detection has one sharp peak



- A function that responds to image contrast is a good choice
 - e.g. convolve with a kernel like the Laplacian or the Difference of Gaussians

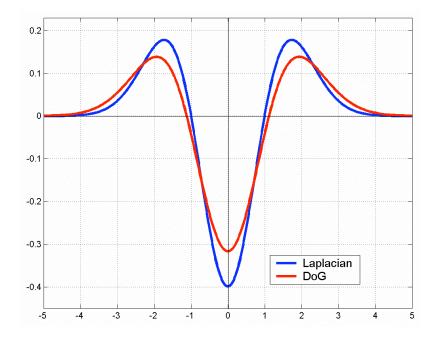
Laplacian vs. Difference of Gaussians

- Common choices:
 - Laplacian:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

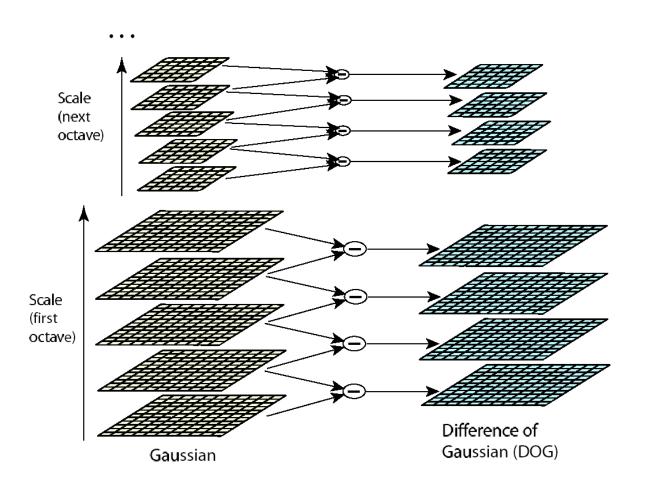
Difference of Gaussians:

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$



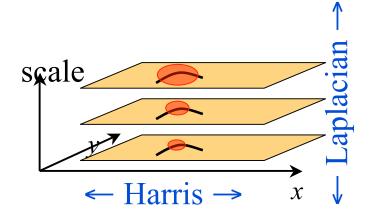
$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Differences of Gaussians

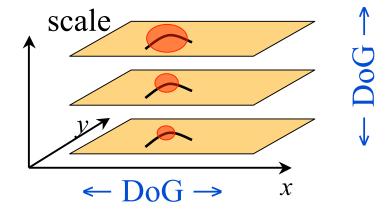


Two approaches: Harris-Laplacian vs. SIFT

- Harris-Laplacian¹ finds local maximum of
 - Harris corner detector in image space
 - Laplacian in scale space



- SIFT (Lowe)² finds local maximum of
 - DoG in image space
 - DoG in scale space



¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

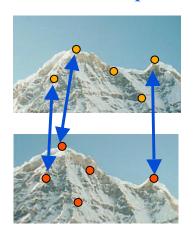
² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

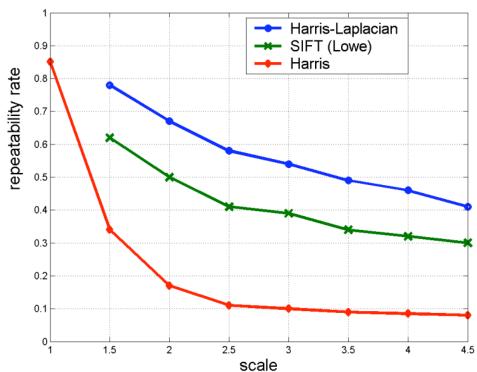
Scale invariance experiments

 Experimental evaluation of detectors w.r.t. scale change

Repeatability rate:

correspondences # possible correspondences





K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001