
Path Tracing
Steve Marschner

Cornell University
CS 6630 Fall 2022

[These notes are meant to supplement the lecture and the text, and they focus on writing down
details clearly rather than on high-level explanations.]

Path tracing is a recursive-sampling method for solving the rendering equation. In class I devel-
oped a sequence of path tracing algorithms, progressing from downright useless to reasonably
capable. The version numbers here refer to the version numbers of the algorithms written in
pseudocode on the lecture slides.

Version 0: brute force recursive sampling

The idea of path tracing is to use Monte Carlo to compute the illumination integral for a surface
point, but to make a recursive call to get all radiance incident on the surface rather than just the
direct radiance. This zeroth version uses uniform sampling in projected solid angle. It is arrived
at as follows:

Version 0.5: Russian Roulette

The biggest problem with version 0 is that the recursion does not terminate. To make it terminate,
without introducing an arbitrary depth limit, we can use Russian Roulette: when we are evaluat-
ing the integral we replace a fraction of the samples with zero (i.e. terminate some paths) and in-
crease the weight of the remaining samples to preserve the mean. In the abstract, in terms of a
estimator g over a random variable X, this is easy to state:

and when we implement this idea in the path tracer we arrive at the algorithm 0.5 in the slides. It
is identical to algorithm 0 except it sometimes doesn’t make the recursive evaluation. As long as
the probability of continuing is bounded away from 1, we have a program with a finite expected
running time.

Version 0.75: BRDF sampling

We can improve things by doing importance sampling according to the BRDF rather than the uni-
form projected solid angle sampling.

Version 1.0: direct illumination

The first big improvement in variance comes from handling direct illumination specially. Just as
we saw that sampling direct illumination using uniform sampling produces high variance, sam-
pling the sum of direct and indirect in the same way produces high variance (at least when there
are light sources in the scene—a scene lit by a uniform background will render just fine with
BRDF sampling). To get to Kajiya’s algorithm we separate the integral into direct and indirect
and use two samples:

This means we trace two rays, one by luminaire (L) sampling and one by BRDF (B) sampling.
The L ray goes toward a luminaire and its radiance value is the emitted light from its direction.
We don’t recurse on the L ray (called a shadow ray). The B ray (the indirect ray) goes in some
arbitrary direction (maybe toward a luminaire, maybe not) but in either case its radiance value is
the reflected light (recursively estimated) of the surface it hits. We don’t include emission in the

B rays. In the example code on the slide, this is done by having the caller trace the ray and then
call reflectedRadianceEst (rather than rayRadianceEst, which would have included emitted light).

Version 1.0m: direct by multiple importance

We got the best (or at least most robust) results for direct illumination by using multiple impor-
tance sampling to combine luminaire and BRDF sampling. There’s nothing to stop us from going
ahead and pasting that same code into the direct lighting evaluation in our path tracer. That’s
what I’ve done in version 1.0m on the slides.

Version 1.1: sharing the BRDF ray

The only problem with version 1.0m is that it is doing extra work tracing BRDF rays. For each
reflection it generates three rays by the time it is done: an L and a B for direct, and then later an-
other B for indirect:

This is wasteful, because those two samples don’t need to be independent. They are not samples
of the same estimator; they are samples contributing to two estimators we are adding together. So
we can save work by tracing a single B ray and using it to sample both emitted and reflected light.
The weighting is important: the contribution of emitted light is weighted against the luminaire
sample using Veach & Guibas’s balance heuristic, whereas the contribution of reflected light is
just normalized as its own separate estimate and added in.

Doing this in the pseudocode results in a monolithic reflectedRadianceEst function that is perhaps
harder to read, but performs well.

Note that none of these methods will do a good job of sampling paths that undergo specular
transport between a small light source and a diffuse surface (that is, “caustic” paths).

	Path Tracing
	Version 0: brute force recursive sampling
	Version 0.5: Russian Roulette
	Version 0.75: BRDF sampling
	Version 1.0: direct illumination
	Version 1.0m: direct by multiple importance
	Version 1.1: sharing the BRDF ray

