
Distributed Snapshots –
Lecture 2

Temporal Accuracy

Assumptions

 Failures

 No failures.

 Network

 Asynchronous -> A message might take arbitrary time to be delivered.

 Reliable -> Messages cannot be lost or duplicated while in transit.

 FIFO -> A network channel maintains the order of messages (e.g. If node A sends
message 1 and 2 in that order to B, then B is going to receive them in the same
order).

 Clock Synchronization

 Adjusted to the presentation needs.

Example – Bank Accounts
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Universal Time
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t

Universal Time
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t

Perfect Temporal
Accuracy

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

2ε-Temporal Accuracy

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Inconsistent Cut

Requirements

1. Causal Consistency

2. Temporal Accuracy

Logical Clock - Revisited

At process 𝑃𝑃:

1. On local event 𝑒𝑒:
𝐿𝐿𝐿𝐿 𝑒𝑒 = max{𝐿𝐿𝐿𝐿𝑃𝑃 + 1,𝑃𝑃𝐿𝐿𝑃𝑃}

2. When sending a message 𝑚𝑚 to another process 𝑄𝑄 (𝑒𝑒):
𝐿𝐿𝐿𝐿 𝑒𝑒 = max{𝐿𝐿𝐿𝐿𝑃𝑃 + 1, 𝑃𝑃𝐿𝐿𝑃𝑃}

Send message 𝑚𝑚, 𝐿𝐿𝐿𝐿 𝑒𝑒 to process 𝑄𝑄.

3. When receiving a message 𝑚𝑚, 𝐿𝐿𝐿𝐿𝑚𝑚 from process 𝑄𝑄 (𝑒𝑒):
𝐿𝐿𝐿𝐿 𝑒𝑒 = max 𝐿𝐿𝐿𝐿𝑃𝑃 + 1, 𝐿𝐿𝐿𝐿𝑚𝑚 + 1,𝑃𝑃𝐿𝐿𝑃𝑃

4. We always set 𝐿𝐿𝐿𝐿𝑃𝑃 to 𝐿𝐿𝐿𝐿 𝑒𝑒 after we finish executing the events.

Logical Clocks – Is this possible?
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Logical Clocks – Is this possible?
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Not possible

Causal Consistency – Logical Clocks

We know that:
𝑒𝑒′ → 𝑒𝑒 ⇒ 𝐿𝐿𝐿𝐿 𝑒𝑒′ ≤ 𝐿𝐿𝐿𝐿(𝑒𝑒)

Proof as exercise.

We take a snapshot 𝐿𝐿 where we include every event 𝑒𝑒 such that 𝐿𝐿𝐿𝐿 𝑒𝑒 ≤
𝑡𝑡. For all events 𝑒𝑒′ → 𝑒𝑒 such that 𝑒𝑒 ∈ 𝐿𝐿, we have

𝐿𝐿𝐿𝐿 𝑒𝑒𝑒 ≤ 𝐿𝐿𝐿𝐿 𝑒𝑒 ⇒
𝐿𝐿𝐿𝐿 𝑒𝑒′ ≤ 𝑡𝑡 ⇒

𝑒𝑒𝑒 ∈ 𝐿𝐿

Temporal Accuracy – Logical Clocks

Do we have Temporal Accuracy by using this scheme?

LC – Perfectly Synchronized Clocks

0

0

0

t t+1 t+2 t+3

t+2

t+3

t t+1 t+4

Time

t t+1 t+2

LC – Perfectly Synchronized Clocks

0

0

0

t t+1 t+2 t+3

t+2

t+3

t t+1 t+4

Time

t t+1 t+2

LC drifts away from UT
when there are multiple
events in same epoch

Temporal Accuracy – Logical Clocks

Do we have ε-Temporal Accuracy by using this scheme?

NO!

Hybrid Logical Clock

We know that:
𝐻𝐻𝐿𝐿𝐿𝐿 = (𝑟𝑟, 𝑙𝑙)

𝐻𝐻𝐿𝐿𝐿𝐿 > 𝐻𝐻𝐿𝐿𝐿𝐿′ ⇔ 𝑟𝑟 > 𝑟𝑟′ ˅(𝑟𝑟 = 𝑟𝑟′ ˄ 𝑙𝑙 > 𝑙𝑙′)

At process 𝑃𝑃:

1. On local event 𝑒𝑒:
𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 = max{𝐻𝐻𝐿𝐿𝐿𝐿𝑃𝑃, 𝑃𝑃𝐿𝐿𝑃𝑃,−1) + (0,1)

2. When sending a message 𝑚𝑚 to another process 𝑄𝑄 (𝑒𝑒):
𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 = max{𝐻𝐻𝐿𝐿𝐿𝐿𝑃𝑃, 𝑃𝑃𝐿𝐿𝑃𝑃,−1) + (0,1)

Send message 𝑚𝑚,𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 to process 𝑄𝑄.

3. When receiving a message 𝑚𝑚,𝐻𝐻𝐿𝐿𝐿𝐿𝑚𝑚 from process 𝑄𝑄 (𝑒𝑒):
𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 = max{𝐻𝐻𝐿𝐿𝐿𝐿𝑃𝑃,𝐻𝐻𝐿𝐿𝐿𝐿𝑚𝑚, 𝑃𝑃𝐿𝐿𝑃𝑃,−1) + (0,1)

4. We always set 𝐻𝐻𝐿𝐿𝐿𝐿𝑃𝑃 to 𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 after we finish executing the events.

Causal Consistency – HLC

We know that:
𝑒𝑒′ → 𝑒𝑒 ⇒ 𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒′ ≤ 𝐻𝐻𝐿𝐿𝐿𝐿(𝑒𝑒)

Proof as exercise.

We take a snapshot 𝐿𝐿 where we include every event 𝑒𝑒 such that
𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 < (𝑡𝑡 + 1,0). For all events 𝑒𝑒′ → 𝑒𝑒 such that 𝑒𝑒 ∈ 𝐿𝐿, we have

𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒𝑒 ≤ 𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 ⇒
𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒′ ≤ 𝑡𝑡 ⇒

𝑒𝑒𝑒 ∈ 𝐿𝐿

Temporal Accuracy – HLC

Do we have ε-Temporal Accuracy by using 𝐻𝐻𝐿𝐿𝐿𝐿?

HLC – Perfectly Synchronized Clocks

(0,0)

(0,0)

(0,0)

(t,0) (t,1) (t+1,1) (t+2,0)

(t,2)

(t+1,0)

(t,0) (t+1,0) (t+2,0)

Time

t t+1 t+2

Temporal Accuracy – HLC

Do we have ε-Temporal Accuracy by using 𝐻𝐻𝐿𝐿𝐿𝐿?

It turns out, that if there is an unknown bound 𝜀𝜀 (weakly-synchronized
clocks) such that:

∀𝑃𝑃. 𝑃𝑃𝐿𝐿𝑃𝑃 𝑡𝑡 − 𝑡𝑡 ≤ 𝜀𝜀

then we know that 𝐻𝐻𝐿𝐿𝐿𝐿 provide 𝜀𝜀-Temporal Accuracy. In particular, if we
take a snapshot 𝐿𝐿 at time 𝑡𝑡 + 1,0 (exclusively):

1. For any event 𝑒𝑒 that happens before t − 𝜀𝜀, we have e ∈ 𝐿𝐿

2. For any event 𝑒𝑒 that happens after t + ε, we have e ∉ 𝐿𝐿

Hybrid Logical Clock

We still do not have the following property:
𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒 < 𝐻𝐻𝐿𝐿𝐿𝐿 𝑒𝑒′ ⇒ 𝑒𝑒 → 𝑒𝑒𝑒

How we design Hybrid Vector Clocks?

Exercise

FFFS

FFFS – Temporal Accuracy

FFFS – Overhead

Questions?

	Distributed Snapshots – Lecture 2
	Assumptions
	Example – Bank Accounts
	Universal Time
	Universal Time
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Requirements
	Logical Clock - Revisited
	Logical Clocks – Is this possible?
	Logical Clocks – Is this possible?
	Causal Consistency – Logical Clocks
	Temporal Accuracy – Logical Clocks
	LC – Perfectly Synchronized Clocks
	LC – Perfectly Synchronized Clocks
	Temporal Accuracy – Logical Clocks
	Hybrid Logical Clock
	Causal Consistency – HLC
	Temporal Accuracy – HLC
	HLC – Perfectly Synchronized Clocks
	Temporal Accuracy – HLC
	Hybrid Logical Clock
	FFFS
	FFFS – Temporal Accuracy
	FFFS – Overhead
	Questions?

