Distributed Snapshots -Lecture 2

Temporal Accuracy

Assumptions

► Failures

► No failures.

Network

- Asynchronous -> A message might take arbitrary time to be delivered.
- ▶ Reliable -> Messages cannot be lost or duplicated while in transit.
- FIFO -> A network channel maintains the order of messages (e.g. If node A sends message 1 and 2 in that order to B, then B is going to receive them in the same order).

Clock Synchronization

Adjusted to the presentation needs.

Example - Bank Accounts

Requirements

- 1. Causal Consistency
- 2. Temporal Accuracy

Logical Clock - Revisited

At process *P*:

1. On local event *e*:

 $LC(e) = \max\{LC^P + 1, PC^P\}$

- 2. When sending a message *m* to another process *Q* (*e*): $LC(e) = \max\{LC^P + 1, PC^P\}$ Send message *m*, *LC*(*e*) to process *Q*.
- 3. When receiving a message m, LC^m from process Q(e): $LC(e) = \max\{LC^P + 1, LC^m + 1, PC^P\}$
- 4. We always set LC^P to LC(e) after we finish executing the events.

Logical Clocks – Is this possible?

Logical Clocks – Is this possible?

Causal Consistency – Logical Clocks

We know that:

$$e' \rightarrow e \Rightarrow LC(e') \leq LC(e)$$

Proof as exercise.

We take a snapshot *C* where we include every event *e* such that $LC(e) \le t$. For all events $e' \to e$ such that $e \in C$, we have $LC(e') \le LC(e) \Rightarrow$ $LC(e') \le t \Rightarrow$ $e' \in C$

Temporal Accuracy – Logical Clocks

Do we have Temporal Accuracy by using this scheme?

LC – Perfectly Synchronized Clocks

Time

LC – Perfectly Synchronized Clocks

t+2

 \cap

ſ

LC drifts away from UT when there are multiple events in same epoch

Time

t+3

Temporal Accuracy - Logical Clocks

Do we have ε-Temporal Accuracy by using this scheme? NO!

Hybrid Logical Clock

We know that:

$$HLC = (r, l)$$

$$HLC > HLC' \Leftrightarrow (r > r') \lor ((r = r') \land (l > l'))$$

At process *P*:

1. On local event e:

 $HLC(e) = \max\{HLC^{P}, (PC^{P}, -1)\} + (0,1)$

- 2. When sending a message *m* to another process *Q* (*e*): $HLC(e) = \max\{HLC^{P}, (PC^{P}, -1)\} + (0,1)$ Send message *m*, HLC(e) to process *Q*.
- 3. When receiving a message m, HLC^m from process Q(e): $HLC(e) = \max\{HLC^P, HLC^m, (PC^P, -1)\} + (0,1)$
- 4. We always set HLC^P to HLC(e) after we finish executing the events.

Causal Consistency – HLC

We know that:

$$e' \rightarrow e \Rightarrow HLC(e') \leq HLC(e)$$

Proof as exercise.

We take a snapshot *C* where we include every event *e* such that HLC(e) < (t + 1,0). For all events $e' \rightarrow e$ such that $e \in C$, we have $HLC(e') \leq HLC(e) \Rightarrow$ $HLC(e') \leq t \Rightarrow$ $e' \in C$

Temporal Accuracy – HLC

Do we have ε -Temporal Accuracy by using *HLC*?

Temporal Accuracy – HLC

Do we have ϵ -Temporal Accuracy by using *HLC*?

It turns out, that if there is an unknown bound ε (weakly-synchronized clocks) such that:

$$\forall P. |PC^P(t) - t| \le \varepsilon$$

then we know that *HLC* provide ε -Temporal Accuracy. In particular, if we take a snapshot *C* at time (t + 1, 0) (exclusively):

- 1. For any event *e* that happens before $t \varepsilon$, we have $e \in C$
- 2. For any event *e* that happens after $t + \varepsilon$, we have $e \notin C$

Hybrid Logical Clock

We still do not have the following property: $HLC(e) < HLC(e') \Rightarrow e \rightarrow e'$

How we design Hybrid Vector Clocks? Exercise

FFFS - Temporal Accuracy

FFFS - Overhead

Questions?