Distributed Snapshots -
Lecture 2

Temporal Accuracy




Assumptions

» Failures
» No failures.

» Network
» Asynchronous -> A message might take arbitrary time to be delivered.
» Reliable -> Messages cannot be lost or duplicated while in transit.

» FIFO -> A network channel maintains the order of messages (e.g. If node A sends

message 1 and 2 in that order to B, then B is going to receive them in the same
order).

» Clock Synchronization

» Adjusted to the presentation needs.




Example - Bank Accounts
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Universal Time
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Universal Time
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Strongly-Synchronized Clocks
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Strongly-Synchronized Clocks
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Strongly-Synchronized Clocks
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Strongly-Synchronized Clocks
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Requirements

1. Causal Consistency
2. Temporal Accuracy




Logical Clock - Revisited

At process P:

1.

On local event e:
LC(e) = max{LCf + 1, PC?}

When sending a message m to another process Q (e):
LC(e) = max{LCF + 1, PCF}
Send message m, LC(e) to process Q.

When receiving a message m, LC™ from process Q (e):
LC(e) = max{LCt + 1,LC™ + 1,PC*}

We always set LC? to LC(e) after we finish executing the events.




Logical Clocks - Is this possible?
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Logical Clocks - Is this possible?
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Causal Consistency - Logical Clocks

We know that:
e’ > e=>LC(e") < LC(e)

Proof as exercise.

We take a snapshot C where we include every event e such that LC(e) <
t. For all events e’ - e such that e € C, we have
LC(e) < LC(e) =
LC(e)<t=>
e €C




Temporal Accuracy - Logical Clocks

Do we have Temporal Accuracy by using this scheme?




LC - Perfectly Synchronized Clocks
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LC - Perfectly Synchronized Clocks
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Temporal Accuracy - Logical Clocks

Do we have e-Temporal Accuracy by using this scheme?
\[e]




Hybrid Logical Clock

We know that:

HLC = (r,])
HLC > HLC' & (r > r')v((r = r")a(l > 1))

At process P:

1.

On local event e:
HLC(e) = max{HLC?, (PC?,—1)} + (0,1)

When sending a message m to another process Q (e):
HLC(e) = max{HLCY, (PC?,—1)} + (0,1)
Send message m, HLC(e) to process Q.

When receiving a message m, HLC™ from process Q (e):
HLC(e) = max{HLCY,HLC™, (PC?,—-1)} + (0,1)

We always set HLC? to HLC(e) after we finish executing the events.




Causal Consistency - HLC

We know that:
e’ > e=> HLC(e'") < HLC(e)

Proof as exercise.

We take a snapshot C where we include every event e such that
HLC(e) < (t + 1,0). For all events e’ = e such that e € C, we have
HLC(e') < HLC(e) =
HLC(e') <t=
e €C




Temporal Accuracy - HLC

Do we have e-Temporal Accuracy by using HLC?




HLC - Perfectly Synchronized Clocks
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Temporal Accuracy - HLC

Do we have e-Temporal Accuracy by using HLC?

It turns out, that if there is an unknown bound ¢ (weakly-synchronized
clocks) such that:
VP.|PCP(t) —t| < ¢

then we know that HLC provide e-Temporal Accuracy. In particular, if we
take a snapshot C at time (t + 1,0) (exclusively):

1. For any event e that happens before t — ¢, we have e € C

2. For any event e that happens after t + €, we have e ¢ C




Hybrid Logical Clock

We still do not have the following property:
HLC(e) < HLC(e') > e — ¢’

How we design Hybrid Vector Clocks?

Exercise




FFFS
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FFFS - Temporal Accuracy

{a) HOFS




FFFS - Overhead

Receive Packet
Parse s

Enqueue
Other Costs &m——=1
Tick HLC
Copy Data &2—/A

Percentage

i

256 1024
packet size(KB)




Questions?
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