
Distributed Snapshots –
Lecture 1

Causal Consistency

Assumptions

 Failures

 No failures.

 Network

 Asynchronous -> A message might take arbitrary time to be delivered.

 Reliable -> Messages cannot be lost or duplicated while in transit.

 FIFO -> A network channel maintains the order of messages (e.g. If node A sends
message 1 and 2 in that order to B, then B is going to receive them in the same
order).

 Clock Synchronization

 Adjusted to the presentation needs.

Example – Bank Accounts
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Universal Time
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t

Universal Time
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t

Always a Consistent Cut

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Consistent Cut

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Strongly-Synchronized Clocks
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

t t+εt-ε

Inconsistent Cut

Consistent Cuts & Consistent Global
States

 Process 𝑃𝑃 starts taking a cut.

 Take state on process 𝑃𝑃.

 Send a token in each channel 𝑐𝑐 adjacent to process 𝑃𝑃.

 No message should be transmitted between taking the state and sending the
tokens.

 On any process 𝑄𝑄 that receives token from channel 𝑐𝑐
 If state has been captured, record channels 𝑐𝑐 states as all the messages received

from the point you have taken the state and received this token.

 Else, record state and send token in each channel 𝑐𝑐 adjacent to process 𝑄𝑄.

 No message should be transmitted between taking the state and sending the
tokens.

Consistent Cuts – Is this possible?
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Consistent Cuts – Is this possible?
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Process B sends token to
Process C before B1, arrives
at C before C2 (FIFO), and
C captures its state before
C2 (contradiction).

Consistent Cut Issues

1. Cuts are not taken on demand. They should be taken pro-actively.

2. Might be slightly disruptive if the algorithm runs frequently.

3. What timestamp should be assigned to a cut?

Happened Before Relation

1. If an event 𝑒𝑒𝑒 happens after another event 𝑒𝑒 in the same process P, then
𝑒𝑒 → 𝑒𝑒𝑒

2. If a process P sends a message m (event 𝑒𝑒) and another process Q receives
message m (event 𝑒𝑒𝑒) then

𝑒𝑒 → 𝑒𝑒𝑒

3. Transitive Closure: If
𝑒𝑒 → 𝑒𝑒′ and 𝑒𝑒′ → 𝑒𝑒′′

then
𝑒𝑒 → 𝑒𝑒𝑒𝑒

Causal Consistency

A snapshot (or a cut) 𝐶𝐶 is causally consistent iff
∀𝑒𝑒′ ∈ 𝑒𝑒′ ∃𝑒𝑒. 𝑒𝑒′ → 𝑒𝑒 ˄ 𝑒𝑒 ∈ 𝐶𝐶}. 𝑒𝑒𝑒 ∈ C

Causal Consistency – Universal Time

We know that:
𝑒𝑒′ → 𝑒𝑒 ⇒ 𝑈𝑈𝑈𝑈 𝑒𝑒′ ≤ 𝑈𝑈𝑈𝑈(𝑒𝑒)

Proof as exercise.

We take a snapshot 𝐶𝐶 where we include every event 𝑒𝑒 such that 𝑈𝑈𝑈𝑈 𝑒𝑒 ≤
𝑡𝑡. For all events 𝑒𝑒′ → 𝑒𝑒 such that 𝑒𝑒 ∈ 𝐶𝐶, we have

𝑈𝑈𝑈𝑈 𝑒𝑒𝑒 ≤ 𝑈𝑈𝑈𝑈 𝑒𝑒 ⇒
𝑈𝑈𝑈𝑈 𝑒𝑒′ ≤ 𝑡𝑡 ⇒

𝑒𝑒𝑒 ∈ 𝐶𝐶

Logical Clock

At process 𝑃𝑃:

1. On local event 𝑒𝑒:
𝐿𝐿𝐶𝐶 𝑒𝑒 = 𝐿𝐿𝐶𝐶𝑃𝑃 + 1

2. When sending a message 𝑚𝑚 to another process 𝑄𝑄 (𝑒𝑒):
𝐿𝐿𝐶𝐶 𝑒𝑒 = 𝐿𝐿𝐶𝐶𝑃𝑃 + 1

Send message 𝑚𝑚, 𝐿𝐿𝐶𝐶 𝑒𝑒 to process 𝑄𝑄.

3. When receiving a message 𝑚𝑚, 𝐿𝐿𝐶𝐶𝑚𝑚 from process 𝑄𝑄 (𝑒𝑒):
𝐿𝐿𝐶𝐶 𝑒𝑒 = max 𝐿𝐿𝐶𝐶𝑃𝑃, 𝐿𝐿𝐶𝐶𝑚𝑚 + 1

4. We always set 𝐿𝐿𝐶𝐶𝑃𝑃 to 𝐿𝐿𝐶𝐶 𝑒𝑒 after we finish executing the events.

Logical Clocks – Is this possible?
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Logical Clocks – Is this possible?

0

0

0

1 2 3 4

3

4

1 2 5

Time

Not possible

Causal Consistency – Logical Clocks

We know that:
𝑒𝑒′ → 𝑒𝑒 ⇒ 𝐿𝐿𝐶𝐶 𝑒𝑒′ ≤ 𝐿𝐿𝐶𝐶(𝑒𝑒)

Proof as exercise.

We take a snapshot 𝐶𝐶 where we include every event 𝑒𝑒 such that 𝐿𝐿𝐶𝐶 𝑒𝑒 ≤
𝑡𝑡. For all events 𝑒𝑒′ → 𝑒𝑒 such that 𝑒𝑒 ∈ 𝐶𝐶, we have

𝐿𝐿𝐶𝐶 𝑒𝑒𝑒 ≤ 𝐿𝐿𝐶𝐶 𝑒𝑒 ⇒
𝐿𝐿𝐶𝐶 𝑒𝑒′ ≤ 𝑡𝑡 ⇒

𝑒𝑒𝑒 ∈ 𝐶𝐶

Is the following true?
𝐿𝐿𝐶𝐶 𝑒𝑒 < 𝐿𝐿𝐶𝐶 𝑒𝑒′ ⇒ 𝑒𝑒 → 𝑒𝑒𝑒

Logical Clocks – Is this possible?

0

0

0

1 2 3 4

3

4

1 2 5

Time

Consistent but
not possible with
LC

Causal Consistency – Logical Clocks

We know that:
𝑒𝑒′ → 𝑒𝑒 ⇒ 𝐿𝐿𝐶𝐶 𝑒𝑒′ ≤ 𝐿𝐿𝐶𝐶(𝑒𝑒)

Proof as exercise.

We take a snapshot 𝐶𝐶 where we include every event 𝑒𝑒 such that 𝐿𝐿𝐶𝐶 𝑒𝑒 ≤
𝑡𝑡. For all events 𝑒𝑒′ → 𝑒𝑒 such that 𝑒𝑒 ∈ 𝐶𝐶, we have

𝐿𝐿𝐶𝐶 𝑒𝑒𝑒 ≤ 𝐿𝐿𝐶𝐶 𝑒𝑒 ⇒
𝐿𝐿𝐶𝐶 𝑒𝑒′ ≤ 𝑡𝑡 ⇒

𝑒𝑒𝑒 ∈ 𝐶𝐶

Is the following true?
𝐿𝐿𝐶𝐶 𝑒𝑒 < 𝐿𝐿𝐶𝐶 𝑒𝑒′ ⇒ 𝑒𝑒 → 𝑒𝑒𝑒

NO!

Vector Clock
Assume we have 𝑛𝑛 processes. Then VC is an 𝑛𝑛-tuple. We denote 𝑉𝑉𝐶𝐶𝑃𝑃[𝑄𝑄] as
the 𝑉𝑉𝐶𝐶 value for process 𝑄𝑄 that is kept at process 𝑃𝑃. At process 𝑃𝑃:

1. On local event 𝑒𝑒:
𝑉𝑉𝐶𝐶 𝑒𝑒 𝑃𝑃 = 𝑉𝑉𝐶𝐶𝑃𝑃 𝑃𝑃 + 1

For all processes 𝑄𝑄 ≠ 𝑃𝑃:
𝑉𝑉𝐶𝐶 𝑒𝑒 𝑄𝑄 = 𝑉𝑉𝐶𝐶𝑃𝑃[𝑄𝑄]

2. When sending a message 𝑚𝑚 to another process 𝑅𝑅 (𝑒𝑒):
𝑉𝑉𝐶𝐶 𝑒𝑒 𝑃𝑃 = 𝑉𝑉𝐶𝐶𝑃𝑃 𝑃𝑃 + 1

For all processes 𝑄𝑄 ≠ 𝑃𝑃:
𝑉𝑉𝐶𝐶 𝑒𝑒 𝑄𝑄 = 𝑉𝑉𝐶𝐶𝑃𝑃[𝑄𝑄]

Send message 𝑚𝑚,𝑉𝑉𝐶𝐶 𝑒𝑒 to process 𝑄𝑄.

3. When receiving a message 𝑚𝑚,𝑉𝑉𝐶𝐶𝑚𝑚 from process 𝑅𝑅 (𝑒𝑒):
𝑉𝑉𝐶𝐶 𝑒𝑒 𝑃𝑃 = max 𝑉𝑉𝐶𝐶𝑃𝑃[𝑃𝑃],𝑉𝑉𝐶𝐶𝑚𝑚[𝑃𝑃] + 1

For all processes 𝑄𝑄 ≠ 𝑃𝑃:
𝑉𝑉𝐶𝐶 𝑒𝑒 𝑄𝑄 = max 𝑉𝑉𝐶𝐶𝑃𝑃[𝑄𝑄],𝑉𝑉𝐶𝐶𝑚𝑚[𝑄𝑄]

4. We always set 𝑉𝑉𝐶𝐶𝑃𝑃 to 𝑉𝑉𝐶𝐶 𝑒𝑒 after we finish executing the events.

Vector Clocks – Is this possible?
User A

$50

User B
$75

User C
$75

A0
+$25->$75

A1
$25

A2
$50

A3
-$35->$15

B0
$125

B1
$85

C0
-35->$40

C1
$15

C2
$55

Time

Logical Clocks – Is this possible?

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0) (2,0,0) (3,0,2) (4,0,2)

(2,1,0)

(2,2,0)

(0,0,1) (0,0,2) (2,2,3)

Time

Cannot include 3rd event
in blue process without
including 2nd event in
green process.

Vector Clocks – Multiple Snapshots Possible

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0) (2,0,0) (3,0,2) (4,0,2)

(2,1,0)

(2,2,0)

(0,0,1) (0,0,2) (2,2,3)

Time

Causal Consistency – Vector Clocks

 We say that:
𝑉𝑉𝐶𝐶 𝑒𝑒′ < 𝑉𝑉𝐶𝐶 𝑒𝑒

iff for all processes 𝑃𝑃:
𝑉𝑉𝐶𝐶 𝑒𝑒′ 𝑃𝑃 ≤ 𝑉𝑉𝐶𝐶 𝑒𝑒 𝑃𝑃

𝑉𝑉𝐶𝐶 𝑒𝑒′ 𝑄𝑄 < 𝑉𝑉𝐶𝐶(𝑒𝑒)[𝑄𝑄]

	Distributed Snapshots – Lecture 1
	Assumptions
	Example – Bank Accounts
	Universal Time
	Universal Time
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Strongly-Synchronized Clocks
	Consistent Cuts & Consistent Global States
	Consistent Cuts – Is this possible?
	Consistent Cuts – Is this possible?
	Consistent Cut Issues
	Happened Before Relation
	Causal Consistency
	Causal Consistency – Universal Time
	Logical Clock
	Logical Clocks – Is this possible?
	Logical Clocks – Is this possible?
	Causal Consistency – Logical Clocks
	Logical Clocks – Is this possible?
	Causal Consistency – Logical Clocks
	Vector Clock
	Vector Clocks – Is this possible?
	Logical Clocks – Is this possible?
	Vector Clocks – Multiple Snapshots Possible
	Causal Consistency – Vector Clocks

