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This document contains descriptions of almost all my technical papers.
Omitted are papers for which I no longer have copies and papers that are
incomplete. I have also omitted early versions of some of these papers—even
in cases where the title changed. Included are some initial drafts of papers
that I abandoned before fixing errors or other problems in them. A table of
contents precedes the descriptions. I also include a brief curriculum vitae.

Each description attempts to explain the genesis of the work. However, I
have forgotten how I came to write most of my papers. Even when I discourse
at length about the development of the ideas, I am giving only a subjective
view based on my unreliable memory. Whenever possible, I have asked other
people involved to check the accuracy of what I’ve written. However, what
I have most often forgotten is the work of others that influenced my own
work. This may give the impression that I am claiming more credit for ideas
than I deserve, for which I apologize.

Where I think it’s interesting, I give the story behind the publication or
non-publication of a paper. Some of the stories read like complaints of unfair
treatment by editors or referees. Such cases are bound to arise in any activity
based on human judgment. On the whole, I have had little trouble getting
my papers published. In fact, I have profited from the natural tendency of
editors and referees to be less critical of the work of established scientists.
But I think it’s worth mentioning the cases where the system didn’t work
as it should.

I would like to have ordered my papers by the date they were written.
However, I usually have no record of when I actually wrote something. So,
I have ordered them by date of publication or, for unpublished works, by
the date of the version that I have. Because of long and variable publication
delays, this means that the order is only approximately chronological.

This is the printed version of the Web page currently at

http://research.microsoft.com/users/lamport/pubs/pubs.
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and Word documents. One way to refer to it in Web documents is:

the 23-letter string obtained by removing the - characters from
the string alllam-portspu-bsonth-eweb

Whenever possible, the web page includes electronic versions of the works.
At the moment, I have electronic versions mainly of works written after
about 1985. For journal articles, these may be “preprint” versions, formatted
differently and sometimes differing slightly from the published versions. I
hope in the future to provide scanned versions of earlier publications.
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[1] Braid Theory. Mathematics Bulletin of the Bronx High School of
Science (1957), pages 6,7, and 9.

This appears to be my first publication, written when I was a high
school student. It shows that I was not a child prodigy.

[2] Summer Vision Programs. Massachusetts Institute of Technol-
ogy, Project MAC Memorandum MAC-M-332, Artificial Intelligence
Project Memo Number Vision 111 (October 1966).

In the summer of 1966, I worked at the M.I.T. Artificial Intelligence
Laboratory, doing Lisp programming for a computer vision project.
I have no memory of this document, but it appears to describe the
programs I wrote that summer. It’s of no technical interest, but it does
show that, even in those days, I was writing precise documentation.

[3] Preliminary User’s Guide to Monitor 1 (with Roland Silver).
Mitre Technical Report (December 1966).

While in graduate school, I worked summers and part-time at the
Mitre Corporation from 1962 to 1965. I think I wrote three or four
technical reports there, but this is the only one the Mitre library seems
to have. A large part of my time at Mitre was spent working on the
operating system for a computer being built there called Phoenix.
This is the operating system’s manual, apparently written by Silver
based on work we had both done. There is nothing of technical interest
here, but it provides a snapshot of what was going on in the world of
computers in the early 60s.

[4] Untitled Draft of Advanced Calculus Text. Unpublished (circa
1967).

During the 1965–1969 academic years, I taught math at Marlboro Col-
lege. I don’t remember exactly when or how the project got started,
but I wrote the first draft of an advanced calculus textbook for Prentice-
Hall, from whom I received an advance of $500. (That sum, which
seems ridiculously small now, was a significant fraction of my salary
at the time.) The Prentice-Hall reviewers liked the draft. I remember
one reviewer commenting that the chapter on exterior algebra gave
him, for the first time, an intuitive understanding of the topic. How-
ever, because of a letter that was apparently lost in the mail, the
Prentice-Hall editor and I both thought that the other had lost inter-
est in the project. By the time this misunderstanding had been cleared
up, I was ready to move on to other things and didn’t feel like writing
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a final draft. (This was before the days of computer text processing,
so writing a new draft meant completely retyping hundreds of pages
of manuscript.)

[5] The Geometry of Space and Time. Unpublished (circa 1968).

Marlboro College, where I taught math from 1965–1969, had a weekly
series of lectures for the general public, each given by a faculty member
or an outside speaker invited by a faculty member. I gave a lecture
about relativity that I later turned into this short monograph. I made
a half-hearted, unsuccessful effort to get it published. But it was too
short (75 pages) to be a “real” book, and there was very little in-
terest in science among the general public in the late sixties. I think
this monograph is still a very good exposition of the subject. Unfortu-
nately, the second half, on general relativity, is obsolete because it says
nothing about black holes. While black holes appear in the earliest
mathematical solutions to the equations of general relativity, it was
only in the late 60s that many physicists began seriously to consider
that they might exist and to study their properties.

[6] Comment on Bell’s Quadratic Quotient Algorithm. Commu-
nications of the ACM 13, 9 (September 1970).

This short note describes a minor inefficiency I noticed in a hash-table
algorithm published by James Bell. It got me thinking about hash
tables, and I invented what I called the linear quotient algorithm—
an algorithm that seems quite obvious in retrospect. While I was
running simulations to gather data for a paper on that algorithm,
the latest issue of CACM arrived with a paper by Bell and Charles
Kaman titled The Linear Quotient Hash Code. I had devised three
variants of the algorithm not contained in their article. So, I wrote
a paper about those three variants and submitted it to CACM . The
editor rejected it, without sending it out for review, saying that it
was too small a contribution to merit publication. In the next few
years, CACM published two papers by others on the subject, each
completely devoted to one of my three variants. (Those papers had
been submitted to different editors.) My paper, which was probably a
Massachusetts Computer Associates (Compass) technical report, has
been lost. (Compass went out of business a few years ago, and I
presume that its library was destroyed.) The linear quotient method
is probably the most common hash-coding algorithm used today.
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[7] The Analytic Cauchy Problem with Singular Data. Ph.D.
Thesis, Brandeis University (1972). Available from UMI, currently
at http://wwwlib.umi.com, as number 7232105.

I left Marlboro College and went back to Brandeis in 1969 to com-
plete my Ph.D. At that time, I intended to study and write a the-
sis in mathematical physics. However, I wound up doing a thesis in
pure mathematics, on analytic partial differential equations. I learned
nothing about analytic partial differential equations except what was
needed for my thesis research, and I have never looked at them since
then. The thesis itself was a small, solid piece of very classical math.
Had Cauchy arisen from the grave to read it, he would have found
nothing unfamiliar in the mathematics.

[8] An Extension of a Theorem of Hamada on the Cauchy Prob-
lem with Singular Data. Bulletin of the Amer. Math. Society 79,
4 (July 1973), 776–780.

At the time, and perhaps still today, a math student “copyrighted” his
(seldom her) thesis results by announcing them in a short note in the
Bulletin of the AMS . Normally, a complete paper would be published
later. But I never did that, since I left math for computer science after
completing my thesis.

[9] The Coordinate Method for the Parallel Execution of DO
Loops. Proceedings of the 1973 Sagamore Conference on Parallel
Processing, T. Feng, ed., 1–12.

Compass (Massachusetts Computer Associates) had a contract to write
the Fortran compiler for the Illiac-IV computer, an array computer
with 64 processors that all operated in lock-step on a single instruc-
tion stream. I developed the theory and associated algorithms for
executing sequential DO loops in parallel on an array computer that
were used by the compiler. The theory is pretty straightforward. The
creativity lay in the proper mathematical formulation of the problem.
Today, it would be considered a pretty elementary piece of work. But
in those days, we were not as adept at applying math to programming
problems. Indeed, when I wrote up a complete description of my work
for my colleagues at Compass, they seemed to treat it as a sacred text,
requiring spiritual enlightenment to interpret the occult mysteries of
linear algebra.

Anyway, this paper was my first pass at writing up the complete
version of the theory for publication. I strongly suspect that it has
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never been read. No one seems to have noticed that, because of a text-
editing error, the description of the algorithm is missing the punch line
that says what can be executed in parallel. This paper is superseded
by the unpublished [20].

[10] The Parallel Execution of DO Loops. Communications of the
ACM 17, 2 (February 1974), 83–93.

This is the only journal paper to come out of the work mentioned in
the description of [9]. It contains essentially the special case of the
results in [9] for a single tight nesting of loops. It was one of the early
articles on the topic, and I believe it was cited fairly often.

[11] The Hyperplane Method for an Array Computer. Proceedings
of the 1974 Sagamore Conference on Parallel Processing, T. Feng, ed.,
Springer Verlag, 1–12.

In the late 19th century, the Vanderbilts (a rich American family)
owned 500 hectares of beautiful land in the central Adirondack Moun-
tains of New York State that included Sagamore Lake, which is about
a kilometer in length. There, they built a rustic summer estate. In
the 70s, and probably still today, the place was completely isolated,
away from any other signs of civilization. The estate, with land and
lake, was given to Syracuse University, which operated it as a con-
ference center. An annual conference on parallel processing was held
there late in the summers of 1973 through 1975. Sagamore was the
most beautiful conference site I have ever seen. The conference wasn’t
bad, with a few good people attending, though it wasn’t first rate.
But I would have endured a conference on medieval theology for the
opportunity to canoe on, swim in, and walk around the lake.

To justify my attendance at Sagamore, I always submitted a paper.
But once I discovered that it was not a first-rate conference, I did
not submit first-rate papers. However, I don’t republish old material
(except as necessary to avoid forcing people to read earlier papers), so
this paper must have included some new results about the hyperplane
method for parallelizing sequential loops. However, I can’t find a copy
of the paper and don’t remember what was in it.

[12] A New Solution of Dijkstra’s Concurrent Programming Prob-
lem. Communications of the ACM 17, 8 (August 1974), 453–455.

This paper describes the bakery algorithm for implementing mutual
exclusion. I have invented many concurrent algorithms. I feel that I
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did not invent the bakery algorithm, I discovered it. Like all shared-
memory synchronization algorithms, the bakery algorithm requires
that one process be able to read a word of memory while another
process is writing it. (Each memory location is written by only one
process, so concurrent writing never occurs.) Unlike any previous al-
gorithm, and almost all subsequent algorithms, the bakery algorithm
works regardless of what value is obtained by a read that overlaps a
write. If the write changes the value from 0 to 1, a concurrent read
could obtain the value 7456 (assuming that 7456 is a value that could
be in the memory location). The algorithm still works. I didn’t try to
devise an algorithm with this property. I discovered that the bakery
algorithm had this property after writing a proof of its correctness and
noticing that the proof did not depend on what value is returned by
a read that overlaps a write.

I don’t know how many people realize how remarkable this al-
gorithm is. Perhaps the person who realized it better than anyone
is Anatol Holt, a former colleague at Massachusetts Computer Asso-
ciates. When I showed him the algorithm and its proof and pointed
out its amazing property, he was shocked. He refused to believe it
could be true. He could find nothing wrong with my proof, but he was
certain there must be a flaw. He left that night determined to find
it. I don’t know when he finally reconciled himself to the algorithm’s
correctness.

Several books have included emasculated versions of the algorithm
in which reading and writing are atomic operations, and called those
versions “the bakery algorithm”. I find that deplorable. There’s noth-
ing wrong with publishing a simplified version, as long as it’s called a
simplified version.

What is significant about the bakery algorithm is that it imple-
ments mutual exclusion without relying on any lower-level mutual ex-
clusion. Assuming that reads and writes of a memory location are
atomic actions, as previous mutual exclusion algorithms had done, is
tantamount to assuming mutually exclusive access to the location. So
a mutual exclusion algorithm that assumes atomic reads and writes
is assuming lower-level mutual exclusion. Such an algorithm cannot
really be said to solve the mutual exclusion problem. Before the bak-
ery algorithm, people believed that the mutual exclusion problem was
unsolvable—that you could implement mutual exclusion only by us-
ing lower-level mutual exclusion. Brinch Hansen said exactly this in a
1972 paper. Many people apparently still believe it. (See [91].)
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The paper itself does not state that it is a “true” mutual exclusion
algorithm. This suggests that I didn’t realize the full significance of
the algorithm until later, but I don’t remember.

For a couple of years after my discovery of the bakery algorithm,
everything I learned about concurrency came from studying it. Papers
like [25], [33], and [70] were direct results of that study. The bakery al-
gorithm was also where I introduced the idea of variables belonging to
a process—that is, variables that could be read by multiple processes,
but written by only a single process. I was aware from the beginning
that such algorithms had simple distributed implementations, where
the variable resides at the owning process, and other processes read it
by sending messages to the owner. Thus, the bakery algorithm marked
the beginning of my study of distributed algorithms.

The paper contains one small but significant error. In a footnote,
it claims that we can consider reads and writes of a single bit to be
atomic. It argues that a read overlapping a write must get one of the
two possible values; if it gets the old value, we can consider the read
to have preceded the write, otherwise to have followed it. It was only
later, with the work eventually described in [70], that I realized the
fallacy in this reasoning.

[13] On Self-stabilizing Systems. Massachusetts Computer Associates
Technical Report CA 7412-0511 (5 December 1974).

This note was written upon reading Dijkstra’s classic paper “Self-
stabilizing Systems in Spite of Distributed Control” that appeared in
the November 1974 issue of CACM (see [58]). It generalizes one of the
algorithms in Dijkstra’s paper from a line of processes to an arbitrary
tree of processes. It also discusses the self-stabilizing properties of
the bakery algorithm. I never tried to publish this note—probably
because I regarded it as too small a piece of work to be worth a paper
by itself.

The note contains the intriguing sentence: “There is a complicated
modified version of the bakery algorithm in which the values of all vari-
ables are bounded.” I never wrote down that version, and I’m not sure
what I had in mind. But I think I was thinking of roughly the following
modification. As a process waits to enter its critical section, it keeps
reducing its number, not entering the critical section until its number
equals one. A process p can reduce its number by at most one, and
only when the next lower-numbered process’s number is at least two
less than p’s number, and the next higher-numbered process is within
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one of p’s number. I think I intended to use the techniques of [25]
to allow reading and writing of numbers to remain non-atomic while
maintaining the order of waiting processes. (If eventually all processes
stop changing their numbers, then all processes will eventually read
the correct numbers, allowing some process to progress.) At one time,
I convinced myself that this algorithm is correct. But I never wrote a
rigorous proof, so I don’t know if it really works. Filling in the details
and proving correctness should be a nice exercise.

[14] On Programming Parallel Computers. Proceedings of a Con-
ference on Programming Languages and Compilers for Parallel and
Vector Machines, published as ACM SIGPLAN Notices 10, 3 (March
1975), 25–33.

This is a position paper advocating the use of a higher-level language
that expresses what must be computed rather than how it is to be
computed. It argues that compilers are better than humans at gener-
ating efficient code for parallel machines. I was so naive then! I soon
learned how bad compilers really were, and how trying to make them
smarter just made them buggier. But compiler writers have gotten a
lot better, so maybe this paper isn’t as stupid now as it was then.

[15] Parallel Execution on Array and Vector Computers. Proceed-
ings of the 1975 Sagamore Conference on Parallel Processing, T. Feng,
ed., 187–191.

This paper considers the problem of efficiently executing a sequence of
explicitly parallel statements—ones requiring simultaneous execution
for all values of a parameter—when there are more parameter values
than there are processors. It is one of the lesser papers that I saved
for the Sagamore Conference. (See the discussion of [11].)

[16] Multiple Byte Processing with Full-Word Instructions. Com-
munications of the ACM 18, 8 (August 1975), 471–475.

My algorithms for parallelizing loops, described in papers starting with
[9], were rather inefficient. They could be sped up with parallel execu-
tion on an array processor like the Illiac-IV. But I realized one could
do even better than the 64-times speedup provided by the Illiac’s 64
processors. Each datum being manipulated was just a few bits, so
I had the idea of packing several of the data into a single word and
manipulating them simultaneously. Not only could this speed com-
putation on the Illiac, but it allowed one to do array processing on
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an ordinary uniprocessor. This paper describes general techniques for
doing such parallel computation on packed data. It’s a neat hack, and
it’s more useful now than it was then for two reasons. The obvious
reason is that word size is larger now, with many computers having 64-
bit words. The less obvious reason is that conditional operations are
implemented with masking rather than branching. Instead of branch-
ing around the operation when the condition is not met, masks are
constructed so the operation is performed only on those data items
for which the condition is true. Branching is more costly on modern
multi-issue computers than it was on the computers of the 70s.

[17] The Synchronization of Independent Processes. Acta Infor-
matica 7, 1 (1976), 15–34.

There are a class of synchronization problems that are direct general-
izations of mutual exclusion in that they assert constraints on when a
process is allowed to perform a task. They include the dining philoso-
phers problem and the readers/writers problem. This paper shows
how a modified version of the bakery algorithm can be used to solve
any such problem.

A referee said of the initial submission that the proofs were too
long, tediously proving the obvious. In fact, there was a bug in the
initial version, and at least one of those obvious proofs was of a false
statement. Needless to say, I corrected the algorithm and wrote more
careful proofs.

[18] Comments on ‘A Synchronization Anomaly’. Information Pro-
cessing Letters 4, 4 (January 1976), 88–89.

This is a comment on a short note by Richard Lipton and Robert
Tuttle claiming to find an inadequacy in Dijkstra’s P and V synchro-
nization primitives. It points out that they had introduced a red her-
ring because the problem that those primitives couldn’t solve could
not be stated in terms of entities observable within the system. As
my note states: “A system cannot be correct unless its correctness
depends only upon events and conditions observable within the sys-
tem.” That’s something worth remembering, since I’ve encountered
that same sort of red herring on other occasions. My observation is
relevant to [63], but I had forgotten all about this note by the time I
wrote [63].

[19] Garbage Collection with Multiple Processes: an Exercise in
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Parallelism. Proceedings of the 1976 International Conference on
Parallel Processing, T. Feng, ed., 50–54.

This is a minor extension to the concurrent garbage collection algo-
rithm of [31]. That algorithm uses a single garbage collector pro-
cess running in parallel with the “mutator” process that creates the
garbage. This paper describes how to use multiple processes to do the
collection, and how to handle multiple mutator processes. It is a minor
work that I wrote up as an excuse for going to the Sagamore confer-
ence. (See the discussion of [11].) However, the conference had been
renamed and moved from Sagamore to a less attractive, mosquito-
infected site in the Michigan woods. It was the last time I attended.

[20] The Coordinate Method for the Parallel Execution of Itera-
tive Loops. Unpublished (August 1976).

This is a totally revised version of [9], complete with proofs (which had
been omitted from [9]). I submitted it to CACM, but the editor of
CACM decided that it was more appropriate for JACM . When I sub-
mitted it there, the editor of JACM rejected it without sending it out
for review because the basic ideas had already appeared in the confer-
ence version [9]. I was young and inexperienced, so I just accepted the
editor’s decision. I began to suspect that something was amiss a year
or two later, when a paper from the same conference was republished
verbatim in CACM . By the time I realized how crazy the editor’s
decision had been, it didn’t seem worth the effort of resubmitting the
paper.

[21] Towards a Theory of Correctness for Multi-User Data Base
Systems. Rejected by the 1977 IFIP Congress (October 1976).

This paper was a rough draft of some ideas, not all of which were cor-
rect. I don’t remember how it became known, but I received requests
for copies for years afterwards.

[22] On the Glitch Phenomenon (with Richard Palais). Rejected by
IEEE Transactions on Computers (November 1976).

When I wrote [12], a colleague at Massachusetts Computer Associates
pointed out that the concurrent reading and writing of a single register,
assumed in the bakery algorithm, requires an arbiter—a device for
making a binary decision based on inputs that may be changing. In the
early 70s, computer designers rediscovered that it’s impossible to build
an arbiter that is guaranteed to reach a decision in a bounded length of
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time. (This had been realized in the 50s but had been forgotten.) My
colleague’s observation led to my interest in the arbiter problem—or
“glitch” problem, as it was sometimes called.

The basic proof that an arbiter cannot have a bounded response
time uses continuity to demonstrate that, if there are two inputs that
can drive a flip-flop into two different states, then there must exist
an input that makes the flip-flop hang. At the time, it was very
difficult to convince someone that this argument was valid. They
seemed to believe that, because a flip-flop has only discrete stable
states, continuity doesn’t apply.

I described the arbiter problem to Palais, who had been my de
jure thesis adviser and afterwards became a colleague and a friend.
He recognized that the correct mathematical way to view what was
going on is in terms of the compact-open topology on the space of
flip-flop behaviors. So, we wrote this paper to explain why the ap-
parently discontinuous behavior of an arbiter is actually continuous in
the appropriate topology.

This paper was rejected by the IEEE Transactions on Comput-
ers because the engineers who reviewed it couldn’t understand the
mathematics. Six years later, the journal apparently acquired more
mathematically sophisticated reviewers, and it published a less general
result with a more complicated proof. I believe someone has finally
published a paper on the subject that does supersede ours.

[23] Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering SE-3, 2 (March 1977), 125–143.

When I first learned about the mutual exclusion problem, it seemed
easy and the published algorithms seemed needlessly complicated. So,
I dashed off a simple algorithm and submitted it to CACM . I soon
received a referee’s report pointing out the error. This had two effects.
First, it made me mad enough at myself to sit down and come up with
a real solution. The result was the bakery algorithm described in [12].
The second effect was to arouse my interest in verifying concurrent
algorithms. This has been a very practical interest. I want to verify
the algorithms that I write. A method that I don’t think is practical
for my everyday use doesn’t interest me.

In the course of my work on parallelizing sequential code (see [10]),
I essentially rediscovered Floyd’s method as a way of extracting prop-
erties of a program. When I showed a colleague what I was doing, he
went to our library at Massachusetts Computer Associates and gave
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me a copy of the original tech report version of Floyd’s classic pa-
per Assigning Meanings to Programs. I don’t remember when I read
Hoare’s An Axiomatic Basis for Computer Programming, but it was
probably not long afterwards.

In the mid-70s, several people were thinking about the problem of
verifying concurrent programs. The seminal paper was Ed Ashcroft’s
Proving Assertions About Parallel Programs, published in the Journal
of Computer and System Sciences in 1975. That paper introduced the
fundamental idea of invariance. I discovered how to use the idea of
invariance to generalize Floyd’s method to multiprocess programs. As
is so often the case, in retrospect the idea seems completely obvious.
However, it took me a while to come to it. I remember that, at one
point, I thought that a proof would require induction on the number
of processes.

This paper introduced the concepts of safety and liveness as the
proper generalizations of partial correctness and termination to con-
current programs. It also introduced the terms “safety” and “liveness”
for those classes of properties. I stole those terms from Petri nets,
where they have similar but formally very different meanings. (Safety
of a Petri net is a particular safety property; liveness of a Petri net is
not a liveness property.)

At the same time I was devising my method, Susan Owicki was
writing her thesis at Cornell under David Gries and coming up with
very much the same ideas. The generalization of Floyd’s method for
proving safety properties of concurrent programs became known as
the Owicki-Gries method. Owicki and Gries did not do anything
comparable to the method for proving liveness in my paper. (Nis-
sim Francez and Amir Pnueli developed a general proof method that
did handle liveness properties, but it lacked a nice way of proving in-
variance properties.) My method had deficiencies that were corrected
with the introduction of temporal logic, discussed in [47].

The Owicki-Gries version of the method for proving safety prop-
erties differed from mine in two ways. The significant way was that I
made the control state explicit, while they had no way to talk about
it directly. Instead, they introduced dummy variables to capture the
control state. The insignificant way was that I used a flowchart lan-
guage while they used an Algol-like language.

The insignificant syntactic difference in the methods turned out
to have important ramifications. For writing simple concurrent algo-
rithms, flowcharts are actually better than conventional toy program-
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ming languages because they make the atomic actions, and hence the
control state, explicit. However, by the mid-70s, flowcharts were passé
and structured programming was all the rage, so my paper was forgot-
ten and people read only theirs. The paper was rediscovered about ten
years later, and is now generally cited alongside theirs in the manda-
tory references to previous work.

More important though is that, because they had used a “struc-
tured” language, Owicki and Gries thought that they had generalized
Hoare’s method. To the extent that Floyd’s and Hoare’s methods are
different, it is because Hoare’s method is based on the idea of hier-
archical decomposition of proofs. The Owicki-Gries method doesn’t
permit this kind of clean hierarchical decomposition. Gries, comment-
ing in 1999, said: “We hardly ever looked at Floyd’s work and simply
did everything based on Hoare’s axiomatic theory.” I suspect that, be-
cause they weren’t thinking at all about Floyd’s approach, they didn’t
notice the difference between the two, and thus they didn’t realize that
they were generalizing Floyd’s method and not Hoare’s.

The result of presenting a generalization of Floyd’s method in
Hoare’s clothing was to confuse everyone. For a period of about ten
years, hardly anyone really understood that the Owicki-Gries method
was just a particular way of structuring the proof of a global invariant.
I can think of no better illustration of this confusion than the EWD1

A Personal Summary of the Owicki-Gries Theory that Dijkstra wrote
and subsequently published in a book of his favorite EWDs. If even
someone as smart and generally clear-thinking as Dijkstra could write
such a confusing hodge-podge of an explanation, imagine how befud-
dled others must have been. A true generalization of Hoare’s method
to concurrent programs didn’t come until several years later in [40].

I think it soon became evident that one wanted to talk explicitly
about the control state. Susan Owicki obviously agreed, since we
introduced the at, in, and after predicates for doing just that in [47].
Quite a bit later, I had more to say about dummy variables versus
control state in [78].

Dummy variables were more than just an ugly hack to avoid control
variables. They also allowed you to capture history. Adding history
variables makes it possible to introduce behavioral reasoning into an
assertional proof. (In the limit, you can add a variable that captures

1Throughout his career, Edsger Dijkstra wrote a series of notes identified by an “EWD”
number.
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the entire history and clothe a completely behavioral proof in an asser-
tional framework.) What a program does next depends on its current
state, not on its history. Therefore, a proof that is based on a history
variable doesn’t capture the real reason why a program works. I’ve
always found that proofs that don’t use history variables teach you
more about the algorithm. (As shown in [92], history variables may
be necessary if the correctness conditions themselves are in terms of
history.)

When we developed our methods, Owicki and I and most everyone
else thought that the Owicki-Gries method was a great improvement
over Ashcroft’s method because it used the program text to decompose
the proof. I’ve since come to realize that this was a mistake. It’s better
to write a global invariant. Writing the invariant as an annotation
allows you to hide some of the explicit dependence of the invariant on
the control state. However, even if you’re writing your algorithm as a
program, more often than not, writing the invariant as an annotation
rather than a single global invariant makes things more complicated.
But even worse, an annotation gets you thinking in terms of separate
assertions rather than in terms of a single global invariant. And it’s
the global invariant that’s important. Ashcroft got it right. Owicki
and Gries and I just messed things up. It took me quite a while to
figure this out.

Sometime during the ’80s, Jay Misra noticed that the definition of
well-foundedness (Definition 8 on page 136) is obviously incorrect.

[24] Formal Correctness Proofs for Multiprocess Algorithms. Pro-
grammation–2me Colloque International, B. Robinet, ed., Dunod, Paris
(1977), 1–8.

This is an abbreviated, conference version of [23]. (In those days,
publication was fast enough that the journal version could appear
before the conference version.) I wrote this paper as an excuse for
attending a conference in Paris. However, it turned out that I went
to Europe for other reasons that made it impossible for me to attend
the conference. I tried to withdraw the paper, but it was too late.

[25] On Concurrent Reading and Writing. Communications of the
ACM 20, 11 (November 1977), 806–811.

This paper came out of my study of the bakery algorithm of [12]. The
problem with that algorithm is that it requires unbounded state. To
allow the state to be bounded in practice, I needed an algorithm for
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reading and writing multidigit numbers, one digit at a time, so that
a read does not obtain too large a value if it overlaps a write. This
paper shows that this can be done by simply writing the digits in one
direction and reading them in the other. It also has some other nice
algorithms.

The paper assumes that reading and writing a single digit are
atomic operations. The original version introduced the notion of a
regular register and proved the results under the weaker assumption
that the individual digits were regular. However, the editor found the
idea of nonatomic reads and writes to individual digits too heretical for
CACM readers, and he insisted that I make the stronger assumption
of atomicity. So, the world had to wait another decade, until the
publication of [70], to learn about regular registers.

[26] State the Problem Before Describing the Solution. ACM SIG-
SOFT Software Engineering Notes 3, 1 (January 1978) 26.

The title says it all. This one-page note is as relevant today as when I
wrote it. Replace “describing the solution” by “writing the program”
and it becomes a practical recipe for improving software.

[27] Time, Clocks and the Ordering of Events in a Distributed
System. Communications of the ACM 21, 7 (July 1978), 558–565.
Reprinted in several collections, including Distributed Computing: Con-
cepts and Implementations, McEntire et al., ed. IEEE Press, 1984.

Jim Gray once told me that he had heard two different opinions of
this paper: that it’s trivial and that it’s brilliant. I can’t argue with
the former, and I am disinclined to argue with the latter.

The origin of this paper was a note titled The Maintenance of
Duplicate Databases by Paul Johnson and Bob Thomas. I believe
their note introduced the idea of using message timestamps in a dis-
tributed algorithm. I happen to have a solid, visceral understanding
of special relativity (see [5]). This enabled me to grasp immediately
the essence of what they were trying to do. Special relativity teaches
us that there is no invariant total ordering of events in space-time;
different observers can disagree about which of two events happened
first. There is only a partial order in which an event e1 precedes an
event e2 iff e1 can causally affect e2. I realized that the essence of
Johnson and Thomas’s algorithm was the use of timestamps to pro-
vide a total ordering of events that was consistent with the causal
order. This realization may have been brilliant. Having realized it,
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everything else was trivial. Because Thomas and Johnson didn’t un-
derstand exactly what they were doing, they didn’t get the algorithm
quite right; their algorithm permitted anomalous behavior that essen-
tially violated causality. I quickly wrote a short note pointing this out
and correcting the algorithm.

It didn’t take me long to realize that an algorithm for totally or-
dering events could be used to implement any distributed system. A
distributed system can be described as a particular sequential state
machine that is implemented with a network of processors. The ability
to totally order the input requests leads immediately to an algorithm
to implement an arbitrary state machine by a network of processors,
and hence to implement any distributed system. So, I wrote this paper,
which is about how to implement an arbitrary distributed state ma-
chine. As an illustration, I used the simplest example of a distributed
system I could think of—a distributed mutual exclusion algorithm.

This is my most often cited paper. Many computer scientists claim
to have read it. But I have rarely encountered anyone who was aware
that the paper said anything about state machines. People seem to
think that it is about either the causality relation on events in a dis-
tributed system, or the distributed mutual exclusion problem. People
have insisted that there is nothing about state machines in the paper.
I’ve even had to go back and reread it to convince myself that I really
did remember what I had written.

The paper describes the synchronization of logical clocks. As some-
thing of an afterthought, I decided to see what kind of synchronization
it provided for real-time clocks. So, I included a theorem about real-
time synchronization. I was rather surprised by how difficult the proof
turned out to be. This was an indication of what lay ahead in [62].

This paper won the 2000 PODC Influential Paper Award (later
renamed the Edsger W. Dijkstra Prize in Distributed Computing). It
won an ACM SIGOPS Hall of Fame Award in 2007.

[28] The Specification and Proof of Correctness of Interactive
Programs. Proceedings of the International Conference on Math-
ematical Studies of Information Processing Kyoto, Japan (August,
1978), 477–540.

In the late 70s, people were talking about designing programming
languages that would make program verification easier. I didn’t think
much of that idea. I felt that the difficulty in verification comes from
the algorithm, not the details of the programming language in which
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it is described. To demonstrate this view, I published in this paper a
proof of correctness of a TECO program.

TECO stands for Text Editing and Correction. It was the com-
mand language for the TECO editor, and it was the underlying macro
language on which the original version of Emacs was built. It was
an obscure, low-level language whose goal was to perform powerful
text editing operations with the minimum number of keystrokes. A
programming language designed to make verification easy would be
completely unlike TECO. The paper shows that you verify a TECO
program the same way you verify a program written in a more con-
ventional language.

The proof is perhaps also of some historical interest because it
was an early example of a proof of an interactive program—that is,
one that interacts with the user instead of just producing an answer.
Thus, correctness had to be asserted in terms of the sequence of input
actions. The paper generalizes the Floyd/Hoare method to deal with
the history of environment actions.

[29] The Implementation of Reliable Distributed Multiprocess Sys-
tems. Computer Networks 2 (1978), 95–114.

In [27], I introduced the idea of implementing any distributed system
by using an algorithm to implement an arbitrary state machine in
a distributed system. However, the algorithm in [27] assumed that
processors never fail and all messages are delivered. This paper gives
a fault-tolerant algorithm. It’s a real-time algorithm, assuming upper
bounds on message delays in the absence of faults, and that nonfaulty
processes had clocks synchronized to within a known bound.

To my knowledge, this is the first published paper to discuss arbi-
trary failures (later called Byzantine failures). It actually considered
malicious behavior, not using such behavior simply as a metaphor for
completely unpredictable failures. Its algorithm was the inspiration
for the digital signature algorithm of [41]. With its use of real-time,
this paper presaged the ideas in [55].

[30] SIFT: Design and Analysis of a Fault-Tolerant Computer for
Aircraft Control (with John Wensley et al.). Proceedings of the
IEEE 66, 10 (October 1978), 1240–1255.

When it became clear that computers were going to be flying commer-
cial aircraft, NASA began funding research to figure out how to make
them reliable enough for the task. Part of that effort was the SIFT
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project at SRI. This project was perhaps most notable for producing
the Byzantine generals problem and its solutions, first reported in [41].

This paper gives an overview of the complete SIFT project, which
included designing the hardware and software and formally verifying
the system’s correctness. It announces the results that appear in [41].
It also is a very early example of the basic specification and verification
method I still advocate: writing a specification as a state-transition
system and showing that each step of the lower-level specification ei-
ther implements a step of the higher-level one or is a “stuttering” step
that leaves the higher-level state unchanged. The paper doesn’t men-
tion the use of an invariant, but that was probably omitted to save
space.

This paper was a group effort that I choreographed in a final frenzy
of activity to get the paper out in time for the issue’s deadline. I don’t
remember who wrote what, but the section on verification seems to be
my writing.

[31] On-the-fly Garbage Collection: an Exercise in Cooperation
(with Edsger Dijkstra et al.). Communications of the ACM 21, 11
(November 1978), 966–975.

This paper presents the first concurrent garbage collection algorithm—
that is, an algorithm in which the collector operates concurrently with
the process that creates the garbage. The paper is fairly well known;
its history is not.

I received an early version of the paper from Dijkstra, and I made
a couple of suggestions. Dijkstra incorporated them and, quite gen-
erously, added me to the list of authors. He submitted the paper to
CACM . The next I heard about it was when I received a copy of a
letter from Dijkstra to the editor withdrawing the paper. The letter
said that someone had found an error in the algorithm, but gave no
indication of what the error was. Since Dijkstra’s proof was so con-
vincing, I figured that it must be a trivial error that could easily be
corrected.

I had fairly recently written [23]. So, I decided to write a proof
using that proof method, thinking that I would then find and correct
the error. In about 15 minutes, trying to write the proof led me to
the error. To my surprise, it was a serious error.

I had a hunch that the algorithm could be fixed by changing the
order in which two operations were performed. But I had no good
reason to believe that would work. Indeed, I could see no simple
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informal argument to show that it worked. However, I decided to go
ahead and try to write a formal correctness proof anyway. It took me
about two days of solid work, but I constructed the proof. When I
was through, I was convinced that the algorithm was now correct, but
I had no intuitive understanding of why it worked.

In the meantime, Dijkstra figured out that the algorithm could be
fixed by interchanging two other operations, and he wrote the same
kind of behavioral proof as before. His fix produced an arguably more
efficient algorithm than mine, so that’s the version we used. I sketched
an assertional proof of that algorithm. Given the evidence of the
unreliability of his style of proof, I tried to get Dijkstra to agree to
a rigorous assertional proof. He was unwilling to do that, though
he did agree to make his proof somewhat more assertional and less
operational. Here are his comments on that, written in July, 2000:

There were, of course, two issues at hand: (A) a witness
showing that the problem of on-the-fly garbage collection
with fine-grained interleaving could be solved, and (B) how
to reason effectively about such artifacts. I am also cer-
tain that at the time all of us were aware of the distinction
between the two issues. I remember very well my excite-
ment when we convinced ourselves that it could be done at
all; emotionally it was very similar to my first solutions to
the problem of self-stabilization. Those I published without
proofs! It was probably a period in my life that issue (A) in
general was still very much in the foreground of my mind:
showing solutions to problems whose solvability was not ob-
vious at all. It was more or less my style. I had done it
(CACM, Sep. 1965) with the mutual exclusion.

I, too, have always been most interested in showing that something
could be done, rather than in finding a better algorithm for doing
what was known to be possible. Perhaps that is why I have always
been so impressed by the brilliance of Dijkstra’s work on concurrent
algorithms.

David Gries later published an Owicki-Gries style proof of the al-
gorithm that was essentially the same as the one I had sketched. He
simplified things a bit by combining two atomic operations into one.
He mentioned that in a footnote, but CACM failed to print the foot-
note. (However, they did print the footnote number in the text.)

The lesson I learned from this is that behavioral proofs are unre-
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liable and one should always use state-based reasoning for concurrent
algorithms—that is, reasoning based on invariance.

[32] A General Construction for Expressing Repetition. ACM SIG-
PLAN Notices 14, 3 (March 1979) 38–42.

Fortunately, this note has been completely forgotten. It was writ-
ten when people were still proposing new programming-language con-
structs. The one presented here may have little to recommend it, but
it was no worse than many others.

[33] A New Approach to Proving the Correctness of Multipro-
cess Programs. ACM Transactions on Programming Languages and
Systems 1, 1 (July 1979), 84–97.

Like everyone else at the time, when I began studying concurrent
algorithms, I reasoned about them behaviorally. Such reasoning typi-
cally involved arguments based on the order in which events occur. I
discovered that proofs can be made simpler, more elegant, and more
mathematical by reasoning about operations (which can be composed
of multiple events) and two relations on them: precedes (denoted by
a solid arrow) and can affect (denoted by a dashed arrow). Operation
A precedes operation B if all the events of A precede all the events
of B ; and A can affect B if some event in A precedes some event in
B. These relations obey some simple rules that can reduce behavioral
reasoning to mathematical symbol pushing.

This paper introduced the method of reasoning with the two arrow
relations and applied it to a variant of the bakery algorithm. In the
spring of 1976 I spent a month working with Carel Scholten at the
Philips Nat Lab in Eindhoven. Scholten was a colleague and friend
of Dijkstra, and the three of us spent one afternoon a week working,
talking, and drinking beer at Dijkstra’s house. The algorithm emerged
from one of those afternoons. I think I was its primary author, but
as I mention in the paper, the beer and the passage of time made it
impossible for me to be sure of who was responsible for what.

The solid and dashed arrow formalism provides very elegant proofs
for tiny algorithms such as the bakery algorithm. But, like all behav-
ioral reasoning, it is hard to make completely formal, and it collapses
under the weight of a complex problem. You should use assertional
methods to reason about complex algorithms. However, standard as-
sertional reasoning requires that the algorithm be written in terms
of its atomic operations. The only assertional approach to reasoning
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directly about nonatomic operations (without translating them into
sequences of atomic operations) is the one in [86], which is not easy
to use. The two-arrow formalism is still good for a small class of
problems.

The formalism seems to have been almost completely ignored,
even among the theoretical concurrency community. I find this ironic.
There is a field of research known by the pretentious name of “true
concurrency”. Its devotees eschew assertional methods that are based
on interleaving models because such models are not truly concurrent.
Instead, they favor formalisms based on modeling a system as a partial
ordering of events, which they feel is the only truly concurrent kind
of model. Yet, those formalisms assume that events are atomic and
indivisible. Atomic events don’t overlap in time the way real concur-
rent operations do. The two-arrow formalism is the only one I know
that is based on nonatomic operations and could therefore be consid-
ered truly concurrent. But, as far as I know, the true concurrency
community has paid no attention to it.

[34] How to Present a Paper. Unpublished note, 4 August 1979.

This three-page note is about presenting a paper at a conference, but
it offers good advice for any talk. Except for a couple of suggestions
about hand-written slides, it still applies today.

[35] How to Make a Multiprocessor Computer That Correctly Ex-
ecutes Multiprocess Programs. IEEE Transactions on Computers
C-28, 9 (September 1979) 690–691.

I forget what prompted me to be thinking about memory caching, but
it occurred to me one day that multiprocessor synchronization algo-
rithms assume that each processor accesses the same word in memory,
but each processor actually accesses its own copy in its cache. It hardly
required a triple-digit IQ to realize that this could cause problems. I
suppose what made this paper worth reading was its simple, precise
definition of sequential consistency as the required correctness condi-
tion. This was not the first paper about cache coherence. However, it
is the early paper most often cited in the cache-coherence literature.

[36] Constructing Digital Signatures from a One Way Function.
SRI International Technical Report CSL–98 (October 1979).

At a coffee house in Berkeley around 1975, Whitfield Diffie described
a problem to me that he had been trying to solve: constructing a
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digital signature for a document. I immediately proposed a solution.
Though not very practical—it required perhaps 64 bits of published
key to sign a single bit—it was the first digital signature algorithm.
Diffie and Hellman mention it in their classic paper:

Whitfield Diffie and Martin E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory
IT-22, 6 (1976), 644-654.

(I think it’s at the bottom right of page 650.)
In 1978, Michael Rabin published a paper titled Digitalized Signa-

tures containing a more practical scheme for generating digital signa-
tures of documents. (I don’t remember what other digital signature
algorithms had already been proposed.) However, his solution had
some drawbacks that limited its utility. This report describes an im-
provement to Rabin’s algorithm that eliminates those drawbacks.

I’m not sure why I never published this report. However, I think
it was because, after writing it, I realized that the algorithm could be
fairly easily derived directly from Rabin’s algorithm. So, I didn’t feel
that it added much to what Rabin had done. However, I’ve been told
that this paper is cited in the cryptography literature and is considered
significant, so perhaps I was wrong.

[37] On the Proof of Correctness of a Calendar Program. Commu-
nications of the ACM 22, 10 (October 1979), 554–556.

In the May, 1978 CACM, Matthew Geller published a paper titled Test
Data as an Aid in Proving Program Correctness. He argued that there
were some programs whose correctness is so hard to state formally that
formally verifying them is useless because the specification is likely to
be wrong. He gave as an example a program to compute the number
of days between two dates in the same year, claiming that it would be
hard to check the correctness of a precise statement of what it meant
for the program to be correct. This paper proved him wrong. (It also
makes the amusing observation that Geller’s solution is wrong because
it fails for dates before the advent of the Gregorian calendar.) As a
bonus, readers of this paper were alerted well in advance that the year
2000 is a leap year.

[38] Letter to the Editor. Communications of the ACM 22, 11 (Novem-
ber 1979), 624.

In the May, 1979 CACM, De Millo, Lipton, and Perlis published an
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influential paper titled Social Process and Proofs of Theorems and
Programs. This paper made some excellent observations. However, by
throwing in a few red herrings, they came to some wrong conclusions
about program verification. More insidiously, they framed the debate
as one between a reasonable engineering approach that completely
ignores verification and a completely unrealistic view of verification
advocated only by its most naive proponents. (There were, unfortu-
nately, quite a few such proponents.)

At that time, some ACM publications had a special section on
algorithms. In an ironic coincidence, the same issue of CACM carried
the official ACM policy on algorithm submissions. It included all sorts
of requirements on the form of the code, and even on the comments.
Missing was any requirement that the correctness of the algorithm be
demonstrated in any way.

I was appalled at the idea that, ten years after Floyd and Hoare’s
work on verification, the ACM was willing to publish algorithms with
no correctness argument. The purpose of my letter was to express
my dismay. I ironically suggested that they had succumbed to the
arguments of De Millo, Lipton, and Perlis in their policy. As a result,
my letter was published as a rebuttal to the De Millo, Lipton, and
Perlis paper. No one seems to have taken it for what it was—a plea
to alter the ACM algorithms policy to require that there be some
argument to indicate that an algorithm worked.

[39] ‘Sometime’ is Sometimes ‘Not Never’. Proceedings of the Seventh
ACM Symposium on Principles of Programming Languages, ACM
SIGACT-SIGPLAN (January 1980).

After graduating from Cornell, Susan Owicki joined the faculty of
Stanford. Some time around 1978, she organized a seminar to study
the temporal logic that Amir Pnueli had recently introduced to com-
puter science. I was sure that temporal logic was some kind of ab-
stract nonsense that would never have any practical application, but
it seemed like fun, so I attended. I observed that people got very con-
fused because, in Pnueli’s logic, the concepts of always and eventually
mean what they do to ordinary people. In particular, something is
not always true if and only if it is eventually false. (It doesn’t always
rain means that it eventually stops raining.) However, most computer
scientists have a different way of thinking. For them, something is
not always true if and only if it might possibly become false. (The
program doesn’t always produce the right answer means that it might
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produce the wrong answer.)
I realized that there are two types of temporal logic: the one Pnueli

used I called linear time logic; the one most computer scientists seemed
to find natural I called branching time. (These terms were used by
temporal logicians, but they distinguished the two logics by the axioms
they satisfied, while I described them in terms of different kinds of
semantics.) Pnueli chose the right kind of logic—that is, the one that
is most useful for expressing properties of concurrent systems. I wrote
this paper to explain the two kinds of logic, and to advocate the use
of linear-time logic. However, I figured that the paper wouldn’t be
publishable without some real theorems. So, I proved some simple
results demonstrating that the two kinds of logic really are different.

I submitted the paper to the Evian Conference, a conference on
concurrency held in France to which it seems that everyone working
in the field went. I was told that my paper was rejected because they
accepted a paper by Pnueli on temporal logic, and they didn’t feel
that such an obscure subject merited two papers. I then submitted
the paper to FOCS, where it was also rejected. I have very rarely re-
submitted a paper that has been rejected. Fortunately, I felt that this
paper should be published. It has become one of the most frequently
cited papers in the temporal-logic literature.

[40] The ‘Hoare Logic’ of Concurrent Programs. Acta Informatica
14, 1 (1980), 21–37.

As explained in the discussion of [23], the Owicki-Gries method and
its variants are generalizations of Floyd’s method for reasoning about
sequential programs. Hoare’s method formalizes Floyd’s with a set of
axioms for deriving triples of the form {P}S{Q}, which means that
if statement S is executed from a state in which P is true and termi-
nates, then Q will be true. This paper introduces the generalization of
Hoare’s method to concurrent programs, replacing Hoare triples with
assertions of the form {I}S, which means that the individual actions
of statement S leave the predicate I invariant.

When I wrote this paper, I sent a copy to Tony Hoare thinking that
he would like it. He answered with a letter that said, approximately: “I
always thought that the generalization to concurrent programs would
have to look something like that; that’s why I never did it.” (Unfortu-
nately, I no longer have the letter.) At the time, I dismissed his remark
as the ramblings of an old fogey. I now think he was right—though
probably for different reasons than he does. As I indicated in the dis-
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cussion of [23], I think Ashcroft was right; one should simply reason
about a single global invariant, and not do this kind of decomposition
based on program structure.

[41] Reaching Agreement in the Presence of Faults (with Marshall
Pease and Robert Shostak). Journal of the Association for Computing
Machinery 27, 2 (April 1980).

Before this paper, it was generally assumed that a three-processor
system could tolerate one faulty processor. This paper shows that
“Byzantine” faults, in which a faulty processor sends inconsistent in-
formation to the other processors, can defeat any traditional three-
processor algorithm. (The term Byzantine didn’t appear until [46].)
In general, 3n+1 processors are needed to tolerate n faults. However,
if digital signatures are used, 2n+1 processors are enough. This paper
introduced the problem of handling Byzantine faults. I think it also
contains the first precise statement of the consensus problem.

I am often unfairly credited with inventing the Byzantine agree-
ment problem. The problem was formulated by people working on
SIFT (see [30]) before I arrived at SRI. I had already discovered the
problem of Byzantine faults and written [29]. (I don’t know if that
was earlier than or concurrent with its discovery at SRI.) However,
the people at SRI had a much simpler and more elegant statement of
the problem than was present in [29].

The 4-processor solution presented in this paper and the general
impossibility result were obtained by Shostak; Pease invented the 3n+
1-processor solution. My contribution to the work in this paper was
the solution using digital signatures, which is based on the algorithm
in [29]. It was my work on digital signatures (see [36]) that led me
to think in that direction. However, digital signatures, as used here,
are a metaphor. Since the signatures need be secure only against
random failure, not against an intelligent adversary, they are much
easier to implement than true digital signatures. However, this point
seems to have escaped most people, so they rule out the algorithms
that use digital signatures because true digital signature algorithms
are expensive. Thus, 3n+ 1-processor solutions are used even though
there are satisfactory 2n+ 1-processor solutions,

My other contribution to this paper was getting it written. Writing
is hard work, and without the threat of perishing, researchers outside
academia generally do less publishing than their colleagues at univer-
sities. I wrote an initial draft, which displeased Shostak so much that
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he completely rewrote it to produce the final version.
Over the years, I often wondered whether the people who actually

build airplanes know about the problem of Byzantine failures. In 1997,
I received email from John Morgan who used to work at Boeing. He
told me that he came across our work in 1986 and that, as a result,
the people who build the passenger planes at Boeing are aware of the
problem and design their systems accordingly. But, in the late 80s
and early 90s, the people at Boeing working on military aircraft and
on the space station, and the people at McDonnell-Douglas, did not
understand the problem. I have no idea what Airbus knows or when
they knew it.

This paper was awarded the 2005 Edsger W. Dijkstra Prize in
Distributed Computing.

[42] Program Verification: An Approach to Reliable Hardware
and Software (with J S. Moore). Transactions of the American Nu-
clear Society 35 (November 1980), 252–253.

In 1980, J Moore and I were both at SRI and had been involved in the
verification of SIFT (see [30]). The nuclear power industry was, for
obvious reasons, interested in the correctness of computer systems. I
forget how it came to pass, but Moore and I were invited to present
a paper on verification at some meeting of power industry engineers.
This was the result.

[43] Password Authentication with Insecure Communication. Com-
munications of the ACM 24, 11 (November 1981), 770–772.

Despite a casual interest in civilian cryptography going back to its
origins (see the discussion of [36]), this is my only publication in the
field. It presents a cute hack for using a single password to login to
a system multiple times without allowing an adversary to gain access
to the system by eavesdropping. This hack is the basis of Bellcore’s
S/KEY system and of the PayWord system of Rivest and Shamir.

[44] TIMESETS—A New Method for Temporal Reasoning About
Programs. Logics of Programs, Dexter Kozen editor, Springer-Verlag
Lecture Notes in Computer Science Volume 131 (1982), 177–196.

Pnueli’s introduction of temporal logic in 1977 led to an explosion of
attempts to find new logics for specifying and reasoning about con-
current systems. Everyone was looking for the silver-bullet logic that
would solve the field’s problems. This paper is proof that I was not
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immune to this fever. For reasons explained in the discussion of [50],
it is best forgotten. Some people may find this of historical interest
because it is an early example of an interval logic.

[45] Byzantine Generals and Transaction Commit Protocols (with
Michael Fischer). Unpublished (April 1982).

I visited Michael Fischer at Yale in the spring of 1982. It was known
that solutions to the Byzantine generals problem that can handle n
Byzantine failures require n+1 rounds of communication. While I was
at Yale, Fischer and I proved that this number of rounds were needed
even to handle more benign failures.

On the trip back home to California, I got on an airplane at La-
guardia Airport in the morning with a snowstorm coming in. I got off
the airplane about eight hours later, still at Laguardia Airport, having
written this paper. I then sent it to Fischer for his comments. I waited
about a year and a half. By the time he finally decided that he wasn’t
going to do any more work on the paper, subsequent work by others
had been published that superseded it.

[46] The Byzantine Generals Problem (with Marshall Pease and Robert
Shostak). ACM Transactions on Programming Languages and Sys-
tems 4, 3 (July 1982), 382–401.

I have long felt that, because it was posed as a cute problem about
philosophers seated around a table, Dijkstra’s dining philosopher’s
problem received much more attention than it deserves. (For example,
it has probably received more attention in the theory community than
the readers/writers problem, which illustrates the same principles and
has much more practical importance.) I believed that the problem
introduced in [41] was very important and deserved the attention of
computer scientists. The popularity of the dining philosophers prob-
lem taught me that the best way to attract attention to a problem is
to present it in terms of a story.

There is a problem in distributed computing that is sometimes
called the Chinese Generals Problem, in which two generals have to
come to a common agreement on whether to attack or retreat, but
can communicate only by sending messengers who might never arrive.
I stole the idea of the generals and posed the problem in terms of a
group of generals, some of whom may be traitors, who have to reach
a common decision. I wanted to assign the generals a nationality that
would not offend any readers. At the time, Albania was a completely
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closed society, and I felt it unlikely that there would be any Albanians
around to object, so the original title of this paper was The Albanian
Generals Problem. Jack Goldberg was smart enough to realize that
there were Albanians in the world outside Albania, and Albania might
not always be a black hole, so he suggested that I find another name.
The obviously more appropriate Byzantine generals then occurred to
me.

The main reason for writing this paper was to assign the new name
to the problem. But a new paper needed new results as well. I came up
with a simpler way to describe the general 3n+1-processor algorithm.
(Shostak’s 4-processor algorithm was subtle but easy to understand;
Pease’s generalization was a remarkable tour de force.) We also added
a generalization to networks that were not completely connected. (I
don’t remember whose work that was.) I also added some discussion
of practical implementation details.

[47] Proving Liveness Properties of Concurrent Programs (with
Susan Owicki). ACM Transactions on Programming Languages and
Systems 4, 3 (July 1982), 455–495.

During the late 70s and early 80s, Susan Owicki and I worked together
quite a bit. We were even planning to write a book on concurrent
program verification. But this paper is the only thing we ever wrote
together.

In [23], I had introduced a method of proving eventuality proper-
ties of concurrent programs by drawing a lattice of predicates, where
arrows from a predicate P to predicates Q1, . . . , Qn mean that, if
the program reaches a state satisfying P, it must thereafter reach a
state satisfying one of the Qi. That method never seemed practical;
formalizing an informal proof was too much work.

Pnueli’s introduction of temporal logic allowed the predicates in
the lattice to be replaced by arbitrary temporal formulas. This turned
lattice proofs into a useful way of proving liveness properties. It per-
mitted a straightforward formalization of a particularly style of writ-
ing the proofs. I still use this proof style to prove leads-to properties,
though the proofs are formalized with TLA (see [102]). However, I
no longer bother drawing pictures of the lattices. This paper also
introduced at, in, and after predicates for describing program control.

It’s customary to list authors alphabetically, unless one contributed
significantly more than the other, but at the time, I was unaware of
this custom. Here is Owicki’s account of how the ordering of the
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authors was determined.

As I recall it, you raised the question of order, and I proposed
alphabetical order. You declined—I think you expected the
paper to be important and didn’t think it would be fair to
get first authorship on the basis of a static property of our
names. On the night we finished the paper, we went out to
dinner to celebrate, and you proposed that if the last digit
of the bill was even (or maybe odd), my name would be first.
And, indeed, that’s the way it came out.

[48] An Assertional Correctness Proof of a Distributed Program.
Science of Computer Programming 2, 3 (December 1982), 175–206.

I showed in [27] that there is no invariant way of defining the global
state of a distributed system. Assertional methods, such as [23], reason
about the global state. So, I concluded that these methods were not
appropriate for reasoning about distributed systems. When I wrote
this paper, I was at SRI and partly funded by a government contract
for which we had promised to write a correctness proof of a distributed
algorithm. I tried to figure out how to write a formal proof without
reasoning about the global state, but I couldn’t. The final report was
due, so I decided that there was no alternative to writing an assertional
proof. I knew there would be no problem writing such a proof, but I
expected that, with its reliance on an arbitrary global state, the proof
would be ugly. To my surprise, I discovered that the proof was quite
elegant. Philosophical considerations told me that I shouldn’t reason
about global states, but this experience indicated that such reasoning
worked fine. I have always placed more reliance on experience than
philosophy, so I have written assertional proofs of distributed systems
ever since. (Others, more inclined to philosophy, have spent decades
looking for special ways to reason about distributed systems.)

[49] Reasoning About Nonatomic Operations. Proceedings of the
Tenth ACM Symposium on Principles of Programming Languages,
ACM SIGACT-SIGPLAN (January 1983), 28–37.

From the time I discovered the bakery algorithm (see [12]), I was
fascinated by the problem of reasoning about a concurrent program
without having to break it into indivisible atomic actions. In [33],
I described how to do this for behavioral reasoning. But I realized
that assertional reasoning, as described in [23], was the only proof
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method that could scale to more complex problems. This paper was
my first attempt at assertional reasoning about nonatomic operations.
It introduces the win (weakest invariant) operator that later appeared
in [86], but using the notation of Pratt’s dynamic logic rather than
Dijkstra’s predicate transformers.

I have in my files a letter from David Harel, who was then an editor
of Information and Control, telling me that the paper was accepted
by the journal, after revision to satisfy some concerns of the refer-
ees. I don’t remember why I didn’t submit a revised version. I don’t
think I found the referees’ requests unreasonable. It’s unlikely that I
abandoned the paper because I had already developed the method in
[86], since that didn’t appear as a SRC research report until four years
later. Perhaps I was just too busy.

[50] Specifying Concurrent Program Modules. ACM Transactions
on Programming Languages and Systems 5, 2 (April 1983), 190–222.

The early methods for reasoning about concurrent programs dealt with
proving that a program satisfied certain properties—usually invari-
ance properties. But, proving particular properties showed only that
the program satisfied those properties. There remained the possibil-
ity that the program was incorrect because it failed to satisfy some
other properties. Around the early 80s, people working on assertional
verification began looking for ways to write a complete specification
of a system. A specification should say precisely what it means for
the system to be correct, so that if we prove that the system meets
its specification, then we can say that the system really is correct.
(Process algebraists had already been working on that problem since
the mid-70s, but there was—and I think still is—little communication
between them and the assertional verification community.)

At SRI, we were working on writing temporal logic specifications.
One could describe properties using temporal logic, so it seemed very
natural to specify a system by simply listing all the properties it must
satisfy. Richard Schwartz, Michael Melliar-Smith, and I collaborated
on a paper titled Temporal Logic Specification of Distributed Systems,
which was published in the Proceedings of the 2nd International Con-
ference on Distributed Computing Systems, held in Paris in 1981.
However, I became disillusioned with temporal logic when I saw how
Schwartz, Melliar-Smith, and Fritz Vogt were spending days trying
to specify a simple FIFO queue—arguing over whether the properties
they listed were sufficient. I realized that, despite its aesthetic appeal,
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writing a specification as a conjunction of temporal properties just
didn’t work in practice. So, I had my name removed from the paper
before it was published, and I set about figuring out a practical way
to write specifications. I came up with the approach described in this
paper, which I later called the transition axiom method. Schwartz
stopped working on specification and verification in the mid-80s. He
wrote recently (in June 2000):

[T]he same frustration with the use of temporal logic led
Michael, Fritz Vogt and me to come up with Interval Logic
as a higher level model in which to express time-ordered
properties of events. [See [44].] As you recall, interval logic
expressed constraints forward and backward around signif-
icant events in order to more closely capture the way that
people describe event-driven behavior. Ultimately, I remain
unsatisfied with any of our attempts, from the standpoint
of reaching practical levels.

This paper is the first place I used the idea of describing a state
transition as a boolean-valued function of primed and unprimed vari-
ables. However, by the early 80s, the idea must have been sufficiently
obvious that I didn’t claim any novelty for it, and I forgot that I had
even used it in this paper until years later (see the discussion of [102]).

[51] Specification and Proof of a Fault-Tolerant Real-Time Algo-
rithm. In Highly Dependable Distributed Systems, final report for SRI
Project 4180 (Contract Number DAEA18-81-G-0062) (June 1983).

In the spring of 1983, I was called upon to contribute a chapter for the
final report on a project at SRI. I chose to write a specification and
correctness proof of a Byzantine general’s algorithm—a distributed,
real-time algorithm. (Nonfaulty components must satisfy real-time
constraints, and the correctness of the algorithm depends on these
constraints.) I began the exercise on a Wednesday morning. By noon
that Friday, I had the final typeset output. I presume there are lots
of errors; after finishing it, I never reread it carefully and I have no
indication that anyone else did either. But, I have no reason to doubt
the basic correctness of the proof. I never published this paper because
it didn’t seem worth publishing. The only thing I find remarkable
about it is that so many computer scientists are unaware that, even
in 1983, writing a formal correctness proof of a distributed real-time
algorithm was an unremarkable feat.
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[52] The Weak Byzantine Generals Problem. Journal of the Associ-
ation for Computing Machinery 30, 3 (July 1983), 668–676.

This paper introduces a weaker version of the Byzantine generals prob-
lem described in [41]. The problem is “easier” because there exist
approximate solutions with fewer than 3n processes that can toler-
ate n faults, something shown in [41] to be impossible for the original
Byzantine generals problem. I don’t remember how I came to consider
this problem.

[53] PHIL: A Semantic Structural Graphical Editor (with Joseph
Goguen). SRI International Technical Report (August 1983).

SRI had a contract with Philips to design a graphical editor for struc-
tured documents (such as programs). Goguen and I were the prime
instigators and principal investigators of the project. This is the
project’s final report. Rindert Schutten of Philips visited SRI and
implemented a very preliminary version. I felt that our design was
neither novel enough to constitute a major contribution nor modest
enough to be the basis for a practical system at that time, and I
thought the project had been dropped. However, Goguen informed
me much later that some version of the system was still being used
in the early 90s, and that it had evolved into a tool for VLSI layout,
apparently called MetaView.

[54] What Good Is Temporal Logic?. Information Processing 83, R.
E. A. Mason, ed., Elsevier Publishers (1983), 657–668.

This was an invited paper. It describes the state of my views on
specification and verification at the time. It is notable for introducing
the idea of invariance under stuttering and explaining why it’s a vital
attribute of a specification logic. It is also one of my better-written
papers.

[55] Using Time Instead of Timeout for Fault-Tolerant Distributed
Systems. ACM Transactions on Programming Languages and Sys-
tems 6, 2 (April 1984), 254–280.

The genesis of this paper was my realization that, in a multiprocess
system with synchronized clocks, the absence of a message can carry
information. I was fascinated by the idea that a process could commu-
nicating zillions of bits of information by not sending messages. The
practical implementation of Byzantine generals algorithms described
in [46] could be viewed as an application of this idea. I used the idea as
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something of a gimmick to justify the paper. The basic message of this
paper should have been pretty obvious: the state machine approach,
introduced in [27], allows us to turn any consensus algorithm into a
general method for implementing distributed systems; the Byzantine
generals algorithms of [46] were fault-tolerant consensus algorithms;
hence, we had fault-tolerant implementations of arbitrary distributed
systems. I published the paper because I had found few computer
scientists who understood this.

[56] The Hoare Logic Of CSP, and All That (with Fred Schnei-
der). ACM Transactions on Programming Languages and Systems
6, 2 (April 1984), 281–296.

I felt that in [40], I had presented the right way to do assertional
(also known as Owicki-Gries style) reasoning about concurrent pro-
grams. However, many people were (and perhaps still are) hung up
on the individual details of different programming languages and are
unable to understand that the same general principles apply to all of
them. In particular, people felt that “distributed” languages based on
rendezvous or message passing were fundamentally different from the
shared-variable language that was considered in [40]. For example,
some people made the silly claim that the absence of shared variables
made it easier to write concurrent programs in CSP than in more con-
ventional languages. (My response is the equally silly assertion that
it’s harder to write concurrent programs in CSP because the control
state is shared between processors.)

Schneider agreed with me that invariance was the central concept
in reasoning about concurrent programs. He was also an expert on all
the different flavors of message passing that had been proposed. We
demonstrated in this paper that the basic approach of [40] worked just
was well with CSP; and we claimed (without proof) that it also worked
in other “distributed” languages. I found it particularly funny that
we should be the ones to give a Hoare logic to CSP, while Hoare was
using essentially behavioral methods to reason about CSP programs.
I’m still waiting for the laughter.

[57] Byzantine Clock Synchronization (with Michael Melliar-Smith).
Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing (August, 1984), 68–74.

This is the preliminary conference version of [62].
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[58] Solved Problems, Unsolved Problems and NonProblems in
Concurrency. Proceedings of the Third Annual ACM Symposium on
Principles of Distributed Computing (August, 1984) 1–11.

This is the invited address I gave at the 1983 PODC conference, which
I transcribed from a tape recording of my presentation. The first few
minutes of the talk were not taped, so I had to reinvent the begin-
ning. This talk is notable because it marked the rediscovery by the
computer science community of Dijkstra’s 1974 CACM paper that in-
troduced the concept of self-stabilization. A self-stabilizing system is
one that, when started in any state, eventually “rights itself” and op-
erates correctly. The importance of self-stabilization to fault tolerance
was obvious to me and a handful of people, but went completely over
the head of most readers. Dijkstra’s paper gave little indication of the
practical significance of the problem, and few people understood its
importance. So, this gem of a paper had disappeared without a trace
by 1983. My talk brought Dijkstra’s paper to the attention of the
PODC community, and now self-stabilization is a regular subfield of
distributed computing. I regard the resurrection of Dijkstra’s brilliant
work on self-stabilization to be one of my greatest contributions to
computer science.

The paper contains one figure—copied directly from a transparency—
with an obviously bogus algorithm. I tried to recreate an algorithm
from memory and wrote complete nonsense. It’s easy to make such a
mistake when drawing a transparency, and I probably didn’t bother
to look at it when I prepared the paper. To my knowledge, it is the
only incorrect algorithm I have published.

[59] On a “Theorem” of Peterson. Unpublished (October, 1984).

This three-page note gives an example that appears to contradict a
theorem in a TOPLAS article by Gary Peterson. Whether or not it
does depends on the interpretation of the statement of the theorem,
which is given only informally in English. I draw the moral that greater
rigor is needed. When I sent this paper to Peterson, he strongly ob-
jected to it. I no longer have his message and don’t remember exactly
what he wrote, but I think he said that he knew what the correct
interpretation was and that I was unfairly suggesting that his theorem
might be incorrect. So, I never published this note.

[60] Buridan’s Principle. Unpublished (December 1984).

I have observed that the arbiter problem, discussed in [22], occurs in
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daily life. Perhaps the most common example is when I find myself
unable to decide for a fraction of a second whether to stop for a traffic
light that just turned yellow or to go through. I suspect that it is
actually a cause of serious accidents, and that people do drive into
telephone poles because they can’t decide in time whether to go to the
left or the right.

A little research revealed that psychologists are totally unaware of
the phenomenon. I found one paper in the psychology literature on
the time taken by subjects to choose between two alternatives based
on how nearly equal they were. The author’s theoretical calculation
yielded a formula with a singularity at zero, as there should be. He
compared the experimental data with this theoretical curve, and the
fit was perfect. He then drew, as the curve fitting the data, a bounded
continuous graph. The singularity at zero was never mentioned in the
paper.

I feel that the arbiter problem is important and should be made
known to scientists outside the field of computing. So I wrote this
paper, which describes the problem in its classical formulation as the
problem of Buridan’s ass—an ass that starves to death because it is
placed equidistant between two bales of hay and has no reason to
prefer one to the other. Philosophers have discussed Buridan’s ass for
centuries, but it apparently never occurred to any of them that the
planet is not littered with dead asses only because the probability of
the ass being in just the right spot is infinitesimal.

So, I wrote this paper for the general scientific community. I proba-
bly could have published it in some computer journal, but that wasn’t
the point. I submitted it first to Science. The four reviews ranged
from “This well-written paper is of major philosophical importance”
to “This may be an elaborate joke.” One of the other reviews was
more mildly positive, and the fourth said simply “My feeling is that
it is rather superficial.” The paper was rejected.

Some time later, I submitted the paper to Nature. I don’t like the
idea of sending the same paper to different journals hoping that some-
one will publish it, and I rarely resubmit a rejected paper elsewhere.
So, I said in my submission letter that it had been rejected by Science.
The editor read the paper and sent me some objections. I answered
his objections, which were based on reasonable misunderstandings of
the paper. In fact, they made me realize that I should explain things
differently for a more general audience. He then replied with further
objections of a similar nature. Throughout this exchange, I wasn’t
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sure if he was taking the matter seriously or if he thought I was some
sort of crank. So, after answering his next round of objections, I wrote
that I would be happy to revise the paper in light of this discussion if
he would then send it out for review, but that I didn’t want to con-
tinue this private correspondence. The next letter I received was from
another Nature editor saying that the first editor had been reassigned
and that he was taking over my paper. He then raised some objections
to the paper that were essentially the same as the ones raised initially
by the first editor. At that point, I gave up in disgust.

I still think that this paper is worth publishing for a general scien-
tific audience. Among other things, it has a nice analysis of a quantum-
mechanical arbiter. However, I have no idea where to publish it.

My problems in trying to publish this paper are part of a long
tradition. According to one story I’ve heard (but haven’t verified),
someone at G. E. discovered the phenomenon in computer circuits in
the early 60s, but was unable to convince his managers that there
was a problem. He published a short note about it, for which he was
fired. Charles Molnar, one of the pioneers in the study of the problem,
reported the following in a lecture given on February 11, 1992, at HP
Corporate Engineering in Palo Alto, California:

One reviewer made a marvelous comment in rejecting one of
the early papers, saying that if this problem really existed
it would be so important that everybody knowledgeable in
the field would have to know about it, and “I’m an expert
and I don’t know about it, so therefore it must not exist.”

[61] The Mutual Exclusion Problem—Part I: A Theory of Inter-
process Communication, Part II: Statement and Solutions.
Journal of the Association for Computing Machinery 33, 2 (January
1985) 313–348.

For some time I had been looking for a mutual exclusion algorithm
that satisfied my complete list of desirable properties. I finally found
one—the N !-bit algorithm described in this paper. The algorithm
is wildly impractical, requiring N ! bits of storage for N processors,
but practicality was not one of my requirements. So, I decided to
publish a compendium of everything I knew about the theory of mutual
exclusion.

The 3-bit algorithm described in this paper came about because of
a visit by Michael Rabin. He is an advocate of probabilistic algorithms,
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and he claimed that a probabilistic solution to the mutual exclusion
problem would be better than a deterministic one. I believe that it
was during his brief visit that we came up with a probabilistic algo-
rithm requiring just three bits of storage per processor. Probabilistic
algorithms don’t appeal to me. (This is a question of aesthetics, not
practicality.) So later, I figured out how to remove the probability and
turn it into a deterministic algorithm.

The first part of the paper covers the formalism for describing
nonatomic operations that I had been developing since the 70s, and
that is needed for a rigorous exposition of mutual exclusion. (See the
discussion of [70].)

[62] Synchronizing Clocks in the Presence of Faults (with Michael
Melliar-Smith). Journal of the Association for Computing Machinery
32, 1 (January 1985), 52–78.

Practical implementation of Byzantine agreement requires synchro-
nized clocks. For an implementation to tolerate Byzantine faults, it
needs a clock synchronization algorithm that can tolerate those faults.
When I arrived at SRI, there was a general feeling that we could syn-
chronize clocks by just having each process use a Byzantine agreement
protocol to broadcast its clock value. I was never convinced by that
hand waving. So, at some point I tried to write down precise clock-
synchronization algorithms and prove their correctness. The two ba-
sic Byzantine agreement algorithms from [46] did generalize to clock-
synchronization algorithms. In addition, Melliar-Smith had devised
the interactive convergence algorithm, which is also included in the
paper. (As I recall, that algorithm was his major contribution to the
paper, and I wrote all the proofs.)

Writing the proofs turned out to be much more difficult than I had
expected (see [27]). I worked very hard to make them as short and
easy to understand as I could. So, I was rather annoyed when a referee
said that the proofs seemed to have been written quickly and could be
simplified with a little effort. In my replies to the reviews, I referred
to that referee as a “supercilious bastard”. Some time later, Nancy
Lynch confessed to being that referee. She had by then written her
own proofs of clock synchronization and realized how hard they were.

Years later, John Rushby and his colleagues at SRI wrote mechani-
cally verified versions of my proofs. They found only a couple of minor
errors. I’m rather proud that, even before I knew how to write reliable,
structured proofs (see [101]), I was sufficiently careful and disciplined
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to have gotten those proofs essentially correct.

[63] What It Means for a Concurrent Program to Satisfy a Specifi-
cation: Why No One Has Specified Priority. Proceedings of the
Twelfth ACM Symposium on Principles of Programming Languages,
ACM SIGACT-SIGPLAN (January 1985), 78–83.

I must have spent a lot of time at SRI arguing with Schwartz and
Melliar-Smith about the relative merits of temporal logic and transi-
tion axioms. (See the discussion of [50].) I don’t remember exactly
what happened, but this paper’s acknowledgment section says that
“they kept poking holes in my attempts to specify FCFS [first-come,
first-served] until we all finally recognized the fundamental problem
[that it can’t be done].”

[64] Constraints: A Uniform Approach to Aliasing and Typing
(with Fred Schneider). Proceedings of the Twelfth ACM Symposium
on Principles of Programming Languages, ACM SIGACT-SIGPLAN
(January 1985), 205–216.

My generalized Hoare logic requires reasoning about control predi-
cates, using the at, in, and after predicates introduced in [47]. These
are not independent predicates—for example, being after one state-
ment is synonymous with being at the following statement. At some
point, Schneider and I realized that the relations between control pred-
icates could be viewed as a generalized form of aliasing. Our method
of dealing with control predicates led to a general approach for han-
dling aliasing in ordinary Hoare logic, which is described in this paper.
In addition to handling the usual aliasing in programs, our method
allowed one to declare that the variables r and θ were aliases of the
variables x and y according to the relations x = r cos θ and y = r sin θ.

We generalized this work to handle arrays and pointers, and even
cited a later paper about this generalization. But, as has happened
so often when I write a paper that mentions a future one, the future
paper was never written.

[65] Recursive Compiling and Programming Environments (Sum-
mary). Rejected from the 1985 POPL Conference..

This is an extended abstract I submitted to the 1995 POPL conference.
(I never wrote the complete version.) It proposes the idea of recursive
compiling, in which a program constructs a text string and calls the
compiler to compile it in the context of the current program environ-
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ment. Thus, a variable foo in the string is interpreted by the compiler
to mean whatever foo means at the current point in the calling pro-
gram. No one found the idea very compelling. When I discussed it
with Eric Roberts, he argued that run-time linking would be a simpler
way to provide the same functionality. I don’t know if Java’s reflection
mechanism constitutes recursive compiling or just run-time linking.

[66] Distributed Snapshots: Determining Global States of a Dis-
tributed System (with Mani Chandy). ACM Transactions on Com-
puter Systems 3, 1 (February, 1985), 63–75.

The distributed snapshot algorithm described here came about when I
visited Chandy, who was then at the University of Texas in Austin. He
posed the problem to me over dinner, but we had both had too much
wine to think about it right then. The next morning, in the shower, I
came up with the solution. When I arrived at Chandy’s office, he was
waiting for me with the same solution. I consider the algorithm to be
a straightforward application of the basic ideas from [27].

[67] Formal Foundation for Specification and Verification (with
Fred Schneider). Chapter 5 in Distributed Systems: Methods and Tools
for Specification, Alford et al. Lecture Notes in Computer Science,
Number 190. Springer-Verlag, Berlin (1985).

This volume contains the notes for a two-week course given in Munich
in April of 1984 and again in April of 1985. Fred Schneider and I
lectured on the contents of [56] and [47]. This chapter is of historical
interest because it’s the first place where I published the precise defi-
nition of a safety property. (The concepts of safety and liveness were
introduced informally in [23].) This inspired Schneider to think about
what the precise definition of liveness might be. Shortly thereafter, he
and Bowen Alpern came up with the formal definition.

[68] An Axiomatic Semantics of Concurrent Programming Lan-
guages. In Logics and Models of Concurrent Systems, Krzysztof Apt,
editor. Springer-Verlag, Berlin (1985), 77–122.

This paper appeared in a workshop held in Colle-sur-Loup, in the
south of France, in October, 1984. There is a long history of work on
the semantics of programming languages. When people began study-
ing concurrency in the 70s, they naturally wrote about the semantics
of concurrent languages. It always seemed to me that defining the
semantics of a concurrent language shouldn’t be very hard. Once you
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know how to specify a concurrent system, it’s a straightforward task
to give a semantics to a concurrent programming language by spec-
ifying the programs written in it. Writing this paper allowed me to
demonstrate that writing a semantics is as easy as I thought it was.
What I did discover from writing the paper is that the semantics of
programming languages is a very boring subject. I found this paper
boring to write; I find it boring to read. I have never worked on the
semantics of programming languages again.

[69] LATEX: A Document Preparation System. Addison-Wesley,
Reading, Mass. (1986).

In the early 80s, I was planning to write the Great American Concur-
rency Book. I was a TEX user, so I would need a set of macros. I
thought that, with a little extra effort, I could make my macros usable
by others. Don Knuth had begun issuing early releases of the current
version of TEX, and I figured I could write what would become its
standard macro package. That was the beginning of LATEX. I was
planning to write a user manual, but it never occurred to me that
anyone would actually pay money for it. In 1983, Peter Gordon, an
Addison-Wesley editor, and his colleagues visited me at SRI. Here is
his account of what happened.

Our primary mission was to gather information for Addison-
Wesley “to publish a computer-based document processing
system specifically designed for scientists and engineers, in
both academic and professional environments.” This sys-
tem was to be part of a series of related products (soft-
ware, manuals, books) and services (database, production).
(La)TEX was a candidate to be at the core of that system.
(I am quoting from the original business plan.) Fortunately,
I did not listen to your doubt that anyone would buy the
LATEX manual, because more than a few hundred thousand
people actually did. The exact number, of course, cannot
accurately be determined, inasmuch as many people (not all
friends and relatives) bought the book more than once, so
heavily was it used.

Meanwhile, I still haven’t written the Great American Concurrency
Book.

[70] On Interprocess Communication—Part I: Basic Formalism,
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Part II: Algorithms. Distributed Computing 1, 2 (1986), 77–101.
Also appeared as SRC Research Report 8.

Most computer scientists regard synchronization problems, such as the
mutual exclusion problem, to be problems of mathematics. How can
you use one class of mathematical objects, like atomic reads and writes,
to implement some other mathematical object, like a mutual exclusion
algorithm? I have always regarded synchronization problems to be
problems of physics. How do you use physical objects, like registers,
to achieve physical goals, like not having two processes active at the
same time?

With the discovery of the bakery algorithm (see [12]), I began
considering the question of how two processes communicate. I came to
the conclusion that asynchronous communication requires some object
whose state can be changed by one process and observed by the other.
We call such an object a register. This paper introduced three classes
of registers. The weakest class with which arbitrary synchronization
is possible is called safe. The next strongest is called regular and the
strongest, generally assumed by algorithm writers, is called atomic.

I had obtained all the results presented here in the late 70s and
had described them to a number of computer scientists. Nobody found
them interesting, so I never wrote them up. Around 1984, I saw a pa-
per by Jay Misra, motivated by VLSI, that was heading in the general
direction of my results. It made me realize that, because VLSI had
started people thinking about synchronization from a more physical
perspective, they might now be interested in my results about regis-
ters. So, I wrote this paper. As with [61], the first part describes my
formalism for describing systems with nonatomic operations. This
time, people were interested—perhaps because it raised the entic-
ing unsolved problem of implementing multi-reader and multi-writer
atomic registers. It led to a brief flurry of atomic register papers.

Fred Schneider was the editor who processed this paper. He kept
having trouble understanding the proof of my atomic register con-
struction. After a couple of rounds of filling in the details of the steps
that Schneider couldn’t follow, I discovered that the algorithm was in-
correct. Fortunately, I was able to fix the algorithm and write a proof
that he, I, and, as far as I know, all subsequent readers did believe.

Some fifteen years later, Jerry James, a member of the EECS
department at the University of Kansas, discovered a small error in
Proposition 1 when formalizing the proofs with the PVS mechanical
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verification system. He proved a corrected version of the proposition
and showed how that version could be used in place of the original
one.

[71] The Byzantine Generals (with Danny Dolev, Marshall Pease, and
Robert Shostak). In Concurrency Control and Reliability in Dis-
tributed Systems, Bharat K. Bhargava, editor, Van Nostrand Reinhold
(1987) 348–369.

I have only a vague memory of this paper. I believe Bhargava asked
me to write a chapter about the results in [41] and [46]. I was probably
too lazy and asked Dolev to write a chapter that combined his more
recent results on connectivity requirements with our original results.
I would guess that he did all the work, though I must have at least
read and approved of what he wrote.

[72] A Formal Basis for the Specification of Concurrent Systems.
In Distributed Operating Systems: Theory and Practice, Paker, Bana-
tre and Bozyiǧit, editors, Springer-Verlag (1987), 1–46.

This paper describes the transition axiom method I introduced in [50].
It was written for a NATO Advanced Study Institute that took place
in Turkey in August, 1986, and contains little that was new.

[73] A Fast Mutual Exclusion Algorithm. ACM Transactions on
Computer Systems 5, 1 (February 1987), 1–11. Also appeared as SRC
Research Report 7.

Soon after I arrived at SRC, I was approached by some people at WRL
(Digital’s Western Research Laboratory) who were building a multi-
processor computer. They wanted to avoid having to add synchro-
nization instructions, so they wanted to know how efficiently mutual
exclusion could be implemented with just read and write instructions.
They figured that, with properly designed programs, contention for a
critical section should be rare, so they were interested in efficiency in
the absence of contention. I deduced the lower bound on the number of
operations required and the optimal algorithm described in this paper.
They decided that it was too slow, so they implemented a test-and-set
instruction.

I find it remarkable that, 20 years after Dijkstra first posed the
mutual exclusion problem, no one had thought of trying to find solu-
tions that were fast in the absence of contention. This illustrates why
I like working in industry: the most interesting theoretical problems
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come from implementing real systems.

[74] Derivation of a Simple Synchronization Algorithm. Rejected
by Information Processing Letters (February 1987).

Chuck Thacker posed a little synchronization problem to me, which I
solved with Jim Saxe’s help. At that time, deriving concurrent algo-
rithms was the fashion—the idea that you discover the algorithm by
some form of black magic and then verify it was considered passé. So,
I decided to see if I could have derived the algorithm from approved
general principles. I discovered that I could—at least, informally—and
that this informal derivation seemed to capture the thought process
that led me to the solution in the first place.

[75] Distribution. Email message sent to a DEC SRC bulletin board at
12:23:29 PDT on 28 May 87.

This message is the source of the following observation, which has been
quoted (and misquoted) rather widely:

A distributed system is one in which the failure of a com-
puter you didn’t even know existed can render your own
computer unusable.

[76] Document Production: Visual or Logical?. Notices of the Amer-
ican Mathematical Society (June 1987), 621–624.

Richard Palais ran a column on mathematical typesetting in the AMS
Notices, and he invited me to be guest columnist. This is what I
wrote—a short exposition of my ideas about producing mathematical
documents.

[77] Synchronizing Time Servers. SRC Research Report 18 (June
1987).

When I joined DEC in 1985, they were the world leader in network-
ing. Using their VMS operating system, I could type a simple copy
command to a computer in California, specifying a file and machine
name, to copy a file from a computer in Massachusetts. Even today,
I can’t copy a file from Massachusetts to California nearly as easily
with Unix or Windows.

The people responsible for DEC’s network systems were the Net-
work and Communications group (NAC). Around 1987, NAC asked
for my help in designing a network time service. I decided that there
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were two somewhat conflicting requirements for a time service: deliv-
ering the correct time, and keeping the clocks on different computers
closely synchronized. This paper describes the algorithms I devised
for doing both.

I withdrew the paper because Tim Mann observed that the prop-
erties I proved about the algorithms were weaker than the ones needed
to make them interesting. The major problem is that the algorithms
were designed to guarantee both a bound ε on the synchronization of
each clock with a source of correct time and an independent bound
δ on the synchronization between any two clocks that could be made
much smaller than ε. Mann observed that the bound I proved on δ
was not the strong one independent of ε that I had intended to prove.
We believe that the algorithms do satisfy the necessary stronger prop-
erties, and Mann and I began rewriting the paper with the stronger
results. But that paper is still only partly written and is unlikely ever
to see the light of day.

[78] Control Predicates Are Better than Dummy Variables for
Representing Program Control. ACM Transactions on Program-
ming Languages and Systems 10, 2 (April 1988), 267–281. Also ap-
peared as SRC Research Report 11.

This paper describes an example I came across in which the explicit
control predicates introduced in [47] lead to a simpler proof than do
dummy variables. This example served as an excuse. The real reason
for publishing it was to lobby for the use of control predicates. There
used to be an incredible reluctance by theoretical computer scientists
to mention the control state of a program. When I first described
the work in [40] to Albert Meyer, he immediately got hung up on the
control predicates. We spent an hour arguing about them—I saying
that they were necessary (as was first proved by Susan in her thesis),
and he saying that I must be doing something wrong. I had the feeling
that I was arguing logical necessity against religious belief, and there’s
no way logic can overcome religion.

[79] “EWD 1013”. Unpublished. Probably written around April, 1988.

Dijkstra’s EWD 1013, Position Paper on “Fairness”, argues that fair-
ness is a meaningless requirement because it can’t be verified by ob-
serving a system for a finite length of time. The weakness in this
argument is revealed by observing that it applies just as well to ter-
mination. To make the point, I wrote this note, which claims to be an
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early draft of EWD 1013 titled Position Paper on “Termination”. It
is, of course, essentially the same as EWD 1013 with fairness replaced
by termination. Because of other things that happened at that time,
I was afraid that Dijkstra might not take it in the spirit of good fun in
which it was intended, and that he might find it offensive. So, I never
showed it to anyone but a couple of friends. I think the passage of
time has had enough of a mellowing effect that no one will be offended
any more by it. It is now of more interest for the form than for the
content.

[80] Another Position Paper on Fairness (with Fred Schneider). Soft-
ware Engineering Notes 13, 3 (July, 1988) 1–2.

This is a more traditional response to Dijkstra’s EWD 1013 (see [79]).
We point out that Dijkstra’s same argument can be applied to show
that termination is a meaningless requirement because it can’t be re-
futed by looking at a program for a finite length of time. The real
argument in favor of fairness, which we didn’t mention, is that it is a
useful concept when reasoning about concurrent systems.

[81] A Lattice-Structured Proof of a Minimum Spanning Tree Al-
gorithm (with Jennifer Welch and Nancy Lynch). Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Com-
puting (August, 1988).

In 1983, Gallager, Humblet, and Spira published a distributed algo-
rithm for computing a minimum spanning tree. For several years,
I regarded it as a benchmark problem for verifying concurrent algo-
rithms. A couple of times, I attempted to write an invariance proof,
but the invariant became so complicated that I gave up. On a visit
to M.I.T., I described the problem to Nancy Lynch, and she became
interested in it too. I don’t remember exactly how it happened, but we
came up with the idea of decomposing the proof not as a simple hier-
archy of refinements, but as a lattice of refinements. Being an efficient
academic, Lynch got Jennifer Welch to do the work of actually writing
the proof as part of her Ph. D. thesis. This paper is the conference
version, written mostly by her.

There were three proofs of the minimum spanning-tree algorithm
presented at PODC that year: ours, one by Willem-Paul de Roever
and his student Frank Stomp, and the third by Eli Gafni and his stu-
dent Ching-Tsun Chou. Each paper used a different proof method. I
thought that the best of the three was the one by Gafni and Chou—not
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because their proof method was better, but because they understood
the algorithm better and used their understanding to simplify the
proof. If they had tried to formalize their proof, it would have turned
into a standard invariance proof. Indeed, Chou eventually wrote such
a formal invariance proof in his doctoral thesis.

The Gallager, Humblet, and Spira algorithm is complicated and
its correctness is quite subtle. (Lynch tells me that, when she lectured
on its proof, Gallager had to ask her why it works in a certain case.)
There doesn’t seem to be any substitute for a standard invariance
proof for this kind of algorithm. Decomposing the proof the way we
did seemed like a good idea at the time, but in fact, it just added extra
work. (See [124] for a further discussion of this.)

[82] A Simple Approach to Specifying Concurrent Systems. Com-
munications of the ACM 32, 1 (January 1989), 32–45. Also appeared
as SRC Research Report 15.

This is a “popular” account of the transition-axiom method that I
introduced in [50]. To make the ideas more accessible, I wrote it in a
question-answer style that I copied from the dialogues of Galileo. The
writing in this paper may be the best I’ve ever done.

[83] Pretending Atomicity (with Fred Schneider). SRC Research Re-
port 44 (May 1989).

Reasoning about concurrent systems is simpler if they have fewer sep-
arate atomic actions. To simplify reasoning about systems, we’d like
to be able to combine multiple small atomic actions into a single large
one. This process is called reduction. This paper contains a reduction
theorem for multiprocess programs. It was accepted for publication,
subject to minor revisions, in ACM Transactions on Programming
Languages and Systems. However, after writing it, I invented TLA,
which enabled me to devise a stronger and more elegant reduction
theorem. Schneider and I began to revise the paper in terms of TLA.
We were planning to present a weaker, simpler version of the TLA
reduction theorem that essentially covered the situations considered
in this report. However, we never finished that paper. A more general
TLA reduction theorem was finally published in [123].

[84] Realizable and Unrealizable Specifications of Reactive Sys-
tems (with Mart́ın Abadi and Pierre Wolper). Automata, Languages
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and Programming, Springer-Verlag (July 1989) 1–17.

Abadi and I came upon the concept of realizability in [97]. Several
other people independently came up with the idea at around the same
time, including Wolper. Abadi and Wolper worked together to com-
bine our results and his into a single paper. Abadi recollects that the
section of the paper dealing with the general case was mostly ours, and
Wolper mostly developed the finite case, including the algorithms. He
remembers adopting the term “realizability” from realizability in in-
tuitionistic logic, and thinking of the relation with infinite games after
seeing an article about such games in descriptive set theory in the
Journal of Symbolic Logic. As I recall, I wasn’t very involved in the
writing of this paper.

[85] A Temporal Logic of Actions. SRC Research Report 47 (April
1990).

This was my first attempt at TLA, and I didn’t get it quite right. It
is superseded by [102].

[86] win and sin: Predicate Transformers for Concurrency. ACM
Transactions on Programming Languages and Systems 12, 3 (July
1990) 396–428. Also appeared as SRC Research Report 17 (May 1987).

I had long been fascinated with algorithms that, like the bakery algo-
rithm of [12], do not assume atomicity of their individual operations.
I devised the formalism first published in [33] for writing behavioral
proofs of such algorithms. I had also long been a believer in invari-
ance proofs, which required that the algorithm be represented in terms
of atomic actions. An assertional proof of the bakery algorithm re-
quired modeling its nonatomic operations in terms of multiple atomic
actions—as I did in [12]. However, it’s easy to introduce tacit as-
sumptions with such modeling. Indeed, sometime during the early 80s
I realized that the bakery algorithm required an assumption about
how a certain operation is implemented that I had never explicitly
stated, and that was not apparent in any of the proofs I had written.
This paper introduces a method of writing formal assertional proofs
of algorithms directly in terms of their nonatomic operations. It gives
a proof of the bakery algorithm that explicitly reveals the needed as-
sumption. However, I find the method very difficult to use. With
practice, perhaps one could become facile enough with it to make it
practical. However, there don’t seem to be enough algorithms re-
quiring reasoning about nonatomic actions for anyone to acquire that
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facility.

[87] A Theorem on Atomicity in Distributed Algorithms. Dis-
tributed Computing 4, 2 (1990), 59–68. Also appeared as SRC Re-
search Report 28.

This paper gives a reduction theorem for distributed algorithms (see
the discussion of [83]). It includes what I believe to be the first reduc-
tion result for liveness properties.

[88] Distributed Computing: Models and Methods (with Nancy
Lynch). Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Semantics, Jan van Leeuwen, editor, Elsevier (1990),
1157–1199.

Jan van Leeuwen asked me to write a chapter on distributed systems
for this handbook. I realized that I wasn’t familiar enough with the
literature on distributed algorithms to write it by myself, so I asked
Nancy Lynch to help. I also observed that there was no chapter on
assertional verification of concurrent algorithms. (That was probably
due to the handbook’s geographical origins, since process algebra rules
in Europe.) So I included a major section on proof methods. As I
recall, I wrote most of the first three sections and Lynch wrote the
fourth section on algorithms pretty much by herself.

[89] A Completeness Theorem for TLA. Unpublished (October, 1990).

This is a note that states and proves a relative completeness result for
the axioms of TLA in the absence of temporal existential quantification
(variable hiding). A text version of the complete note and of all other
TLA notes are available on the web at http://research.microsoft.
com/users/lamport/tla/notes.html. There are undoubtedly errors
in the proof, but I think they’re minor.

[90] The Concurrent Reading and Writing of Clocks. ACM Trans-
actions on Computer Systems 8, 4 (November 1990), 305–310. Also
appeared as SRC Research Report 27.

This paper uses the results from [25] to derive a couple of algorithms
for reading and writing multi-word clocks. These algorithms are in the
same vein as the ones in [25], involving reading and writing multi-digit
numbers in opposite directions. In fact, I think I knew the algorithms
when I wrote [25]. When the problem of reading and writing a two-
word clock arose in a system being built at SRC, I was surprised to
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discover that the solution wasn’t in [25]. I don’t know why it wasn’t,
but I welcomed the opportunity to publish a paper reminding people
of the earlier results.

[91] The Mutual Exclusion Problem Has Been Solved. Communi-
cations of the ACM 34, 1 (January 1991), 110.

In 1990, CACM published one of their self-assessment procedures,
this time on concurrent programming. The “correct” answer to one
of the questions implied that mutual exclusion can be implemented
only using atomic operations that are themselves implemented with
lower-level mutual exclusion. It seemed appropriate to point out that
this was wrong, and that I had actually solved the mutual exclusion
problem 16 years earlier in [12]—ironically, an article in CACM . So,
I submitted this short note to that effect. The quotation from Samuel
Johnson at the end is one that Bob Taylor likes very much and taught
to everyone at SRC when he was lab director.

The original version, which I no longer have, quoted all the sources
cited in support of the “correct” answer, showing how all those experts
in the field had no idea that the mutual exclusion problem had been
solved. However, the editor of CACM took it upon himself to handle
my submission personally. He insisted that all this material be deleted,
along with the accompanying sarcasm. Although I didn’t like this
editorial bowdlerization, I didn’t feel like fighting.

I was appalled at how this note finally appeared. I have never seen
a published article so effectively hidden from the reader. I defy anyone
to take that issue of CACM and find the note without knowing the
page number.

[92] The Existence of Refinement Mappings (with Mart́ın Abadi).
Theoretical Computer Science 82, 2 (May 1991), 253–284. (An abridged
version appeared in Proceedings of the Third Annual Logic In Com-
puter Science Conference (July 1988).) Also appeared as SRC Re-
search Report 29.

The method of proving that one specification implements another by
using a refinement mapping was well-established by the mid-80s. (It
is clearly described in [54], and it also appears in [50].) It was known
that constructing the refinement mapping might require adding his-
tory variables to the implementation. Indeed, Lam and Shankar essen-
tially constructed all their refinement mappings with history variables.
Jim Saxe discovered a simple example showing that history variables
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weren’t enough. To handle that example, he devised a more com-
plicated refinement-mapping rule. I realized that I could eliminate
that complicated rule, and use ordinary refinement, by introducing
a new kind of dummy variable that I called a prophecy variable. A
prophecy variable is very much like a history variable, except it pre-
dicts the future instead of remembering the past. (Nancy Lynch later
rediscovered Saxe’s rule and used it to “simplify” refinement proofs
by eliminating prophecy variables.) I then remembered a problematic
example by Herlihy and Wing in their classic paper Linearizability: A
Correctness Condition for Concurrent Objects that could be handled
with prophecy variables.

This paper was my first collaboration with Abadi. Here’s my recol-
lection of how it was written. I had a hunch that history and prophecy
variables were all one needed. Abadi had recently joined SRC, and this
seemed like a fine opportunity to interest him in the things I was work-
ing on. So I described my hunch to him and suggested that he look
into proving it. He came back in a few weeks with the results described
in the paper. My hunch was right, except that there were hypotheses
needed that I hadn’t suspected. Abadi, however, recalls my having
had a clearer picture of the final theorem, and that we worked out
some of the details together when writing the final proof.

I had just developed the structured proof style described in [101], so
I insisted that we write our proofs in this style, which meant rewriting
Abadi’s original proofs. In the process, we discovered a number of
minor errors in the proofs, but no errors in the results.

This paper won the LICS 1988 Test of Time Award (awarded in
2008).

[93] Preserving Liveness: Comments on ‘Safety and Liveness from
a Methodological Point of View’ (with Mart́ın Abadi et al.). In-
formation Processing Letters 40, 3 (November 1991), 141–142.

This is a very short article—the list of authors takes up almost as
much space as the text. In a note published in IPL, Dederichs and
Weber rediscovered the concept of non-machine-closed specifications.
We observed here that their reaction to those specifications was naive.

[94] Critique of the Lake Arrowhead Three. Distributed Computing
6, 1 (1992), 65–71.

For a number of years, I was a member of a committee that planned
an annual workshop at Lake Arrowhead, in southern California. I
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was finally pressured into organizing a workshop myself. I got Brent
Hailpern to be chairman of a workshop on specification and verification
of concurrent systems. A large part of the conference was devoted to
a challenge problem of specifying sequential consistency. This was a
problem that, at the time, I found difficult. (I later learned how to
write the simple, elegant specification that appears in [126].)

Among the presentations at the workshop session on the challenge
problem, there were only two serious attempts at solving the prob-
lem. (As an organizer, I felt that I shouldn’t present my own so-
lution.) After a long period of review and revision, these two and
a third, subsequently-written solution, appeared in a special issue of
Distributed Computing. This note is a critique of the three solutions
that I wrote for the special issue.

[95] The Reduction Theorem. Unpublished (April, 1992).

This note states and proves a TLA reduction theorem. See the dis-
cussion of [123]. Text versions of this and all other TLA notes are
available on the web at http://research.microsoft.com/users/
lamport/tla/notes.html.

[96] Mechanical Verification of Concurrent Systems with TLA
(with Urban Engberg and Peter Grønning). Computer-Aided Ver-
ification, G. v. Bochmann and D. K. Probst editors. (Proceedings
of the Fourth International Conference, CAV’92.) Lecture Notes in
Computer Science, number 663, Springer-Verlag, (June, 1992) 44–55.

When I developed TLA, I realized that, for the first time, I had a
formalism that really was completely formal—so formal that mechan-
ically checking TLA proofs should be straightforward. Working out a
tiny example (the specification and trivial implementation of mutual
exclusion) using the LP theorem prover, I confirmed that this was the
case. I used LP mainly because we had LP experts at SRC—namely,
Jim Horning and Jim Saxe.

My tiny example convinced me that we want to reason in TLA,
not in LP. To do this, we need to translate a TLA proof into the
language of the theorem prover. The user should write the proof in
the hierarchical style of [101], and the prover should check each step.
One of the advantages of this approach turned out to be that it allows
separate translations for the action reasoning and temporal reason-
ing. This is important because about 95% of a proof consists of action
reasoning, and these proofs are much simpler if done with a special
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translation than in the same translation that handles temporal for-
mulas. (In action reasoning, x and x′ are two completely separate
variables; x′ is handled no differently than the variable y.) So, I in-
vited Urban Engberg and Peter Grønning, who were then graduate
students in Denmark, to SRC for a year to design and implement such
a system. The result of that effort is described in this paper. For
his doctoral research, Engberg later developed the system into one he
called TLP.

Georges Gonthier demonstrated how successful this system was
in his mechanical verification of the concurrent garbage collector de-
veloped by Damien Doligez and hand-proved in his thesis. Gonthier
estimated that using TLP instead of working directly in LP reduced
the amount of time it took him to do the proof by about a factor of
five. His proof is reported in:

Georges Gonthier, Verifying the Safety of a Practical Con-
current Garbage Collector, in Rajeev Alur, Thomas A. Hen-
zinger (Ed.): Computer Aided Verification, 8th International
Conference, CAV ’96. Lecture Notes in Computer Science,
Vol. 1102, Springer, 1996, 462–465.

TLP’s input language was essentially a very restricted subset of TLA+

(described in [127])—a language that did not exist when TLP was
implemented. Extending it to handle all of TLA+ would be a simple
matter of programming. However, TLP is no longer maintained and
probably no longer works, since it was based on an old version of the
LP prover. Moreover, LP no longer seems to be the best prover to
use. The next step is an industrial-strength system that accepts all of
TLA+ and that makes it easy to add different theorem provers as back
ends, so the user can have a choice of what prover to use for each step.
I am still waiting for someone to volunteer to build such a system.

[97] Composing Specifications (with Mart́ın Abadi). ACM Transac-
tions on Programming Languages and Systems 15, 1 (January 1993),
73–132. Also appeared as SRC Research Report 66. A preliminary
version appeared in Stepwise Refinement of Distributed Systems, J.
W. de Bakker, W.-P. de Roever, and G. Rozenberg editors, Springer-
Verlag Lecture Notes in Computer Science Volume 430 (1989), 1–41..

Since the late 80s, I had vague concerns about separating the specifi-
cation of a system from requirements on the environment. The ability
to write specifications as mathematical formulas (first with tempo-
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ral logic and then, for practical specifications, with TLA) provides
an answer. The specification is simply E implies M, where E spec-
ifies what we assume of the environment and M specifies what the
system guarantees. This specification allows behaviors in which the
system violates its guarantee and the environment later violates its
assumption—behaviors that no correct implementation could allow.
So, we defined the notion of the realizable part of a specification and
took as the system specification the realizable part of E implies M . We
later decided that introducing an explicit realizable-part operator was
a mistake, and that it was better to replace implication with a tempo-
ral while operator that made the specifications realizable. That’s the
approach we took in [112], which supersedes this paper.

This is the second paper in which we used structured proofs, the
first being [92]. In this case, structured proofs were essential to getting
the results right. We found reasoning about realizability to be quite
tricky, and on several occasions we convinced ourselves of incorrect
results, finding the errors only by trying to write structured proofs.

[98] Verification of a Multiplier: 64 Bits and Beyond (with R. P.
Kurshan). Computer-Aided Verification, Costas Courcoubetis, editor.
(Proceedings of the Fifth International Conference, CAV’93.) Lecture
Notes in Computer Science, number 697, Springer-Verlag (June, 1993),
166–179.

As I observed in [124], verifying a system by first decomposing it into
separate subsystems can’t reduce the size of a proof and usually in-
creases it. However, such a decomposition can reduce the amount of
effort if it allows much of the resulting proof to be done automatically
by a model checker. This paper shows how the decomposition theo-
rem of [112] can be used to decompose a hardware component (in this
case, a multiplier) that is too large to be verified by model checking
alone. Here is Kurshan’s recollection of how this paper came to be.
My CAV’92 talk was mostly about [101], and the “Larch support”
refers to [96]

I cornered you after your invited address at CAV92. At
CAV, you talked about indenting (and TLA, and its Larch
support). I challenged you with a matter I had been thinking
about since at least 1990, the year of the first CAV. In the
preface to the CAV90 proceedings, I stated as a paramount
challenge to the CAV community, to create a beneficial inter-
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face between automated theorem proving, and model check-
ing.

I asked you if you thought that linking TLA/Larch with
S/R (which should be simple to do on account of their very
close syntax and semantics for finite-state models), could
be useful. I suggested the (artificial) problem of verifying a
multiplier constructed from iterated stages of a very complex
8× 8 multiplier. The 8× 8 multiplier would be too complex
to verify handily with a theorem prover. A (say) 64 × 64
multiplier could be built from the 8 × 8 one. We’d use the
model checker (cospan) to verify the 8× 8, and Larch/TLA
to verify the induction step. You liked the idea, and we
did it, you working with Urban and I working with Mark
[Foissoitte].

Sadly, with the interface in place, I was unable to come
up with a non-artificial feasible application. To this day,
although there have been a succession of such interfaces built
(I believe ours was the first), none has really demonstrated
a benefit on a real application. The (revised) challenge is
to find an application in which the combination finds a bug
faster than either one could by itself.

[99] Verification and Specification of Concurrent Programs. A
Decade of Concurrency: Reflections and Perspectives, J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg editors. Lecture Notes in Com-
puter Science, number 803, Springer-Verlag, (June, 1993) 347–374.

In keeping with the theme of the workshop, this paper provides a
brief, biased overview of 18 years of verifying and specifying concurrent
systems, along with an introduction to TLA. Looking at it almost 10
years later, I find it a rather nice read.

[100] Hybrid Systems in TLA+. Hybrid Systems, Robert L. Grossman,
Anil Nerode, Hans Rischel, and Anders P. Ravn, editors. Lecture
Notes in Computer Science, number 736, Springer-Verlag (1993), 77–
102.

In the early 90s, hybrid systems became a fashionable topic in formal
methods. Theoreticians typically respond to a new problem domain by
inventing new formalisms. Physicists don’t have to revise the theory of
differential equations every time they study a new kind of system, and
computer scientists shouldn’t have to change their formalisms when

61



they encounter a new kind of system. Abadi and I showed in [106]
that TLA can handle real-time specifications by simply introducing
a variable to represent the current time. It’s just as obvious that it
can handle hybrid systems by introducing variables to represent other
physical quantities. It is often necessary to demonstrate the obvious
to people, and the opportunity to do this arose when there was a
workshop in Denmark devoted to a toy problem of specifying a simple
gas burner and proving the correctness of a simple implementation. I
was unable to attend the workshop, but I did write this TLA+ solution.
(The version of TLA+ used here is slightly different from the more
current version that is described in [127].)

The correctness conditions given in the problem statement in-
cluded an ad hoc set of rules about how long the gas could be on
if the flame was off. The purpose of those conditions was obviously
to prevent a dangerous build-up of unburned gas. To demonstrate
the power of TLA+, and because it made the problem more fun, I
wrote a higher-level requirement stating that the concentration of gas
should be less than a certain value. Assuming that the dissipation
of unburned gas satisfied a simple differential equation, I proved that
their conditions implied my higher-level specification—under suitable
assumptions about the rate of diffusion of the gas. This required,
among other things, formally specifying the Riemann integral, which
took about 15 lines. I also sketched a proof of the correctness of the
next implementation level. All of this was done completely in TLA+.
The introduction to the volume says that I “extend[ed] . . . TLA+ with
explicit variables that denote continuous states and clocks.” That, of
course, is nonsense. Apparently, by their logic, you have extended C if
you write a C program with variables named time and flame instead
of t and f.

[101] How to Write a Proof . American Mathematical Monthly 102, 7
(August-September 1995) 600–608. Also appeared in Global Analysis
in Modern Mathematics, Karen Uhlenbeck, editor. Publish or Perish
Press, Houston. Also appeared as SRC Research Report 94.

TLA gave me, for the first time, a formalism in which it was possible
to write completely formal proofs without first having to add an addi-
tional layer of formal semantics. I began writing proofs the way I and
all mathematicians and computer scientists had learned to write them,
using a sequence of lemmas whose proofs were a mixture of prose and
formulas. I quickly discovered that this approach collapsed under the
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weight of the complexity of any nontrivial proof. I became lost in a
maze of details, and couldn’t keep track of what had and had not been
proved at any point. Programmers learned long ago that the way to
handle complexity is with hierarchical structuring. So, it was quite
natural to start structuring the proofs hierarchically, and I soon de-
veloped a simple hierarchical proof style. It then occurred to me that
this structured proof style should be good for ordinary mathematical
proofs, not just for formal verification of systems. Trying it out, I
found that it was great. I now never write old-fashioned unstructured
proofs for myself, and use them only in some papers for short proof
sketches that are not meant to be rigorous.

I first presented these ideas in a talk at a celebration of the 60th
birthday of Richard Palais, my de jure thesis advisor, collaborator,
and friend. I was invited along with all of Palais’ former doctoral
students, and I was the only non-mathematician who gave a talk.
(I believe all the other talks presented that day appear among the
articles in the volume edited by Uhlenbeck.) Lots of people jumped
on me for trying to take the fun out of mathematics. The strength
of their reaction indicates that I hit a nerve. Perhaps they really do
think it’s fun having to recreate the proofs themselves if they want to
know whether a theorem in a published paper is actually correct, and
to have to struggle to figure out why a particular step in the proof is
supposed to hold. I republished the paper in the AMM Monthly so
it would reach a larger audience of mathematicians. Maybe I should
republish it again for computer scientists.

[102] The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems 16, 3 (May 1994), 872–923. Also ap-
peared as SRC Research Report 79.

This paper introduces TLA, which I now believe is the best general
formalism for describing and reasoning about concurrent systems. The
new idea in TLA is that one can use actions—formulas with primed
and unprimed variables—in temporal formulas. An action describes a
state-transition relation. For example, the action x′ = x+1 means ap-
proximately the same thing as the programming-language statement
x := x+ 1. However, the action is much simpler because it talks only
about x and says nothing about another variable y, while the assign-
ment statement may (or may not) assert that y doesn’t change. TLA
allows you to write specifications essentially the same way advocated
in [82]. However, the specification becomes a single mathematical for-

63



mula. This opens up a whole new realm of possibilities. Among other
things, it provides an elegant way to formalize and systematize all the
reasoning used in concurrent system verification.

The moral of TLA is: if you’re not writing a program, don’t use
a programming language. Programming languages are complicated
and have many ugly properties because a program is input to a com-
piler that must generate reasonably efficient code. If you’re describing
an algorithm, not writing an actual program, you shouldn’t burden
yourselves with those complications and ugly properties. The toy con-
current programming languages with which computer scientists have
traditionally described algorithms are not as bad as real programming
languages, but they are still uglier and more complicated than they
need to be. Such a toy program is no closer to a real C or Java program
than is a TLA formula. And the TLA formula is a lot easier to deal
with mathematically than is a toy program. (Everything I say about
programming languages applies just as well to hardware description
languages. However, hardware designers are generally more sensible
than to try to use low-level hardware languages for higher-level system
descriptions.) Had I only realized this 20 years ago!

The first major step in getting beyond traditional programming
languages to describe concurrent algorithms was Misra and Chandy’s
Unity. Unity simply eliminated the control state, so you just had a sin-
gle global state that you reasoned about with a single invariant. You
can structure the invariant any way you want; you’re not restricted
by the particular programming constructs with which the algorithm
is described. The next step was TLA, which eliminated the program-
ming language and allowed you to write your algorithm directly in
mathematics. This provides a much more powerful and flexible way
of describing the next-state relation.

An amusing footnote to this paper is that, after reading an ear-
lier draft, Simon Lam claimed that he deserved credit for the idea of
describing actions as formulas with primed and unprimed variables.
A similar notation for writing postconditions dates from the 70s, but
that’s not the same as actually specifying the action in this way. I had
credited Rick Hehner’s 1984 CACM article, but I figured there were
probably earlier instances. After a modest amount of investigation, I
found one earlier published use—in [50].

[103] Decomposing Specifications of Concurrent Systems (with Mart́ın
Abadi). Programming Concepts, Methods and Calculi, Ernst-Rüdiger
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Olderog editor. (Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3
Working Conference, Procomet ’94, San Miniato, Italy.) North-Holland,
(1994) 327–340.

See the discussion of [112].

[104] Open Systems in TLA (with Mart́ın Abadi). Proceedings of the
Thirteenth Annual ACM Symposium on Principles of Distributed Com-
puting, (August 1994) 81–90.

See the discussion of [112].

[105] TLZ (Abstract). Z User’s Workshop, Cambridge 1994. J.P. Bowen
and J.A. Hall (Eds.) 267–268.

Z is a formal specification language that describes a system by writing
actions—essentially the same kinds of actions that appear in a TLA
specification. It was developed by Mike Spivey and others at Oxford
for specifying sequential programs. When someone develops a method
for sequential programs, they usually think that it will also handle
concurrent programs—perhaps by adding an extra feature or two. I
had heard that this wasn’t true of the Z developers, and that they were
smart enough to realize that Z did not handle concurrency. Moreover,
Z is based on mathematics not programming languages, so it is a fairly
nice language.

TLA assumes an underlying logic for writing actions. The next
step was obvious: devise a language for specifying concurrent systems
that extends Z with the operators of TLA. Equally obvious was the
name of such a language: TLZ.

In the Spring of 1991, I visited Oxford and gave a talk on TLA,
pointing out how naturally it could be combined with Z. The idea was
as popular as bacon and eggs at Yeshiva University. Tony Hoare was at
Oxford, and concurrency at Oxford meant CSP. The Z community was
interested only in combining Z with CSP—which is about as natural
as combining predicate logic with C++.

A couple of years later, I was invited to give a talk at the Z User’s
Meeting. I dusted off the TLZ idea and presented it at the meeting.
Again, I encountered a resounding lack of interest.

Had TLA been adopted by the Z community, it might have become
a lot more popular. On the other hand, not being attached to Z meant
that I didn’t have to live with Z’s drawbacks and was free to design a
more elegant language for specifying actions. The result was TLA+,
described in [127].
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[106] An Old-Fashioned Recipe for Real Time (with Mart́ın Abadi).
ACM Transactions on Programming Languages and Systems 16, 5
(September 1994) 1543–1571. Also appeared as SRC Research Re-
port 91. A preliminary version appeared in Real-Time: Theory in
Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozen-
berg, editors (1992), Springer-Verlag, 1–27.

As explained in the discussion of [51], it’s been clear for a long time
that assertional methods for reasoning about concurrent algorithms
can easily handle real-time algorithms. Time just becomes another
variable. That hasn’t stopped academics from inventing new for-
malisms for handling time. (Model checking real-time algorithms does
raise new problems, since they are inherently not finite-state.) So,
when de Roever held a workshop on formalisms for real-time systems,
it was a good opportunity to show off how easily TLA deals with real-
time algorithms. We also proved some new results about nonZeno
specifications. I believe this paper introduced the terms Zeno and
nonZeno, though the notion of Zeno behaviors had certainly occurred
to others. It does seem to have been the first to observe the relation
between nonZenoness and machine closure. Abadi has the following
to say about this paper:

For me, this paper was partly a vindication of some work I
had done with [Gordon] Plotkin [A Logical View of Com-
position, Theoretical Computer Science 114, 1 (June 1993),
3–30], where we explored the definition and properties of the
“while” operator (−.). I believe that you thought that the
work was a formal game, so I was pleased to find that we
could use it in this paper.

The paper uses as an example a mutual exclusion protocol due
to Michael Fischer. This example has an amusing history. When I
was working on [73], I sent Fischer email describing my algorithm and
asking if he knew of a better solution. He responded

No, I don’t, but the practical version of the problem sounds
very similar to the problem of bus allocation in contention
networks. I wonder if similar solutions couldn’t be used?
For example, how about. . .

He followed this with a simple, elegant protocol based on real-time
delays. Because of its real-time assumptions, his protocol didn’t solve
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the problem that motivated [73]. I mentioned this algorithm in [73],
but had forgotten about it by the time of de Roever’s workshop. Fred
Schneider reminded me of it when he used it as an example in his talk
at the workshop. We then incorporated the example in our paper. I
later mentioned this to Fischer, who had no memory of the protocol
and even claimed that it wasn’t his. Fortunately, I happen to have
saved his original email, so I had the proof. The message, complete
with message number, is cited in the paper—the only instance of such
a citation that I know of.

[107] Specifying and Verifying Fault-Tolerant Systems (with Stephan
Merz). Formal Techniques in Real-Time and Fault-Tolerant Systems,
H. Langmaack, W.-P. de Roever, J. Vytopil editors. Lecture Notes
in Computer Science, number 863, Springer-Verlag, (September 1994)
41–76.

Willem-Paul de Roever invited me to give a talk at this symposium.
I was happy to have a podium to explain why verifying fault-tolerant,
real-time systems should not be a new or especially difficult problem.
This was already explained in [106] for real-time systems, but I knew
that there would be people who thought that fault-tolerance made a
difference. Moreover, de Roever assured me that Lübeck, where the
symposium was held, is a beautiful town. (He was right.) So, I decided
to redo in TLA the proof from [51]. However, when the time came to
write the paper, I realized that I had overextended myself and needed
help. The abstract states

We formally specify a well known solution to the Byzantine
generals problem and give a rigorous, hierarchically struc-
tured proof of its correctness. We demonstrate that this is
an engineering exercise, requiring no new scientific ideas.

However, there were few computer scientists capable of doing this
straightforward engineering exercise. Stephan Merz was one of them.
So, I asked him to write the proof, which he did with his usual elegance
and attention to detail. I think I provided most of the prose and the
initial version of the TLA specification, which Merz modified a bit.
The proof was all Merz’s.

[108] How to Write a Long Formula. FACJ 6 (5) (September/October
1994) 580–584. Also appeared as SRC Research Report 119.

Specifications often contain formulas that are a page or two long.
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Mathematicians almost never write formulas that long, so they haven’t
developed the notations needed to cope with them. This article de-
scribes my notation for using indentation to eliminate parentheses in
a formula consisting of nested conjunctions and disjunctions. I find
this notation very useful when writing specifications. The notation is
part of the formal syntax of TLA+ (see [127]).

[109] Introduction to TLA. SRC Technical Note 1994-001 (December
1994).

This is a very brief (7-page) introduction to what TLA formulas mean.

[110] Adding “Process Algebra” to TLA. Unpublished (January 1995).

At the Dagstuhl workshop described in the discussion of [114], I was
impressed by the elegance of the process-algebraic specification pre-
sented by Rob van Glabbeek. The ability to encode control state in
the process structure permits one to express some specifications quite
nicely in CCS. However, pure CCS forces you to encode the entire
state in the process structure, which is impractical for real specifi-
cations. I had the idea of trying to get the best of both worlds by
combining CCS and TLA, and wrote this preliminary note about it. I
hoped to work on this with van Glabbeek but, although he was inter-
ested, he was busy with other things and we never discussed it, and
I never did anything more with the idea. When I wrote this note, I
wasn’t sure if it was a good idea. I now think that examples in which
adding CCS to TLA would significantly simplify the specification are
unlikely to arise in practice. So, I don’t see any reason to complicate
TLA in this way. But, someone else may feel otherwise.

[111] What Process Algebra Proofs Use Instead of Invariance. Un-
published (January 1995).

Working on [110] got me thinking about how process-algebraic proofs
work. This draft note describes my preliminary thoughts about what
those proofs use instead of invariance. I never developed this far
enough to know if it’s right.

[112] Conjoining Specifications (with Mart́ın Abadi). ACM Transac-
tions on Programming Languages and Systems 17, 3 (May 1995), 507–
534. Also appeared as SRC Research Report 118.

The obvious way to write an assume/guarantee specification is in the
form E implies M, where E specifies what we assume of the environ-
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ment and M specifies what the system guarantees. That is what we
did in [97]. However, such a specification allows behaviors in which
the system violates the guarantee and the environment later violates
its assumption. This paper presents a better way to write the specifi-
cation that we discovered later. Instead of E implies M, we take as the
specification the stronger condition that M must remain true at least
one step longer than E is. This enabled us to simplify and strengthen
our results.

This paper contains two major theorems, one for decomposing
closed-system specifications and another for composing open-system
specifications. A preliminary conference version of the result for closed
systems appeared in [103]. A preliminary conference version of the
second appeared in [104].

Although the propositions and theorems in this paper are not in
principle difficult, it was rather hard to get the details right. We
couldn’t have done it without writing careful, structured proofs. So,
I wanted those proofs published. But rigorous structured proofs, in
which all the details are worked out, are long and boring, and the
referees didn’t read them. Since the referees hadn’t read the proofs,
the editor didn’t want to publish them. Instead, she wanted simply
to publish the paper without proofs. I was appalled that she was will-
ing to publish theorems whose proofs hadn’t been checked, but was
unwilling to publish the unchecked proofs. But, I sympathized with
her reluctance to kill all those trees, so we agreed that she would find
someone to referee the proof and we would publish the appendix elec-
tronically. The referee read the proofs carefully and found three minor
errors, which were easily corrected. Two of the errors occurred when
we made changes to one part of the proof without making correspond-
ing changes to another. The third was a careless mistake in a low-level
statement. When asked, the referee said that the hierarchical struc-
ture, with all the low-level details worked out, made the proofs quite
clear and easy to check.

When I learned that ACM was going to publish some appendices
in electronic form only, I was worried about their ability to maintain
an electronic archive that would enable people to obtain an appendix
twenty or fifty years later. Indeed, when I checked in August of 2011,
none of the methods for obtaining a copy from the ACM that were
printed with the article worked, and the appendix did not seem to be
on their web site. It was still available from a Princeton University
ftp site. (The link above is to a version of the paper containing the
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appendix.)

[113] TLA in Pictures. IEEE Transactions on Software Engineering SE-
21, 9 September 1995), 768–775. Also appeared as SRC Research
Report 127.

Back in the 50s and 60s, programmers used flowcharts. Eventually,
guided by people like Dijkstra and Hoare, we learned that pictures
were a bad way to describe programs because they collapsed under
the weight of complexity, producing an incomprehensible spaghetti of
boxes and arrows. In the great tradition of learning from our mistakes
how to make the same mistake again, many people decided that draw-
ing pictures was a wonderful way to specify systems. So, they devised
graphical specification languages.

Not wanting to be outdone, I wrote this paper to show that you
can write TLA specifications by drawing pictures. It describes how to
interpret as TLA formulas the typical circles and arrows with which
people describe state transitions. These diagrams represent safety
properties. I could also have added some baroque conventions for
adding liveness properties to the pictures, but there’s a limit to how
silly I will get. When I wrote the paper, I actually did think that
pictures might be useful for explaining parts of specifications. But I
have yet to encounter any real example where they would have helped.

This paper contains, to my knowledge, the only incorrect “theo-
rem” I have ever published. It illustrates that I can be as lazy as
anyone in not bothering to check “obvious” assertions. I didn’t pub-
lished a correction because the theorem, which requires an additional
hypothesis, was essentially a footnote and didn’t affect the main point
of the paper. Also, I was curious to see if anyone would notice the
error. Apparently, no one did. I discovered the error in writing [115]

[114] The RPC-Memory Specification Problem: Problem State-
ment (with Manfred Broy). Formal Systems Specification: The RPC-
Memory Specification Case Study, Manfred Broy, Stephan Merz, and
Katharina Spies editors. Lecture Notes in Computer Science, number
1169, (1996), 1–4.

I don’t remember how this came about, but Manfred Broy and I or-
ganized a Dagstuhl workshop on the specification and verification of
concurrent systems. (I’m sure I agreed to this knowing that Broy and
his associates would do all the real organizing.) We decided to pose
a problem that all participants were expected to solve. This is the
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problem statement.
There is an interesting footnote to this workshop. As explained

in the discussion of [50], I don’t believe in writing specifications as a
conjunction of the properties that the system should satisfy. Several
participants used this approach. I thought that the high-level speci-
fication was sufficiently trivial that by now, people would be able to
specify it in this way. However, Reino Kurki-Suonio noticed an error
that was present in all the “purely axiomatic” specifications—that is,
ones that mentioned only the interface, without introducing internal
variables.

[115] A TLA Solution to the RPC-Memory Specification Prob-
lem (with Mart́ın Abadi and Stephan Merz). Formal Systems Speci-
fication: The RPC-Memory Specification Case Study, Manfred Broy,
Stephan Merz, and Katharina Spies editors. Lecture Notes in Com-
puter Science, number 1169, (1996), 21–66.

Since the problem posed in [114] was devised by both Broy and me, I
felt it was reasonable for me to present a TLA solution. Mart́ın Abadi,
Stephan Merz, and I worked out a solution that Merz and I presented
at the workshop. Afterwards, we worked some more on it and finally
came up with a more elegant approach that is described in this paper.
I believe that Abadi and I wrote most of the prose. Merz wrote the
actual proofs, which he later checked using his embedding of TLA in
Isabelle. We all contributed to the writing of the specifications.

This is the only example I’ve encountered in which the pictures of
TLA formulas described in [113] were of some use. In fact, I discovered
the error in [113] when I realized that one of the pictures in this paper
provided a counterexample to its incorrect theorem.

[116] How to Tell a Program from an Automobile. In A Dynamic and
Quick Intellect, John Tromp editor (1996)—a Liber Amicorum issued
by the CWI in honor of Paul Vitanyi’s 25-year jubilee.

I wrote this brief note in January, 1977. It came about because I was
struck by the use of the term program maintenance, which conjured up
in my mind images of lubricating the branch statements and cleaning
the pointers. So, I wrote this to make the observation that programs
are mathematical objects that can be analyzed logically. I was un-
prepared for the strong emotions this stirred up among my colleagues
at Massachusetts Computer Associates, who objected vehemently to
my thesis. So, I let the whole thing drop. Years later, when I was
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invited to submit a short paper for the volume honoring Vitanyi, I
decided that this paper would be appropriate because he had learned
to drive only a few years earlier. The paper retains its relevance, since
programmers still don’t seem to understand the difference between a
program and an automobile.

[117] Refinement in State-Based Formalisms. SRC Technical Note
1996-001 (December 1996).

A brief (7-page) note explaining what refinement and dummy variables
are all about. It also sneaks in an introduction to TLA. In September
2004, Tommaso Bolognesi pointed out an error in the formula on the
bottom of page 4 and suggested a correction. Instead of modifying the
note, I’ve decided to leave the problem of finding and correcting the
error as an exercise for the reader.

[118] Marching to Many Distant Drummers (with Tim Mann). Un-
published (May 1997).

In 1990, there were two competing proposals for a time service for
the Internet. One was from the DEC networking group and the other
was in an RFC by David Mills. The people in DEC asked me for
theoretical support for their belief that their proposal was better than
that of Mills. I asked Tim Mann to help me. We decided that we didn’t
like either proposal very much, and instead we wrote a note with our
own idea for an algorithm to obtain the correct time in an Internet-
like environment. We sat on the idea for a few years, and eventually
Tim presented it at a Dagstuhl workshop on time synchronization.
We then began writing a more rigorous paper on the subject. This is
as far as we got. The paper is mostly finished, but it contains some
minor errors in the statements of the theorems and the proofs are not
completed. We are unlikely ever to work on this paper again.

[119] Processes are in the Eye of the Beholder. Theoretical Com-
puter Science, 179, (1997), 333–351. Also appeared as SRC Research
Report 132.

The notion of a process has permeated much of the work on concur-
rency. Back in the late 70s, I was struck by the fact that a uniprocessor
computer could implement a multiprocess program, and that I had no
idea how to prove the correctness of this implementation. Once I had
realized that a system was specified simply as a set of sequences of
states, the problem disappeared. Processes are just a particular way

72



of viewing the state, and different views of the same system can have
different numbers of processors.

A nice example of this is an N -buffer producer/consumer system,
which is usually viewed as consisting of a producer and a consumer
process. But we can also view it as an N -process system, with each
buffer being a process. Translating the views into concrete programs
yields two programs that look quite different. It’s not hard to demon-
strate their equivalence with a lot of hand waving. With TLA, it’s
easy to replace the hand waving by a completely formal proof. This
paper sketches how.

I suspected that it would be quite difficult and perhaps impossible
to prove the equivalence of the two programs with process algebra.
So, at the end of the paper, I wrote “it would be interesting to com-
pare a process-algebraic proof . . . with our TLA proof.” As far as
I know, no process algebraist has taken up the challenge. I figured
that a proof similar to mine could be done in any trace-based method,
such as I/O automata. But, I expected that trying to make it com-
pletely formal would be hard with other methods. Yuri Gurevich and
Jim Huggins decided to tackle the problem using Gurevich’s evolving
algebra formalism (now called abstract state machines). The editor
processing my paper told me that they had submitted their solution
and suggested that their paper and mine be published in the same
issue, and that I write some comments on their paper. I agreed, but
said that I wanted to comment on the final version. I heard nothing
more about their paper, so I assumed that it had been rejected. I was
surprised to learn, three years later, that the Gurevich and Huggins
paper, Equivalence is in the Eye of the Beholder, appeared right after
mine in the same issue of Theoretical Computer Science. They chose
to write a “human-oriented” proof rather than a formal one. Readers
can judge for themselves how easy it would be to formalize their proof.

[120] How to Make a Correct Multiprocess Program Execute Cor-
rectly on a Multiprocessor. IEEE Transactions on Computers 46,
7 (July 1997), 779–782. Also appeared as SRC Research Report 96.

This paper was inspired by Kourosh Gharachorloo’s thesis. The prob-
lem he addressed was how to execute a multiprocess program on a
computer whose memory did not provide sequential consistency (see
[35]), but instead required explicit synchronization operations (such
as Alpha’s memory barrier instruction). He presented a method for
deducing what synchronization operations had to be added to a pro-
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gram. I realized that, if one proved the correctness of an algorithm
using the two-arrow formalism of [33], the proof would tell you what
synchronization operations were necessary. This paper explains how.

[121] Substitution: Syntactic versus Semantic. SRC Technical Note
1998-004 (March 1998). Rejected by Information Processing Letters.

What I find to be the one subtle and somewhat ugly part of TLA in-
volves substitution in Enabled predicates. In the predicate Enabled A,
there is an implicit quantification over the primed variables in A.
Hence, mathematical substitution does not distribute over the Enabled
operator. This four-page note explains that the same problem arises in
most program logics because there is also an implicit quantification in
the sequential-composition (semicolon) operator, so substitution does
not distribute over semicolon. Apparently, no one had noticed this
before because they hadn’t tried using programming logics to do the
sort of things that are easy to do in TLA.

[122] The Part-Time Parliament. ACM Transactions on Computer Sys-
tems 16, 2 (May 1998), 133–169. Also appeared as SRC Research Re-
port 49. This paper was first submitted in 1990, setting a personal
record for publication delay.

A fault-tolerant file system called Echo was built at SRC in the late
80s. The builders claimed that it would maintain consistency despite
any number of non-Byzantine faults, and would make progress if any
majority of the processors were working. As with most such systems,
it was quite simple when nothing went wrong, but had a complicated
algorithm for handling failures based on taking care of all the cases that
the implementers could think of. I decided that what they were trying
to do was impossible, and set out to prove it. Instead, I discovered the
Paxos algorithm, described in this paper. At the heart of the algorithm
is a three-phase consensus protocol. Dale Skeen seems to have been the
first to have recognized the need for a three-phase protocol to avoid
blocking in the presence of an arbitrary single failure. However, to
my knowledge, Paxos contains the first three-phase commit algorithm
that is a real algorithm, with a clearly stated correctness condition
and a proof of correctness.

I thought, and still think, that Paxos is an important algorithm.
Inspired by my success at popularizing the consensus problem by de-
scribing it with Byzantine generals, I decided to cast the algorithm in
terms of a parliament on an ancient Greek island. Leo Guibas sug-
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gested the name Paxos for the island. I gave the Greek legislators the
names of computer scientists working in the field, transliterated with
Guibas’s help into a bogus Greek dialect. (Peter Ladkin suggested
the title.) Writing about a lost civilization allowed me to eliminate
uninteresting details and indicate generalizations by saying that some
details of the parliamentary protocol had been lost. To carry the image
further, I gave a few lectures in the persona of an Indiana-Jones-style
archaeologist, replete with Stetson hat and hip flask.

My attempt at inserting some humor into the subject was a dismal
failure. People who attended my lecture remembered Indiana Jones,
but not the algorithm. People reading the paper apparently got so
distracted by the Greek parable that they didn’t understand the algo-
rithm. Among the people I sent the paper to, and who claimed to have
read it, were Nancy Lynch, Vassos Hadzilacos, and Phil Bernstein. A
couple of months later I emailed them the following question:

Can you implement a distributed database that can toler-
ate the failure of any number of its processes (possibly all of
them) without losing consistency, and that will resume nor-
mal behavior when more than half the processes are again
working properly?

None of them noticed any connection between this question and the
Paxos algorithm.

I submitted the paper to TOCS in 1990. All three referees said
that the paper was mildly interesting, though not very important, but
that all the Paxos stuff had to be removed. I was quite annoyed at
how humorless everyone working in the field seemed to be, so I did
nothing with the paper. A number of years later, a couple of people
at SRC needed algorithms for distributed systems they were building,
and Paxos provided just what they needed. I gave them the paper to
read and they had no problem with it. So, I thought that maybe the
time had come to try publishing it again.

Meanwhile, the one exception in this dismal tale was Butler Lamp-
son, who immediately understood the algorithm’s significance. He
mentioned it in lectures and in a paper, and he interested Nancy
Lynch in it. De Prisco, Lynch, and Lampson published their version of
a specification and proof. Their papers made it more obvious that it
was time for me to publish my paper. So, I proposed to Ken Birman,
who was then the editor of TOCS, that he publish it. He suggested
revising it, perhaps adding a TLA specification of the algorithm. But
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rereading the paper convinced me that the description and proof of
the algorithm, while not what I would write today, was precise and
rigorous enough. Admittedly, the paper needed revision to take into
account the work that had been published in the intervening years. As
a way of both carrying on the joke and saving myself work, I suggested
that instead of my writing a revision, it be published as a recently re-
discovered manuscript, with annotations by Keith Marzullo. Marzullo
was willing, Birman agreed, and the paper finally appeared.

There was an amusing typesetting footnote to this. To set off
Marzullo’s annotations, I decided that they should be printed on a
gray background. ACM had recently acquired some wonderful new
typesetting software, and TOCS was not accepting camera-ready copy.
Unfortunately, their wonderful new software could not do shading. So,
I had to provide camera-ready copy for the shaded text. Moreover,
their brilliant software could accept this copy only in floating figures,
so Marzullo’s annotations don’t appear quite where they should. Fur-
thermore, their undoubtedly expensive software wasn’t up to type-
setting serious math. (After all, it’s a computing journal, so why
should they have to typeset formulas?) Therefore, I had to provide
the camera-ready copy for the definitions of the invariants in section
A2, which they inserted as Figure 3 in the published version. So, the
fonts in that figure don’t match those in the rest of the paper.

[123] Reduction in TLA (with Ernie Cohen). CONCUR’98 Concurrency
Theory, David Sangiorgi and Robert de Simone editors. Lecture Notes
in Computer Science, number 1466, (1998), 317–331.

Reduction is a method of deducing properties of a system by reason-
ing about a coarser-grained model—that is, one having larger atomic
actions. Reduction was probably first used informally for reasoning
about multiprocess programs to justify using the coarsest model in
which each atomic operation accesses only a single shared variable.
The term reduction was coined by Richard Lipton, who published the
first paper on the topic. Reduction results have traditionally been
based on an argument that the reduced (coarser-grained) model is in
some sense equivalent to the original. For terminating programs that
simply produce a result, equivalence just means producing the same
result. But for reactive programs, it has been difficult to pin down
exactly what equivalence means. TLA allowed me for the first time
to understand the precise relation between the original and the re-
duced systems. In [95], I proved a result for safety specifications that
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generalized the standard reduction theorems. This result formulated
reduction as a temporal theorem relating the original and reduced
specifications—that is, as a property of individual behaviors. This
formulation made it straightforward to extend the result to handle
liveness, but I didn’t get around to working on the extension until late
in 1996.

Meanwhile, Ernie Cohen had been working on reduction using
Kleene algebra, obtaining elegant proofs of nice, general results for
safety properties. I showed him the TLA version and my preliminary
results on liveness, and we decided to collaborate. This paper is the
result. We translated his more general results for safety into TLA and
obtained new results for liveness properties. The paper promises a
complete proof and a more general result in a later paper. The result
exists, but the later paper is unlikely ever to appear. A draft of the
complete proof is available from the web version of this document.

[124] Composition: A Way to Make Proofs Harder. Compositional-
ity: The Significant Difference (Proceedings of the COMPOS’97 Sym-
posium), Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli
editors. Lecture Notes in Computer Science, number 1536, (1998),
402–423.

Systems are complicated. We master their complexity by building
them from simpler components. This suggests that to master the
complexity of reasoning about systems, we should prove properties of
the separate components and then combine those properties to deduce
properties of the entire system. In concurrent systems, the obvious
choice of component is the process. So, compositional reasoning has
come to mean deducing properties of a system from properties of its
processes.

I have long felt that this whole approach is rather silly. You don’t
design a mutual exclusion algorithm by first designing the individ-
ual processes and then hoping that putting them together guarantees
mutual exclusion. Similarly, anyone who has tried to deduce mutual
exclusion from properties proved by considering the processes in iso-
lation knows that it’s the wrong way to approach the problem. You
prove mutual exclusion by finding a global invariant, and then show-
ing that each process’s actions maintains the invariant. TLA makes
the entire reasoning process completely mathematical—the specifica-
tions about which one reasons are mathematical formulas, and proving
correctness means proving a single mathematical formula. A mathe-

77



matical proof is essentially decompositional: you apply a deduction
rule to reduce the problem of proving a formula to that of proving one
or more simpler formulas.

This paper explains why traditional compositional reasoning is just
one particular, highly constrained way of decomposing the proof. In
most cases, it’s not a very natural way and results in extra work. This
extra work is justified if it can be done by a computer. In particular,
decomposition along processes makes sense if the individual processes
are simple enough to be verified by model checking. TLA is particu-
larly good for doing this because, as illustrated by [119], it allows a
great deal of flexibility in choosing what constitutes a process.

[125] Proving Possibility Properties. Theoretical Computer Science
206, 1–2, (October 1998), 341–352. Also appeared as SRC Research
Report 137.

One never wants to assert possibility properties as correctness prop-
erties of a system. It’s not interesting to know that a system might
produce the correct answer. You want to know that it will never
produce the wrong answer (safety) and that it eventually will pro-
duce an answer (liveness). Typically, possibility properties are used
in branching-time logics that cannot express liveness. If you can’t ex-
press the liveness property that the system must do something, you
can at least show that the system might do it. In particular, process
algebras typically can express safety but not liveness. But the trivial
system that does nothing implements any safety property, so process
algebraists usually rule out such trivial implementations by requiring
bisimulation—meaning that the implementation allows all the same
possible behaviors as the specification.

People sometimes argue that possibility properties are important
by using the ambiguities of natural language to try to turn a liveness
property into a possibility property. For example, they may say that
it should be possible for the user of a bank’s ATM to withdraw money
from his account. However, upon closer examination, you don’t just
want this to be possible. (It’s possible for me to withdraw money
from an ATM, even without having an account, if a medium-sized
meteorite hits it.) The real condition is that, if the user presses the
right sequence of buttons, then he must receive the money.

Since there is no reason to prove possibility properties of a system, I
was surprised to learn from Bob Kurshan—a very reasonable person—
that he regularly uses his model checker to verify possibility properties.
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Talking to him, I realized that although verifying possibility properties
tells you nothing interesting about a system, it can tell you something
interesting about a specification, which is a mathematical model of the
system. For example, you don’t need to specify that a user can hit a
button on the ATM, because you’re specifying the ATM, not the user.
However, we don’t reason about a user interacting with the ATM; we
reason about a mathematical model of the user and the ATM. If,
in that mathematical model, it were impossible for the button to be
pushed, then the model would be wrong. Proving possibility properties
can provide sanity checks on the specification. So, I wrote this paper
explaining how you can use TLA to prove possibility properties of
a specification—even though a linear-time temporal logic like TLA
cannot express the notion of possibility.

I originally submitted this paper to a different journal. However,
the editor insisted that, to publish the paper, I had to add a discussion
about the merits of branching-time versus linear-time logic. I strongly
believe that it’s the job of an editor to judge the paper that the author
wrote, not to get him to write the paper that the editor wants him
to. So, I appealed to the editor-in-chief. After receiving no reply for
several months, I withdrew the paper and submitted it to TCS.

[126] A Lazy Caching Proof in TLA (with Peter Ladkin, Bryan Olivier,
and Denis Roegel). Distributed Computing 12, 2/3, (1999), 151–174.

At some gathering (I believe it was the workshop where I presented
[103]), Rob Gerth told me that he was compiling a collection of proofs
of the lazy caching algorithm of Afek, Brown, and Merritt. I decided
that this was a good opportunity to demonstrate the virtues of TLA,
so there should be a TLA solution. In particular, I wanted to show
that the proof is a straightforward engineering task, not requiring any
new theory. I wanted to write a completely formal, highly detailed
structured proof, but I didn’t want to do all that dull work myself.
So, I enlisted Ladkin, Olivier (who was then a graduate student of Paul
Vitanyi in Amsterdam), and Roegel (who was then a graduate student
of Dominique Mery in Nancy), and divided the task among them.
However, writing a specification and proof is a process of continual
refinement until everything fits together right. Getting this done in a
long-distance collaboration is not easy, and we got tired of the whole
business before a complete proof was written. However, we had done
enough to write this paper, which contains specifications and a high-
level overview of the proof.
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[127] Specifying Concurrent Systems with TLA+. Calculational Sys-
tem Design. M. Broy and R. Steinbrüggen, editors. IOS Press, Ams-
terdam, (1999), 183–247.

I was invited to lecture at the 1998 Marktoberdorf summer school.
One reason I accepted was that I was in the process of writing a book
on concurrency, and I could use the early chapters of the book as
my lecture notes. However, I decided to put aside (perhaps forever)
that book and instead write a book on TLA+. I was able to recycle
much material from my original notes for the purpose. For the official
volume of published notes for the course, I decided to provide this,
which is a preliminary draft of the first several chapters of [144].

[128] TLA+ Verification of Cache-Coherence Protocols (with Homay-
oon Akhiani et al.). Rejected from Formal Methods ’99 (February
1999).

Mark Tuttle, Yuan Yu, and I formed a small group applying TLA to
verification problems at Compaq. Our two major projects, in which
we have had other collaborators, have been verifications of protocols
for two multiprocessor Alpha architectures. We thought it would be a
good idea to write a paper describing our experience doing verification
in industry. The FM’99 conference had an Industrial Applications
track, to include “Experience reports [that] might describe a case study
or industrial project where a formal method was applied in practice.”
So, we wrote this paper and submitted it. It was rejected. One of
the referees wrote, “The paper is rather an experience report than a
scientific paper.” Our paper is indeed short on details, since neither
system had been released at that time and almost all information
about it was still company confidential. However, I think it still is
worth reading if you’re interested in what goes on in the industrial
world.

[129] Should Your Specification Language Be Typed? (with Larry
Paulson). ACM Transactions on Programming Languages and Sys-
tems 21, 3 (May 1999) 502-526. Also appeared as SRC Research Re-
port 147.

In 1995, I wrote a diatribe titled Types Considered Harmful. It ar-
gued that, although types are good for programming languages, they
are a bad way to formalize mathematics. This implies that they are
bad for specification and verification, which should be mathematics
rather than programming. My note apparently provoked some discus-
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sion, mostly disagreeing with it. I thought it might be fun to promote
a wider discussion by publishing it, and TOPLAS was, for me, the
obvious place. Andrew Appel, the editor-in-chief at the time, was fa-
vorably disposed to the idea, so I submitted it. Some of my arguments
were not terribly sound, since I know almost nothing about type the-
ory. The referees were suitably harsh, but Appel felt it would still
be a good idea to publish a revised version along with rebuttals. I
suggested that it would be better if I and the referees cooperated on a
single balanced article presenting both sides of the issue. The two ref-
erees agreed to shed their anonymity and participate. Larry Paulson
was one of the referees. It soon became apparent that Paulson and
I could not work with the other referee, who was rabidly pro-types.
(At one point, he likened his situation to someone being asked by a
neo-Nazi to put his name on a “balanced” paper on racism.) So, Paul-
son and I wrote the paper by ourselves. We expected that the other
referee would write a rebuttal, but he apparently never did.

[130] Model Checking TLA+ Specifications (with Yuan Yu and Panagi-
otis Manolios). In Correct Hardware Design and Verification Methods
(CHARME ’99), Laurence Pierre and Thomas Kropf editors. Lecture
Notes in Computer Science, number 1703, Springer-Verlag, (Septem-
ber 1999) 54–66.

Despite my warning him that it would be impossible, Yuan Yu wrote
a model checker for TLA+ specifications. He succeeded beyond my
most optimistic hopes. This paper is a preliminary report on the
model checker. I was an author, at Yu’s insistence, because I gave him
some advice on the design of the model checker (more useful advice
than just don’t do it). Manolios worked at SRC as a summer intern
and contributed the state-compression algorithm that is described in
the paper, but which ultimately was not used in the model checker.

[131] How (La)TEX changed the face of Mathematics. Mitteilungen
der Deutschen Mathematiker-Vereinigung 1/2000 (Jan 2000) 49–51.

Günther Ziegler interviewed me by email for this note, which delves
into the history of LATEX.

[132] Fairness and Hyperfairness. Distributed Computing 13, 4 (2000),
239–245. Also appeared as SRC Research Report 152. A preliminary
version of this paper was rejected by Concur 99.

In 1993, Attie, Francez, and Grumberg published a paper titled Fair-
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ness and Hyperfairness in Multi-Party Interactions. This was a follow-
up to the 1988 paper Appraising Fairness in Languages for Distributed
Programming by Apt, Francez, and Katz, which attempted to define
fairness. I have long believed that the only sensible formal definition
of fairness is machine closure, which is essentially one of the conditions
mentioned by Apt, Francez, and Katz. (They called it feasibility and
phrased it as a condition on a language rather than on an individ-
ual specification.) I refereed the Attie, Francez, and Grumberg paper
and found it rather uninteresting because it seemed to be completely
language-dependent. They apparently belonged to the school, popu-
lar in the late 70s and early 80s, that equated concurrency with the
CSP programming constructs. I wrote a rather unkind review of that
paper, which obviously didn’t prevent its publication. Years later, it
suddenly struck me that there was a language-independent definition
of hyperfairness—or more precisely, a language-independent notion
that seemed to coincide with their definition on a certain class of CSP
programs. I published this paper for three reasons: to explain the new
definition of hyperfairness; to explain once again that fairness is ma-
chine closure and put to rest the other two fairness criteria conditions
of Apt, Francez, and Katz; and, in some small way, to make up for my
unkind review of the Attie, Francez, and Grumberg paper.

[133] Archival References to Web Pages. Ninth International World
Wide Web Conference: Poster Proceedings (May 2000), page 74..

On several occasions, I’ve had to refer to a web page in a published
article. The problem is that articles remain on library shelves for
many decades, while URLs are notoriously transitory. This short note
describes a little trick of mine for referring to a web page by something
more permanent than a URL. You can discover the trick by looking
at the description on page 2 of how to find the web version of this
document. Although my idea is ridiculously simple and can be used
by anyone right now, I’ve had a hard time convincing anyone to use
it. (Because it’s only a pretty good solution and not perfect, people
prefer to do nothing and wait for the ideal solution that is perpetually
just around the corner.) Since I was going to be in the neighborhood,
I decided to try to publicize my trick with this poster at WWW9.
Some people I spoke to there thought it was a nice idea, but I’m not
optimistic that anyone will actually use it.

Unfortunately, the version posted by the conference is missing a
gif file.
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[134] Disk Paxos (with Eli Gafni). Distributed Computing 16, 1 (2003)
1–20.

In 1998, Jim Reuter of DEC’s storage group asked me for a leader-
election algorithm for a network of processors and disks that they were
designing. The new wrinkle to the problem was that they wanted
a system with only two processors to continue to operate if either
processor failed. We could assume that the system had at least three
disks, so the idea was to find an algorithm that achieved fault tolerance
by replicating disks rather than processors. I convinced them that
they didn’t want a leader-election protocol, but rather a distributed
state-machine implementation (see [27]). At the time, Eli Gafni was on
sabbatical from UCLA and was consulting at SRC. Together, we came
up with the algorithm described in this paper, which is a disk-based
version of the Paxos algorithm of [122].

Gafni devised the initial version of the algorithm, which didn’t look
much like Paxos. As we worked out the details, it evolved into its cur-
rent form. Gafni wanted a paper on the algorithm to follow the path
with which the algorithm had been developed, starting from his basic
idea and deriving the final version by a series of transformations. We
wrote the first version of the paper in this way. However, when trying
to make it rigorous, I found that the transformation steps weren’t as
simple as they had appeared. I found the resulting paper unsatisfac-
tory, but we submitted it anyway to PODC’99, where it was rejected.
Gafni was then willing to let me do it my way, and I turned the paper
into its current form.

A couple of years after the paper was published, Mauro J. Jaske-
lioff encoded the proof in Isabelle/HOL and mechanically checked it.
He found about a dozen small errors. Since I have been proposing
Disk Paxos as a test example for mechanical verification of concur-
rent algorithms, I have decided not to update the paper to correct the
errors he found. Anyone who writes a rigorous mechanically-checked
proof will find them.

[135] Disk Paxos (Conference Version) (with Eli Gafni). Distributed
Computing: 14th International Conference, DISC 2000, Maurice Her-
lihy, editor. Lecture Notes in Computer Science number 1914, Springer-
Verlag, (2000) 330–344.

This is the abridged conference version of [134].

[136] When Does a Correct Mutual Exclusion Algorithm Guar-
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antee Mutual Exclusion (with Sharon Perl and William Weihl).
Information Processing Letters 76, 3 (March 2000), 131–134.

Mutual exclusion is usually defined to mean that two processes are
not in their critical section at the same time. Something Dan Scales
said during a conversation made me suddenly realize that conventional
mutual exclusion algorithms do not satisfy that property. I then con-
jectured how that property could be satisfied, and Perl and Weihl
proved that my conjecture was correct. This paper explains why mu-
tual exclusion had not previously been achieved, and how to achieve
it—all in less than five pages.

[137] Lower Bounds on Consensus. unpublished note (March 2000).

This short note is described by its abstract:

We derive lower bounds on the number of messages and the
number of message delays required by a nonblocking fault-
tolerant consensus algorithm, and we show that variants of
the Paxos algorithm achieve those bounds.

I sent it to Idit Keidar who told me that the bounds I derived were
already known, so I forgot about it. About a year later, she mentioned
that she had cited the note in:

Idit Keidar and Sergio Rajsbaum. On the Cost of Fault-
Tolerant Consensus When There Are No Faults - A Tu-
torial. MIT Technical Report MIT-LCS-TR-821, May 24
2001. Preliminary version in SIGACT News 32(2), Dis-
tributed Computing column, pages 45-63, June 2001 (pub-
lished in May 15th).

I then asked why they had cited my note if the results were already
known. She replied,

There are a few results in the literature that are similar, but
not identical, because they consider slightly different models
or problems. This is a source of confusion for many people.
Sergio and I wrote this tutorial in order to pull the different
known results together. Hopefully, it can help clarify things
up.

[138] The Wildfire Challenge Problem (with Madhu Sharma, Mark
Tuttle, and Yuan Yu). Rejected from CAV 2001 (January 2001).

From late fall 1996 through early summer 1997, Mark Tuttle, Yuan
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Yu, and I worked on the specification and verification of the cache-
coherence protocol for a computer code-named Wildfire. We worked
closely with Madhu Sharma, one of Wildfire’s designers. We wrote a
detailed specification of the protocol as well as a specification of the
memory model that it was supposed to implement. We then proved
various properties, but did not attempt a complete proof. In early
2000, Madhu, Mark, and I wrote a specification of a higher-level ab-
stract version of the protocol.

There was one detail of the protocol that struck me as particu-
larly subtle. I had the idea of publishing an incorrect version of the
specification with that detail omitted as a challenge problem for the
verification community. I did that and put it on the Web in June,
2000. To further disseminate the problem, we wrote this description
of it for the CAV (Computer Aided Verification) conference.

[139] Paxos Made Simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001) 51–58.

At the PODC 2001 conference, I got tired of everyone saying how
difficult it was to understand the Paxos algorithm, published in [122].
Although people got so hung up in the pseudo-Greek names that they
found the paper hard to understand, the algorithm itself is very simple.
So, I cornered a couple of people at the conference and explained the
algorithm to them orally, with no paper. When I got home, I wrote
down the explanation as a short note, which I later revised based on
comments from Fred Schneider and Butler Lampson. The current
version is 13 pages long, and contains no formula more complicated
than n2 > n1.

[140] Specifying and Verifying Systems with TLA+ (with John Matthews,
Mark Tuttle, and Yuan Yu). Proceedings of the Tenth ACM SIGOPS
European Workshop (2002), 45–48.

This describes our experience at DEC/Compaq using TLA+ and the
TLC model checker on several systems, mainly cache-coherence pro-
tocols. It is shorter than, and more up-to-date than [128].

[141] Arbiter-Free Synchronization. Distributed Computing 16, 2/3,
(2003) 219–237.

With the bakery algorithm of [12], I discovered that mutual exclu-
sion, and hence all conventional synchronization problems, could be
solved with simple read/write registers. However, as recounted in the
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description of [22], such a register requires an arbiter. This leads to
the question: what synchronization problems can be solved without
an arbiter? Early on, I devised a more primitive kind of shared reg-
ister that can be implemented without an arbiter, and I figured out
how to solve the producer/consumer problem with such registers. I
think that hardware designers working on self-timed circuits probably
already knew that producer/consumer synchronization could be im-
plemented without an arbiter. (If not, they must have figured it out at
about the same time I did.) Hardware people used Muller C-elements
instead of my shared registers, but it would have been obvious to them
what I was doing.

In Petri nets, arbitration appears explicitly as conflict. A class of
Petri nets called marked graphs, which were studied in the early 70s
by Anatol Holt and Fred Commoner, are the largest class of Petri nets
that are syntactically conflict-free. Marked-graph synchronization is a
natural generalization of producer/consumer synchronization. It was
clear to me that marked-graph synchronization can be implemented
without an arbiter, though I never bothered writing down the precise
algorithm. I assumed that marked graphs describe precisely the class
of synchronization problems that could be solved without an arbiter.

That marked-graph synchronization can be implemented without
an arbiter is undoubtedly obvious to people like Anatol Holt and
Chuck Seitz, who are familiar with multiprocess synchronization, Petri
nets, and the arbiter problem. However, such people are a dying breed.
So, I thought I should write up this result before it was lost. I had
been procrastinating on this for years when I was invited to submit
an article for a special issue of Distributed Computing celebrating the
20th anniversary of the PODC conference. The editors wanted me
to pontificate for a few pages on the past and future of distributed
computing—something I had no desire to do. However, it occurred to
me that it would be fitting to contribute some unpublished 25-year-old
work. So, I decided to write about arbiter-free synchronization.

Writing the paper required me to figure out the precise arbiter-
free implementation of marked graphs, which wasn’t hard. It also
required me to prove my assumption that marked graphs were all one
could implement without an arbiter. When I tried, I realized that
my assumption was wrong. There are multiprocess synchronization
problems not describable by marked graphs that can be solved without
an arbiter. The problem was more complicated than I had realized.

I wish I knew exactly what can be done without an arbiter, but
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I don’t. It turns out that I don’t really understand arbiter-free syn-
chronization. Lack of understanding leads to messy exposition. I
understand the results about the equivalence of registers, and I have
nice, crisp ways of formalizing and proving these results. But the other
results in the paper are a mess. They’re complicated and I don’t have
a good way of formalizing them. Had I written this twenty-five years
ago, I would probably have kept working on the problem before pub-
lishing anything. But I don’t have the time I once did for mulling over
hard problems. I decided it was better to publish the results I have,
even though they’re messy, and hope that someone else will figure out
how to do a better job.

[142] A Discussion With Leslie Lamport. An interview in IEEE Dis-
tributed Systems Online 3, 8 .

In the spring of 2002, Dejan Milojicic proposed interviewing me for
an IEEE on-line publication. He volunteered to send me the questions
in advance, and to send me the transcript afterwards for correction.
This seemed pretty silly, so I just wrote my answers. The “interview”
was conducted by a few email exchanges.

[143] Lower Bounds for Asynchronous Consensus. Future Directions
in Distributed Computing, André Schiper, Alex A. Shvartsman, Hakim
Weatherspoon, and Ben Y. Zhao, editors. Lecture Notes in Computer
Science number 2584, Springer, (2003) 22–23.

The FuDiCo (Future Directions in Distributed Computing) workshop
was held in a lovely converted monastery outside Bologna. I was sup-
posed to talk about future directions, but restrained my natural in-
clination to pontificate and instead presented some new lower-bound
results. The organizers wanted to produce a volume telling the world
about the future of distributed computing research, so everyone was
supposed to write a five-page summary of their presentations. I used
only two pages. Since I didn’t have rigorous proofs of my results,
and I expected to discover special-case exceptions, I called them ap-
proximate theorems. This paper promises that future papers will give
precise statements and proofs of the theorems, and algorithms show-
ing that the bounds are tight. Despite my almost perfect record of
never writing promised future papers, I actually wrote up the case of
non-Byzantine failures in [153]. I intend some day to write another
paper with the general results for the Byzantine case. Really.
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[144] Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley (2002).

The complete book of TLA+. The first seven chapters (83 pages) are
a rewritten version of [127]. That and the chapter on the TLC model
checker are about as much of the book as I expect people to read. The
web page contains errata and some exercises and examples.

[145] Checking Cache-Coherence Protocols with TLA+ (with Rajeev
Joshi, John Matthews, Serdar Tasiran, Mark Tuttle, and Yuan Yu).
Formal Methods in System Design 22, 2 (March 2003) 125-131.

Yet another report on the TLA+ verification activity at Compaq. It
mentions some work that’s been done since we wrote [140].

[146] High-Level Specifications: Lessons from Industry (with Bran-
non Batson). Formal Methods for Components and Objects, Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de
Roever, editors. Lecture Notes in Computer Science number 2852,
Springer, (2003) 242–262.

I was invited to speak about TLA at the FMCO symposium. I didn’t
feel that I had anything new to say, so I asked Brannon Batson who
was then at Intel to help me prepare the talk and the paper. Brannon
is a hardware designer who started using TLA+ while at Compaq and
has continued using it at Intel. The most interesting part of this paper
is Section 4, which is mainly devoted to Brannon’s description of how
his group is using TLA+ in their design process.

Section 5 was inspired by the symposium’s call for papers, whose
list of topics included such fashionable buzzwords as “object-oriented”,
“component-based”, and “information hiding”. It explains why those
concepts are either irrelevant to or are a bad idea for high-level speci-
fication.

[147] The Future of Computing: Logic or Biology. Text of a talk
given at Christian Albrechts University, Kiel on 11 July 2003.

I was invited to give a talk to a general university audience at Kiel.
Since I’m not used to giving this kind of non-technical talk, I wrote it
out in advance and read it. Afterwards, I received several requests for
a copy to be posted on the Web. So, here it is.

[148] Consensus on Transaction Commit (with Jim Gray). ACM Trans-
actions on Database Systems 31, 1 (2006), 133-160. Also appeared
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as Microsoft Research Technical Report MSR-TR-2003-96 (February
2005).

In [143], I announced some lower-bound results for the consensus prob-
lem. One result states that two message delays are required to choose
a value, and a relatively large number of processors are needed to
achieve that bound. When writing a careful proof of this result, I
realized that it required the hypothesis that values proposed by two
different processors could be chosen in two message delays. This led
me to realize that fewer processors were needed if there were only
one processor whose proposed value could be chosen in two message
delays, and values proposed by other processors took longer to be cho-
sen. In fact, a simple modification to the Paxos algorithm of [122]
accomplished this.

I then looked for applications of consensus in which there is a single
special proposer whose proposed value needs to be chosen quickly. I re-
alized there is a “killer app”—namely, distributed transaction commit.
Instead of regarding transaction commit as one consensus problem
that chooses the single value commit or abort, it could be presented as
a set of separate consensus problems, each choosing the commit/abort
desire of a single participant. Each participant then becomes the spe-
cial proposer for one of the consensus problems. This led to what I
call the Paxos Commit algorithm. It is a fault-tolerant (non-blocking)
commit algorithm that I believed had fewer message delays in the
normal (failure-free) case than any previous algorithm. I later learned
that an algorithm published by Guerraoui, Larrea, and Schiper in 1996
had the same normal-case behavior.

Several months later, Jim Gray and I got together to try to under-
stand the relation between Paxos and the traditional Two-Phase Com-
mit protocol. After a couple of hours of head scratching, we figured out
that Two-Phase Commit is the trivial version of Paxos Commit that
tolerates zero faults. That realization and several months of procrasti-
nation led to this paper, which describes the Two-Phase Commit and
Paxos Commit algorithms and compares them. It also includes an ap-
pendix with TLA+ specifications of the transaction-commit problem
and of the two algorithms.

[149] On Hair Color in France (with Ellen Gilkerson). Annals of Im-
probable Research, Jan/Feb 2004, 18–19.

While traveling in France, Gilkerson and I observed many blonde
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women, but almost no blonde men. Suspecting that we had stum-
bled upon a remarkable scientific discovery, we endured several weeks
of hardship visiting the auberges and restaurants of France to gather
data. After several years of analysis and rigorous procrastination, we
wrote this paper. Much of our magnificent prose was ruthlessly elim-
inated by the editor to leave space for less important research.

[150] Formal Specification of a Web Services Protocol (with James
E. Johnson, David E. Langworthy, and Friedrich H. Vogt). Electronic
Notes in Theoretical Computer Science 105, M. Bravetti and G. Za-
vattaro editors. (December 2004) 147–158.

Fritz Vogt spent part of a sabbatical at our lab during the sum-
mer and fall of 2003. I was interested in getting TLA+ used in the
product groups at Microsoft, and Fritz was looking for an interest-
ing project involving distributed protocols. Through his contacts, we
got together with Jim Johnson and Dave Langworthy, who work on
Web protocols at Microsoft in Redmond. Jim and Dave were inter-
ested in the idea of formally specifying protocols, and Jim suggested
that we look at the Web Services Atomic Transaction protocol as
a simple example. Fritz and I spent part of our time for a cou-
ple of months writing it, with a lot of help from Jim and Dave in
understanding the protocol. This paper describes the specification
and our experience writing it. The specification itself is at http:
//research.microsoft.com/users/lamport/tla/ws-at.html.

This was a routine exercise for me, as it would have been for anyone
with a moderate amount of experience specifying concurrent systems.
Using TLA+ for the first time was a learning experience for Fritz. It
was a brand new world for Jim and Dave, who had never been exposed
to formal methods before. They were happy with the results. Dave
began writing specifications by himself, and has become something
of a TLA+ guru for the Microsoft networking group. We submitted
this paper to WS-FM 2004 as a way of introducing the Web services
community to formal methods and TLA+.

[151] Cheap Paxos (with Mike Massa). Proceedings of the International
Conference on Dependable Systems and Networks (DSN 2004) held in
Florence in June-July 2004.

A system that can tolerate a single non-Byzantine failure requires
three processors. It has long been realized that only two of those
processors need to maintain the system state, but the third processor
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must take part in every decision to maintain consistency. Mike Massa,
at the time an engineer at Microsoft, observed that if we weaken the
fault-tolerance guarantee, then the third processor needs to be used
only in the case of failure or repair of one of the other two processors.
The third processor can then be a less powerful machine or a process
run occasionally on a computer devoted to other tasks. I generalized
his idea to a variation of the Paxos algorithm of [122] called Cheap
Paxos that tolerates up to f failures with f + 1 main processors and
f auxiliary ones. A paper on this algorithm was rejected from the
PODC and DISC conferences. Most of the referees thought that it
just presented the old idea that only the main processors need to
maintain the system state, not realizing that it differed from the old
approach because the remaining f processors need not take part in
every decision.

One review contained a silly assertion that it was easy to solve
the problem in a certain way. When trying to prove his or her asser-
tion false, I discovered a somewhat simpler version of Cheap Paxos
that achieved the same result as the original version. (The new algo-
rithm wasn’t at all what the referee said should be done, which was
impossible.) This paper describes the simpler algorithm. The origi-
nal algorithm actually has some advantage over the new one, but it
remains unpublished.

[152] Implementing and Combining Specifications. Unpublished note
(September 2004).

I wrote this note to help some Microsoft developers understand how
they could write TLA+ specifications of the software they were de-
signing. Their biggest problem was figuring out how to specify an
API (Application Programming Interface) in TLA+, since there were
no published examples of such specifications. The note also explains
two other things they didn’t understand: what it means to implement
an API specification and how to use an API specification in specifying
a system that calls the API.

[153] Lower Bounds for Asynchronous Consensus. Distributed Com-
puting 19, 2 (2006), 79–103. Also appeared as Microsoft Research
Technical Report MSR-TR-2004-72 (July 2004, revised August 2005).

This paper contains the precise statements and proofs of the results
announced in [143] for the non-Byzantine case. It also includes an-
other result showing that a completely general consensus algorithm
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cannot be faster than the Paxos algorithm of [122] in the presence
of conflicting requests. However, there are two exceptional cases in
which this result does not hold, and the paper presents potentially
useful optimal algorithms for both cases.

[154] Generalized Consensus and Paxos. Microsoft Research Technical
Report MSR-TR-2005-33 (15 March 2005).

In [153], I proved lower bounds for the number of message delays
required to reach consensus. I showed that the best algorithms can
reach consensus in the normal case in 2 message delays. This result
in turn led me to a new version of the Paxos algorithm of [122] called
Fast Paxos, described in [158], that achieves this bound. However,
Fast Paxos can take 3 message delays in the event of conflict, when
two values are proposed concurrently. I showed in [153] that this was
unavoidable in a general algorithm, so this seemed to be the last word.

It then occurred to me that, in the state-machine approach (intro-
duced in [27]), such conflicting proposals arise because two different
commands are issued concurrently by two clients, and both are pro-
posed as command number i. This conflict is necessary only if the
two proposed commands do not commute. If they do, then there is no
need to order them. This led me to a new kind of agreement problem
that requires dynamically changing agreement on a growing partially
ordered set of commands. I realized that generalizing from partially
ordered sets of commands to a new mathematical structure I call a
c-struct leads to a generalized consensus problem that covers both or-
dinary consensus and this new dynamic agreement problem. I also
realized that Fast Paxos can be generalized to solve this new problem.
I wrote up these results in March 2004. However, I was in the em-
barrassing position of having written a paper generalizing Fast Paxos
without having written a paper about Fast Paxos. So, I just let the
paper sit on my disk.

I was invited to give a keynote address at the 2004 DSN conference,
and I decided to talk about fast and generalized Paxos. Fernando Pe-
done came up after my talk and introduced himself. He said that he
and André Schiper had already published a paper with the same gener-
alization from the command sequences of the state-machine approach
to partially ordered sets of commands, together with an algorithm
that achieved the same optimal number of message delays in the ab-
sence of conflict. It turns out that their algorithm is different from
the generalized Paxos algorithm. There are cases in which generalized
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Paxos takes only 2 message delays while their algorithm takes 3. But
the difference in efficiency between the two algorithms is insignificant.
The important difference is that generalized Paxos is more elegant.

I’ve been sitting on this paper for so long because it doesn’t seem
right to publish a paper on a generalization of Fast Paxos before pub-
lishing something about Fast Paxos itself. Since generalized Paxos is a
generalization, this paper also explains Fast Paxos. But people’s minds
don’t work that way. They need to understand Fast Paxos before they
can really understand its generalization. So, I figured I would turn this
paper into the second part of a long paper or monograph whose first
part explains Fast Paxos. However, in recent years I’ve been discover-
ing new Paxonian results faster than I can write them up. It therefore
seems silly not to release a paper that I’ve already written about one
of those results. So, I added a brief discussion of the Pedone-Schiper
result and a citation to [153] and am posting the paper here. Now that
I have written the Fast Paxos paper and submitted it for publication,
I may rewrite this paper as part two of that one.

[155] Real Time is Really Simple. Microsoft Research Technical Report
MSR-TR-2005-30 (4 March 2005). Rejected by Formal Methods in
Systems Design.

It should be quite obvious that no special logic or language is needed
to write or reason about real-time specifications. There’s a simple way
to do it: just use a variable to represent time. Mart́ın Abadi and I
showed in [106] that this can be done very elegantly in TLA. A sim-
pler, more straightforward approach works with any sensible formal
method, but it’s too simple and obvious to publish. So instead, hun-
dreds of papers and theses have been written about special real-time
logics and languages—even though, for most purposes, there’s no rea-
son to use them instead of the simple, obvious approach. And since no
one writes papers about the simple way of handling real time, people
seem to assume that they need to use a real-time logic. Naturally, I
find this rather annoying. So when I heard that a computer scien-
tist was planning to write a book about one of these real-time logics,
I decided it was time to write another paper explaining the simple
approach.

Since you can’t publish a new paper about an old idea, no matter
how good the idea may be, I needed to find something new to add. The
TLC model checker provided the opportunity I needed. The method
described in [106] and [144] is good for specifying and reasoning about
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real-time systems, but it produces specifications that TLC can’t han-
dle. TLC works only with the simpler approach, so I had an excuse
for a new paper.

There’s a naive approach for checking real-time specifications with
TLC that I had thought for a while about trying. It involves checking
the specification for all runs up to some maximum time value that
one hopes is large enough to find any bugs. So I did that using as
examples two versions of Fischer’s mutual exclusion protocol, which is
mentioned in the discussion of [106].

One possible reason to use a special real-time approach is for model
checking. I figured that model checkers using special algorithms for
real time should do much better than this naive approach, so I wanted
some justification for using TLA+ and TLC instead. Looking through
the literature, I found that all the real-time model checkers seemed
to use low-level languages that could describe only simple controllers.
So I added the example of a distributed algorithm that they couldn’t
represent. Then I discovered that, since the papers describing it had
been published, the Uppaal model checker had been enhanced with
new language features that enabled it to model this algorithm. This
left me no choice but to compare TLC with Uppaal on the example.

I asked Kim Larsen of Aalborg University, the developer of Uppaal,
for help writing an Uppaal spec of the algorithm. Although I really
did this because I’m lazy, I could justify my request because I had
never used Uppaal and couldn’t see how to write a nice model with
it. Larsen got his colleague Arne Skou to write a model that was
quite nice, though it did require a bit of a “hack” to encode the high-
level constructs of TLA+ in Uppaal’s lower-level language. Skou was
helped by Larsen and his colleague, Gerd Behrmann. As I expected,
Uppaal was much faster than TLC—except in one puzzling case in
which Uppaal ran out of memory.

I put the paper aside for a while. When I got back to it, I real-
ized that there’s a simple way of using TLC to do complete checking
of these real-time specifications that is much faster than what I had
been doing. The idea is so simple that I figured it was well known,
and I kicked myself for not seeing it right away. I checked with Tom
Henzinger, who informed me that the method was known, but it had
apparently not been published. It seems to be an idea that is obvious
to the experts and unknown to others. So this provided another in-
centive for publishing my paper, with a new section on how to use an
explicit-time model checker like TLC to check real-time specs. Hen-
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zinger also corrected a basic misunderstanding I had about real-time
model checkers. Rather than trying to be faster, most of them try to
be better by using continuous time. He wrote:

If you are happy with discrete time, I doubt you can do any
better [than my naive approach]. Uppaal, Kronos etc. deal
with real-numbered time, and therefore rely on elaborate
and expensive clock region constructions.

I was then inspired to do some more serious data gathering. I discov-
ered the explanation of that puzzling case: Uppaal runs out of memory
when the ratio of two parameters becomes too large. The results re-
ported in the paper show that neither TLC nor Uppaal comes out
clearly better on this example.

The Uppaal distribution comes with a model of a version of Fis-
cher’s algorithm, and I decided to get some data for that example too.
Uppaal did clearly better than TLC on it. However, I suspected that
the reason was not because real-time model checkers are better, but
because TLC is less efficient for this kind of simple algorithm than
a model checker that uses a lower-level language. So I got data for
two ordinary model checkers that use lower-level languages, Spin and
SMV. I was again lazy and got the developers of those model checkers,
Gerard Holzmann and Ken McMillan, to do all the work of writing
and checking the models.

I submitted this paper to the journal Formal Methods in Systems
Design. I thought that the part about model checking was interesting
enough to be worth putting into a separate conference paper. I there-
fore wrote [157], which was accepted at the 2005 Charme conference.
However, the journal submission was rejected because it didn’t contain
enough new ideas.

[156] How Fast Can Eventual Synchrony Lead to Consensus? (with
Partha Dutta and Rachid Guerraoui). Proceedings of the International
Conference on Dependable Systems and Networks (DSN 2005).

During a visit I made to the EPFL in March 2004, Dutta and Guer-
raoui explained a problem they were working on. Asynchronous con-
sensus algorithms like Paxos [122] maintain safety despite asynchrony,
but are guaranteed to make progress only when the system becomes
synchronous—meaning that messages are delivered in a bounded length
of time. Dutta and Guerraoui were looking for an algorithm that al-
ways reaches agreement within a constant number of message delays
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after the system becomes synchronous. This is a hard problem only if
messages sent before the system becomes synchronous can be delivered
arbitrarily far in the future. I took the solution they had come up with
and combined it with Paxos to obtain the algorithm described is this
paper. It’s a nice solution to a mildly interesting theoretical problem
with no apparent practical application. As I recall, I wanted to include
a sentence in the paper saying this, but my co-authors sensibly pointed
out that doing so would ensure the paper’s rejection. (My co-authors
don’t remember this.) Computer scientists in this field must keep up
the pretense that everything they do is practical.

[157] Real-Time Model Checking is Really Simple. Correct Hardware
Design and Verification Methods (CHARME 2005), Dominique Bor-
rione and Wolfgang J. Paul editors, Springer-Verlag Lecture Notes in
Computer Science Volume 3725 (2005), 162–175.

This is an abridged version of [155], containing only the material on
model checking.

[158] Fast Paxos. Distributed Computing 19, 2 (October 2006) 79–103.
Also appeared as Microsoft Research Technical Report MSR-TR-2005-
112 (14 July 2005). .

The Paxos consensus algorithm of [122] requires two message delays
between when the leader proposes a value and when other processes
learn that the value has been chosen. Since inventing Paxos, I had
thought that this was the optimal message delay. However, sometime
in late 2001 I realized that in most systems that use consensus, values
aren’t picked out of the air by the system itself; instead, they come
from clients. When one counts the message from the client, Paxos
requires three message delays. This led me to wonder whether con-
sensus in two message delays, including the client’s message, was in
fact possible. I proved the lower-bound result announced in [143] that
an algorithm that can make progress despite f faults and can achieve
consensus in two message delays despite e faults requires more than
2e + f processes. The proof of that result led me pretty quickly to
the Fast Paxos algorithm described here. Fast Paxos generalizes the
classic Paxos consensus algorithm. It can switch between learning in
two or three message delays depending on how many processes are
working. More precisely, it can achieve learning in two message delays
only in the absence of concurrent conflicting proposals, which [153]
shows is the best a general algorithm can do.
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[159] Measuring Celebrity. Annals of Improbable Research, Jan/Feb
2006, 14–15.

In September 2005, I had dinner with Andreas Podelski, who was
visiting Microsoft’s Cambridge Research Laboratory. He mentioned
that his home page was the fourth item returned by a Google search
on his first name. His casual remark inspired the scientific research
reported here.

[160] Checking a Multithreaded Algorithm with +CAL. In Dis-
tributed Computing: 20th International Conference, DISC 2006, Shlomi
Dolev, editor. Springer-Verlag (2006) 11–163.

Yuan Yu told me about a multithreaded algorithm that was later re-
ported to have a bug. I thought that writing the algorithm in PlusCal
(formerly called +CAL) [161] and checking it with the TLC model
checker [127] would be a good test of the PlusCal language. This is
the story of what I did. The PlusCal specification of the algorithm
and the error trace it found are available on the web.

[161] The PlusCal Algorithm Language. Theoretical Aspects of Computing–
ICTAC 2009, Martin Leucker and Carroll Morgan editors. Lecture
Notes in Computer Science, number 5684, 36–60.

PlusCal (formerly called +CAL) is an algorithm language. It is meant
to replace pseudo-code for writing high-level descriptions of algorithms.
An algorithm written in PlusCal is translated into a TLA+ specifica-
tion that can be checked with the TLC model checker [127]. This
paper describes the language and the rationale for its design. A lan-
guage manual and further information are available on the Web.

An earlier version was rejected from POPL 2007. Based on the
reviews I received and comments from Simon Peyton-Jones, I revised
the paper and submitted it to TOPLAS, but it was again rejected. It
may be possible to write a paper about PlusCal that would be consid-
ered publishable by the programming-language community. However,
such a paper is not the one I want to write. For example, two of
the three TOPLAS reviewers wanted the paper to contain a formal
semantics—something that I would expect people interested in using
PlusCal to find quite boring. (A formal TLA+ specification of the
semantics is available on the Web.) I therefore decided to publish it
as an invited paper in the ICTAC conference proceedings.
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[162] TLA+. Chapter in Software Specification Methods: An Overview Us-
ing a Case Study, Henri Habrias and Marc Frappier, editors. Hermes,
April 2006.

I was asked to write a chapter for this book, which consists of a
collection of formal specifications of the same example system writ-
ten in a multitude of different formalisms. The system is so sim-
ple that the specification should be trivial in any sensible formal-
ism. I bothered writing the chapter because it seemed like a good
idea to have TLA+ represented in the book, and because it wasn’t
much work since I was able to copy a lot from the Z specification
in Jonathan Bowen’s chapter and simply explain how and why the
Z and TLA+ specifications differ. Bowen’s chapter is available at
http://www.jpbowen.com/pub/ssm-z2.pdf .

Because the example is so simple and involves no concurrency, its
TLA+ specification is neither interesting nor enlightening. However,
my comments about the specification process may be of some interest.

[163] Implementing Dataflow With Threads. Distributed Computing
21, 3 (2008), 163–181. Also appeared as Microsoft Research Technical
Report MSR-TR-2006-181 (December 2006)..

In the summer of 2005, I was writing an algorithm in PlusCal [161] and
essentially needed barrier synchronization as a primitive. The easiest
way to do this in PlusCal was to write a little barrier synchronization
algorithm. I used the simplest algorithm I could think of, in which
each process maintains a single 3-valued variable—the Barrier1 algo-
rithm of this paper. The algorithm seemed quite nice, and I wondered
if it was new. A Web search revealed that it was. (In 2008, Wim
Hesselink informed me that he had discovered this algorithm in 2001,
but he had “published” it only in course notes.) I was curious about
what barrier synchronization algorithm was used inside the Windows
operating system and how it compared with mine, so I asked Neill
Clift. He and John Rector found that my algorithm outperformed the
one inside Windows. Meanwhile, I showed my algorithm to Dahlia
Malkhi, who suggested some variants, including the paper’s Barrier2
algorithm.

By around 1980, I knew that the producer/consumer algorithm in-
troduced in [23] should generalize to an arbitrary marked graph, but I
never thought it important enough to bother working out the details.
(Marked graphs, which specify dataflow computation, are described in
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the discussion of [141].) I realized that these new barrier synchroniza-
tion algorithms should also be instances of that generalization. The
fact that the barrier algorithms worked well on a real multiprocessor
made the general algorithm seem more interesting. Further thought
revealed that the good performance of these barrier algorithms was
not an accident. They have optimal caching behavior, and that opti-
mal behavior can be achieved in the general case. All this makes the
general synchronization algorithm relevant for the coming generation
of multicore processor chips.

[164] Leslie Lamport: The Specification Language TLA+. In Log-
ics of Specification Languages, Dines Bjørner and Martin C. Henson,
editors. Springer (2008), 616–620.

This is a “review” of a chapter by Stephan Merz in the same book.
It is mainly a brief account of the history behind TLA and TLA+. It
includes an interesting quote from Brannon Battson. (See [146].)

[165] Computation and State Machines. Unpublished (February 2008).

I have long thought that computer science is about concepts, not lan-
guages. On a visit to the University of Lugano in 2006, the question
arose of what that implied about how computer science should be
taught. This is a first, tentative attempt at an answer.

[166] The Mailbox Problem (with Marcos Aguilera and Eli Gafni). Dis-
tributed Computing 23, 2 (2010), 113–134. (A shorter version appeared
in Proceedings of the 22nd International Symposium on Distributed
Computing, (DISC 2008), 1–15.).

This paper addresses a little synchronization problem that I first thought
about in the 1980s. When Gafni visited MSR Silicon valley in 2008, I
proposed it to him and we began working on it. I thought the prob-
lem was unsolvable, but we began to suspect that there was a solution.
Gafni had an idea for an algorithm, but instead of trying to under-
stand the idea, I asked for an actual algorithm. We then went through
a series of iterations in which Gafni would propose an algorithm, I’d
code it in PlusCal (see [161]) and let the model checker find an error
trace, which I would then give to him. (At some point, he learned
enough PlusCal to do the coding himself, but he never installed the
TLA+ tools and I continued to run the model checker.) This process
stopped when Aguilera joined MSR and began collaborating with us.
He turned Gafni’s idea into an algorithm that the model checker ap-
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proved of. Gafni and Aguilera came up with the impossibility results.
Aguilera and I did most of the actual writing, which included working
out the details of the proofs.

[167] Teaching Concurrency. ACM SIGACT News Volume 40, Issue 1
(March 2009), 58–62.

Idit Keidar invited me to submit a note to a distributed computing
column in SIGACT News devoted to teaching concurrency. In an
introduction, she wrote that my note “takes a step back from the
details of where, what, and how, and makes a case for the high level
goal of teaching students how to think clearly.” What does it say
about the state of computer science education that one must make a
case for teaching how to think clearly?

[168] Vertical Paxos and Primary-Backup Replication (with Dahlia
Malkhi and Lidong Zhou). Proceedings of the 28th Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2009, Srikanta
Tirthapura and Lorenzo Alvisi, editors. ACM (2009), 312–313.

This paper came out of much discussion between Malkhi, Zhou, and
myself about reconfiguration. Some day, what we did may result in
a long paper about state-machine reconfiguration containing these re-
sults and others that have not yet been published. The ideas here are
related to the original, unpublished version of [151].

[169] Computer Science and State Machines. Concurrency, Com-
positionality, and Correctness (Essays in Honor of Willem-Paul de
Roever). Dennis Dams, Ulrich Hannemann, and Martin Steffen edi-
tors. Lecture Notes in Computer Science, number 5930 (2010), 60–65.

This is the six-page version of [165]. I think it is also the first place
I have mentioned the Whorfian syndrome in print. It is structured
around a lovely simple example in which an important hardware proto-
col is derived from a trivial specification by substituting an expression
for the specification’s variable. This example is supporting evidence
for the thesis of [167] that computation should be described with math-
ematics. (Substitution of an expression for a variable is an elementary
operation of mathematics, but is meaningless in a programming lan-
guage.)

[170] Reconfiguring a State Machine (with Dahlia Malkhi and Lidong
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Zhou). ACM SIGACT News Volume 41, Issue 1 (March 2010)..

This paper describes several methods of reconfiguring a state ma-
chine. All but one of them can be fairly easily derived from the basic
state-machine reconfiguration method presented in the Paxos paper
[122]. We felt that it was worthwhile publishing them because few
people seemed to understand the basic method. (The basic method
has a parameter α that was I took to be 3 in [122] because I stupidly
thought that everyone would realize that the 3 could be any positive
integer.) The one new algorithm, here called the “brick wall” method,
is just sketched. It is described in detail in [171].

This paper was rejected by the 2008 PODC conference. Idit Keidar
invited us to submit it as a tutorial to her distributed computing
column in SIGACT News.

[171] Stoppable Paxos (with Dahlia Malkhi and Lidong Zhou). Unpub-
lished (April 2009).

This paper contains a complete description and proof of the “brick
wall” algorithm that was sketched in [170]. It was rejected from the
2008 DISC conference.

[172] Byzantizing Paxos by Refinement. Distributed Computing: 25th
International Symposium: DISC 2011, David Peleg, editor. Springer-
Verlag (2011) 211–224.

The Castro-Liskov algorithm (Miguel Castro and Barbara Liskov, Prac-
tical Byzantine Fault Tolerance and Proactive Recovery, TOCS 20:4
[2002] 398–461) intuitively seems like a modification of Paxos [122] to
handle Byzantine failures, using 3n+ 1 processes instead of 2n+ 1 to
handle n failures. In 2003 I realized that a nice way to think about the
algorithm is that 2n+ 1 non-faulty processes are trying to implement
ordinary Paxos in the presence of n malicious processes—each good
process not knowing which of the other processes are malicious. Al-
though I mentioned the idea in lectures, I didn’t work out the details.

The development of TLAPS, the TLA+ proof system, inspired
me to write formal TLA+ specifications of the two algorithms and a
TLAPS-checked proof that the Castro-Liskov algorithm refines ordi-
nary Paxos. This paper describes the results. The complete specifica-
tions and proof are available at http://research.microsoft.com/
users/lamport/tla/byzpaxos.html .
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[173] Leaderless Byzantine Paxos. Distributed Computing: 25th In-
ternational Symposium: DISC 2011, David Peleg, editor. Springer-
Verlag (2011) 141–142.

This two-page note describes a simple idea that I had in 2005. I
have found the Castro-Liskov algorithm and other “Byzantine Paxos”
algorithms unsatisfactory because they use a leader and, for progress,
they require detecting and removing a malicious leader. My idea was
to eliminate the leader by using a synchronous Byzantine agreement
algorithm to implement a virtual leader. The note is too short to
discuss the practical details, but they seem to be straightforward.
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