
Jellyfish: Networking Data Centers Randomly

Ankit Singla†∗, Chi-Yao Hong†, Lucian Popa], P. Brighten Godfrey†
† University of Illinois at Urbana–Champaign

] University of California, Berkeley

Abstract
Industry experience indicates that the ability to incre-
mentally expand data centers is essential. However, ex-
isting high-bandwidth network designs have rigid struc-
ture that interferes with incremental expansion. We
present Jellyfish, a high-capacity network interconnect,
which, by adopting a random graph topology, yields it-
self naturally to incremental expansion. Somewhat sur-
prisingly, Jellyfish is more cost-efficient than a fat-tree:
A Jellyfish interconnect built using the same equipment
as a fat-tree, supports as many as 25% more servers at
full capacity at the scale of a few thousand nodes, and
this advantage improves with scale. Jellyfish also allows
great flexibility in building networks with different de-
grees of oversubscription. However, Jellyfish’s unstruc-
tured design brings new challenges in routing, physical
layout, and wiring. We describe and evaluate approaches
that resolve these challenges effectively, indicating that
Jellyfish could be deployed in today’s data centers.

1 Introduction

Data centers today form the backbone of cloud opera-
tions. A well provisioned data center network is impor-
tant to ensure that servers do not face bandwidth bottle-
necks to utilization; to isolate services from each other;
and to gain more freedom in workload placement, rather
than having to tailor placement of workloads to where
bandwidth is available [20]. As a result, a significant
body of work has tackled the problem of building high
network capacity interconnects [5, 15–18, 33, 37, 39].

One crucial problem that these designs encounter is in-
cremental expansion of the network, i.e., adding servers
and network capacity incrementally to the data center.
Expansion may be necessitated by growth of the user
base, which requires more servers, or by the deployment
of more bandwidth-intensive applications. Expansion
within a data center is possible through either planned
overprovisioning of space and power, or by upgrading
old servers to a larger number of more powerful and, at
the same time, less power-consuming new servers.

∗Part of this work was published at HotCloud’11 [36].

Industry experience indicates that incremental expan-
sion is an important problem. Consider the growth of
Facebook’s data center server population from roughly
30,000 in November 2009 to more than 60,000 by June
2010 [31]. While Facebook has added entirely new data
center facilities too, much of this growth involves in-
crementally expanding existing facilities by “adding ca-
pacity on a daily basis” [30]. For instance, Facebook
announced that it will double the size of its facility at
Prineville, Oregon by early 2012 [14]. A 2011 sur-
vey [38] of 300 enterprises that run data centers of a va-
riety of sizes found that “The need to expand data center
capacity will continue into 2012 with 84% of firms def-
initely/probably expanding their operations in 2012.” In-
dustry experts have also identified incremental build-out
as a useful strategy to reduce up-front capital expendi-
ture [26]. Several industry products advertise incremen-
tal expandability of the server pool, including SGI’s Ice-
Cube (marketed as “The Expandable Modular Data Cen-
ter” [4]; expands 4 racks at a time) and HP’s EcoPod [22]
(a “pay-as-you-grow” enabling technology [21]). How-
ever, in both cases, no mention is made of how the net-
work supports such expansion of the server pool.

Do current high-bandwidth data center network pro-
posals allow incremental growth? Consider the fat-tree
interconnect, as proposed in [5]), as an illustrative exam-
ple. The entire structure is completely determined by the
port-count k of the switches available. This is limiting in
at least two ways. First, it makes the design space very
coarse: full bisection bandwidth fat-trees can only be
built at sizes 3456, 8192, 27648, and 65536 correspond-
ing to the commonly available port counts of 24, 32, 48,
and 641. Second, even if (for example) 50-port switches
were available, the smallest incremental upgrade from
the 48-port switch fat-tree would be 3,602 servers. More-
over, this “incremental” growth would require replacing
all the 48-port switches by 50-port switches. There is, of
course, the possibility of making localized changes like
replacing a switch with one with larger port count; how-
ever, this necessarily makes capacity distribution unfair
across the server pool. The only prior work [13] that di-

1Other topologies have similar problems: a hypercube [7] allows
only power-of-2 sizes, a de Bruijn-like construction [34] allows only
power-of-3 sizes, etc.

1

ar
X

iv
:1

11
0.

16
87

v2
 [

cs
.N

I]
 1

2
O

ct
 2

01
1

rectly addresses the problem of incremental expansion,
attempts to make the most out of this bad situation – it
searches for optimum additions of network equipment to
Clos networks. In contrast, we design for expansion, re-
sulting (as we show in §4.2) in significant gains in net-
work capacity for the same (expanding) data center under
the same budgetary constraints.

An alternative approach suggested in the litera-
ture [18], is based on leaving free ports for future net-
work connections. But the cost of these free ports, is an
unnecessary sunk investment for the period in which the
network does not expand. Thus, without compromises
on bandwidth or cost, such topologies are not amenable
to incremental growth.

Since it seems that structure hinders incremental ex-
pansion, we propose the opposite: a random network
interconnect. The proposed interconnect, which we
call Jellyfish, is a degree-bounded random graph topol-
ogy among top-of-rack (ToR) switches. The inherently
sloppy nature of this design has the potential to be sig-
nificantly more flexible than past designs. Additional
components — racks of servers or switches to improve
capacity — can be incorporated with a few random
edge swaps. The design naturally supports heterogene-
ity, allowing the addition of newer network elements
with higher port-counts as they become available, un-
like past proposals which depend on certain regular port-
counts [5, 16–18, 33, 37]. Jellyfish also allows construc-
tion of arbitrary-size networks, unlike past proposals dis-
cussed above which limit the network to very coarse de-
sign points dictated by their structure.

Somewhat surprisingly, Jellyfish supports more
servers at full bisection bandwidth with lower mean path
length than a fat-tree [5] built using the same network
equipment. In addition, as we discuss later, Jellyfish is
resilient to failures and miswirings during construction.

But a data center network that lacks regular structure
is a somewhat radical departure from traditional designs,
and this presents several important challenges that must
be addressed for Jellyfish to be viable. Among these are
routing (schemes depending on a structured topology are
not applicable), physical construction, and cabling lay-
out. We describe simple approaches to these problems
which indicate that Jellyfish can be effectively deployed
in today’s data centers.

Our key contributions are as follows:

• We propose Jellyfish, an incrementally-expandable,
high-bandwidth datacenter interconnect based on a
random graph.

• We conduct a comparative study of the bandwidth
of several proposed data center network topologies.
We find that Jellyfish can support 25% more servers

than a fat-tree while using the same switch equip-
ment and providing at least as high bisection band-
width, and this advantage increases with network
size. Moreover, we propose degree-diameter opti-
mal graphs as candidate benchmark topologies and
show that Jellyfish remains within 14% of these
carefully-optimized topologies.

• We demonstrate in packet-level simulations that Jel-
lyfish’s bandwidth can be effectively utilized via a
practical (indeed, already implemented!) technique,
multipath TCP [40] — despite the lack of regular
structure that is sometimes used to ease routing in
other topologies.

• We demonstrate that Jellyfish provides quantita-
tively easier incremental expansion than prior work
on incremental expansion in Clos networks [13],
growing incrementally to a slightly higher capacity
network at only 40% of the expense of [13].

• We discuss effective techniques to realize physical
layout and cabling of Jellyfish in various deploy-
ment scenarios. Jellyfish may require higher ca-
bling cost if cables are on average longer than those
of a fat-tree; but when we restrict Jellyfish to use ca-
bles of similar length as the fat-tree, it still improves
on the fat-tree’s bisection bandwidth.

Outline: Next, we discuss related work (§2), followed
by a description of the Jellyfish topology (§3), and an
evaluation of the topology’s properties, unhindered by
routing and congestion control (§4). We then evaluate
the topology under simple routing and congestion control
mechansims (§5). We discuss effective cabling schemes
and physical construction of Jellyfish in various deploy-
ment scenarios (§6), and conclude (§7).

2 Related Work

Several recent data center network proposals for high-
capacity networks appropriate special structure for topol-
ogy and routing. These include folded-Clos (or fat-tree)
based designs [5, 16, 33], several designs based on using
servers for forwarding [17, 18, 41], and designs using op-
tical networking technology [15, 39]. High performance
computing literature has also studied carefully-structured
expander graphs [25].

However, none of these architectures address the is-
sue of incremental expansion of the network. For some
of these (like the fat-tree, for instance), adding servers
while preserving the structural properties would require
replacing a large number of network elements and ex-
tensive rewiring. MDCube [41] allows expansion at a

2

very coarse rate (several thousand servers). DCell and
BCube [17, 18] allow expansion to an a priori known
target size, but require servers with free ports reserved
for planned future expansion.

While two recent proposals, Scafida [19] (based
on scale-free graphs) and Small-World Datacenters
(SWDC) [35] 2, also, employ randomness like Jellyfish,
ours is a substantially different random topology which
lacks correlation (i.e., structure) among edges. Such
structure can cause problems with incremental expan-
sion because it makes it unclear whether the topology re-
tains its characteristics on expansion – neither proposal
investigates this issue. Further, in SWDC, the use of a
regular lattice underlying the topology creates familiar
problems with incremental expansion3. Jellyfish also has
a capacity advantage over both proposals: Scafida has
marginally worse bisection bandwidth and diameter than
a fat-tree, while Jellyfish improves on fat-trees on both
metrics. We show in §4.1 that Jellyfish topologies have
higher network capacities than SWDC topologies built
using the same equipment.

LEGUP [13] directly attacks the problem of expan-
sion by attempting to find the optimal upgrades for a
Clos network. However, such an approach is fundamen-
tally limited by having to start from a rigid structure, and
adhering to it during the upgrade process. Unless free
ports are preserved for such expansion (which is part
of LEGUP’s approach), this can cause significant over-
hauls of the topology even when adding just a few new
servers. In this paper, we show that Jellyfish provides
a simple method to expand the network to almost any
desirable scale. Further, our comparison with LEGUP
(§4.2) over a sequence of network expansions illustrates
that Jellyfish provides significant cost-efficiency gains in
incremental expansion.

In a very recent (August 2011) technical report, Curtis
et al. propose REWIRE [12], a heuristic optimization-
based method to find high capacity topologies with a
given cost budget, taking into account length-varying
cable cost. While [12] compares with random graphs,
their experiments are very restricted (in both the assump-
tions made, and the scenarios evaluated), and their re-
sults comparing REWIRE with random graphs are in-
conclusive4. Unfortunately, due to the recency of this

2As evidenced by our HotCloud 2011 workshop paper, this work,
to appear in SOCC 2011, in October, has been done in parallel to ours.

3For instance, using a 2D-Torus as the lattice implies that maintain-
ing the network structure when expanding an n node network, requires
addition of 2

√
n− 1 new nodes. The higher the dimensionality of the

lattice, the more complicated expansion becomes.
4Results in [12] show, in some cases, fat-trees obtaining more than

an order of magnitude worse bisection bandwidth than random graphs,
which in turn are more than an order of magnitude worse than REWIRE
topologies — all at equal cost. In other cases, [12] shows random
graphs that are disconnected. These significant discrepancies could

work, we have to leave a direct quantitative comparison
to future work. We note, however, that in §4.2 we do
compare against the authors’ previous optimization tool,
LEGUP [13]; REWIRE has not yet been quantitatively
compared against LEGUP.

Random graphs have been examined in the context of
communication networks [28] previously. The contribu-
tion of our work lies in applying random graphs to allow
incremental expansion in data center networks, and in
quantifying the efficiency gains such graphs bring over
traditional data center topologies.

3 Jellyfish Topology

The Jellyfish approach is to construct a random graph
at the top-of-rack (ToR) switch layer. Each ToR switch
i has some number ki of ports, of which it uses ri to
connect to other ToR switches, and uses the remaining
ki − ri ports for servers. In the simplest case, which we
consider by default throughout this paper, every switch
has the same number of ports and servers: for all i, k =
ki and r = ri. We let N be the number of racks, so
the network supports N(k − r) servers. In this case, the
network is a random regular graph, which we denote as
RRG(N , k, r). This is a well known construct in graph
theory and has several desirable properties as we shall
discuss later.
Why should this work? Intuitively, random regular
graphs (sampled uniform-randomly from the space of
all r-regular graphs) fulfill two key goals. First, they
are very efficient: theoretical results show that almost
every RRG has low diameter and high bisection band-
width [8, 10]. Second, they are highly flexible: they can
be built with any number of nodes, are naturally exten-
sible to heterogeneous degree distributions, and as we
describe, are easy to modify incrementally.
Construction: Formally, RRGs are sampled uniformly
from the space of all r-regular graphs. This is a complex
problem in graph theory [27]; however, a simple proce-
dure can produce a “sufficiently uniform” random graph
which empirically gives us the desired bisection band-
width and path length distribution. One can simply pick
a random pair of nodes with free ports (preferring node-
pairs that are not already neighbors), join them with an
edge, and repeat until no further edges can be added. If
a rack remains with ≥ 2 free ports, or if a new rack is

arise from: (a) [12] assuming linear physical placement of all racks,
so cable costs for distant servers scale as Θ(n) rather than Θ(

√
n) in a

more typical two-dimensional layout; (b) evaluating very low bisection
bandwidths (0.04 to 0.37) – at the highest bisection bandwidth evalu-
ated, [12] indicates the random graph, in fact, has higher throughput
than REWIRE; and (c) separating network port costs from cable costs,
resulting in the random graph ending up with too many ports and too
few cables to connect them.

3

added to an existing network, these can be incorporated
by removing a random existing link, and linking its end-
points to two free ports. Thus only a single unmatched
port might remain across the whole datacenter.

Using the above idea, we generate a topology blueprint
for the physical interconnection. We do not suggest al-
lowing human operators to “wire at will”, as this may re-
sult in poor topologies due to the inherent bias involved
(for instance, favoring shorter cables over longer ones).
We discuss cabling later in §6.

4 Jellyfish Topology Properties
This section evaluates the efficiency, flexibility and re-
silience of Jellyfish and other topologies. Our goal is to
measure the raw capabilities of the topologies, were they
to be coupled with optimal routing and congestion con-
trol. We study how to perform routing and congestion
control separately, in §5.

Our key findings from these experiments are:

• Jellyfish can support 27% more servers at full ca-
pacity than a (same-switching-equipment) fat-tree
at a scale of <900 servers. The trend is for this ad-
vantage to improve with scale.
• Jellyfish’s network capacity is >86% of the best-

known degree-diameter graphs, which we consider
benchmark topologies for high capacity at low cost.
• Paths are shorter on average in Jellyfish than in a

fat-tree, and the maximum shortest path length (di-
ameter) is the same or lower for all scales we tested.
• Incremental expansion of Jellyfish topologies pro-

duces topologies identical in throughput and path
length characteristics to Jellyfish topologies gener-
ated from scratch.
• Jellyfish provides a significant cost-efficiency ad-

vantage over prior work (LEGUP [13]) on in-
cremental network expansion in Clos networks.
In a network expansion scenario that was made
available for us to test, Jellyfish builds a slightly
higher-capacity expanded network at only 40% of
LEGUP’s expense.
• Jellyfish is highly failure resilient, even more so

than the fat-tree. Failing a random 15% of all links
results in a capacity decrease of < 16%.

Evaluation methodology: Some of the results for net-
work capacity in this section are based on explicit calcu-
lations of the theoretical bounds for bisection bandwidth
for regular random graphs.

All other throughput results presented in this section
are based on calculations of throughput for a specific
class of traffic demand matrices with optimal routing.

The traffic matrices we use are random permutation traf-
fic: each server sends at its full output link rate to a sin-
gle other server, and receives from a single other server,
and this permutation is chosen uniform-randomly. Intu-
itively, random permutation traffic represents the case of
no locality in traffic, as might arise if VMs are placed
without regard to what is convenient for the network5.
Nevertheless, evaluating other traffic patterns is an im-
portant question that we leave for future work. We also
note that in a study of several traffic patterns in fat-
trees [5], random permutation was of intermediate diffi-
culty among the patterns evaluated, with several patterns
producing lower or higher throughput.

Given a traffic matrix, we calculate optimal routing
by treating flows as splittable and fluid. This allows us
to characterize a topology’s raw capacity. The calcula-
tion corresponds to a standard multi-commodity network
flow problem, which we solve using the CPLEX linear
program solver.

For all throughput comparisons, we use the same
switching equipment (in terms of both number of
switches, and ports on each switch) for each pair of
topologies compared. Throughput results are always nor-
malized to values between 0 and 1, and averaged over all
flows.

For comparisons with the full bisection fat-tree topol-
ogy, we attempt to find, using a binary search proce-
dure, the number of servers Jellyfish can support using
the same switching equipment as the fat-tree while satis-
fying the full traffic demands. Specifically, each step of
the binary search checks a certain number of servers m
by sampling three random permutation traffic matrices,
and checking whether Jellyfish supports full capacity for
all flows in all three matrices. If so, we say that Jelly-
fish supports m servers at full capacity. After our binary
search terminates, we verify that the returned number of
servers is able to get full capacity over each of 10 more
samples of random permutation traffic matrices.

4.1 Efficiency

Capacity: Bisection bandwidth, denoted by B, is a
common measure of network capacity. It measures the
worst-case bandwidth between two equal-size partitions
of the network. This can be normalized to a value be-
tween 0 and 1 by dividing it by the total line-rate band-
width of the servers in one partition.

Jellyfish is a more bandwidth-efficient topology than a
fat-tree. Fig. 1(a) shows that to support a given number
of servers (x axis) with full bisection bandwidth (B = 1),
Jellyfish uses significantly fewer switches. For instance,

5The flexibility provided by a network which permits such network-
oblivious VM placement without a performance penalty is a highly de-
sirable characteristic [20].

4

at the same cost as a fat-tree with 16,000 servers, Jelly-
fish can support >20,000 servers at full bisection band-
width. Also, Jellyfish allows the freedom to accept lower
bisection bandwidth, in exchange for supporting more
servers (as in Fig. 1(a)) or cutting costs by using fewer
switches.

Fig. 1(b) shows that the cost of building a full
bisection-bandwidth network increases more slowly with
the number of servers for Jellyfish than for the fat-tree,
especially for high port-counts. Also, the design choices
for Jellyfish are essentially continuous, while the fat-tree
(following the design of [5]) allows only certain discrete
jumps in size which are further restricted by the port-
counts of available switches. (Note that this observation
would hold even for over-subscribed fat-trees.)

The numbers in Fig. 1(b) and 1(c) are computed by
explicitly setting parameters for the fat-tree, and for Jel-
lyfish, by using a lower bound of Bollobás [8]: in al-
most every r-regular graph with N nodes, every set of
u ≤ N/2 nodes is joined by at leastN(r4−

√
r ln 2
2) edges

to the rest of the graph. Thus, the bisection bandwidth B
for RRG(N , k, r) is at least

min

(
N(r4 −

√
r ln 2
2)

N(k − r)/2
, 1

)
= min

(
r/2−

√
r ln 2

k − r
, 1

)
.

Fig. 1(c) uses the random-permutation traffic model
to find the number of servers Jellyfish can support at
full capacity as the fat-tree using identical switching
equipment. The improvement is as much as 27% more
servers than the fat-tree at the largest size (874 servers)
we can use CPLEX to evaluate. Also, as with bisection
bandwidth, the trend indicates that this improvement in-
creases with scale.
Comparison with Degree-Diameter Graphs: Another
capacity comparison we make for Jellyfish, is that with
the best known degree-diameter graphs. In the following,
we briefly explain what these graphs are, and why this
comparison makes sense.

There is a fundamental trade-off between the degree
and diameter of a graph of a fixed vertex-set (say of size
N). At one extreme is a clique – maximum possible de-
gree (N−1), and minimum possible diameter (1). At the
other extreme is a disconnected graph with degree 0 and
diameter ∞. The problem of constructing a graph with
maximum possible number N of nodes while preserv-
ing given diameter and degree bounds is known as the
degree-diameter problem and has received significant at-
tention in graph theory. The problem is quite difficult and
the optimal graphs are only known for very small sizes:
the largest degree-diameter graph known to be optimal
has N = 50 nodes, with degree 7 and diameter 2 [11].
A collection of these optimal graphs and the best known

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

N
o

rm
a

liz
e
d

 [
0
-1

]
B

is
e
c
ti
o
n

 B
a

n
d
w

id
th

Number of Servers in Thousands

Jellyfish; N=2000; k=40
Fat-tree; N=2000; k=40
Jellyfish; N=1280; k=32
Fat-tree; N=1280; k=32
Jellyfish; N=720; k=24
Fat-tree; N=720; k=24

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500 600

E
q

u
ip

m
e

n
t

C
o

s
t

[#
P

o
rt

s
 i
n

 T
h

o
u

s
a
n

d
s
]

Number of Servers in Thousands

Increasing port-count

Fat-tree; {24,32,48,64,96,128} ports
Jellyfish; 24 ports
Jellyfish; 32 ports
Jellyfish; 48 ports
Jellyfish; 64 ports
Jellyfish; 96 ports

Jellyfish; 128 ports

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500 3000 3500

#S
er

ve
rs

 a
t F

ul
l T

hr
ou

gh
pu

t

Equipment Cost [Total #Ports] Using Identical Equipment

Jellyfish (Optimal routing)
Fat-tree

(c)

Figure 1: Jellyfish offers a virtually continuous design space,
and packs more servers at high network capacity at the same
expense as a fat-tree. From theoretical bounds: (a) Normalized
bisection bandwidth versus the number of servers supported;
equal-cost curves, and (b) Equipment cost versus the number of
servers for commodity-switch port-counts (24, 32, 48, 64, 96,
128) at full bisection bandwidth. Under optimal routing, with
random-permutation traffic: (c) Number of servers supported
at full capacity using the same switching equipment, for 6, 8,
10, 12 and 14-port switches. Results are averaged over 8 runs.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

(132, 4, 3)

(72, 7, 5)

(98, 6, 4)

(50, 11, 7)

(111, 8, 6)

(212, 7, 5)

(168, 10, 7)

(104, 16, 11)

(198, 24, 16)

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Best-known Degree-Diameter Graph

Jellyfish

Figure 2: Jellyfish’s network capacity is close to (i.e., ∼86%
or more in each case) that of the best-known degree-diameter
graphs. The x-axis label (A, B, C) represents the number of
switches (A), the switch port-count (B), and the network de-
gree (C). Throughput is normalized against the non-blocking
throughput. Results are averaged over 3 runs.

graphs for other degree-diameter combinations is main-
tained at [11].

The degree-diameter problem relates to our objective
in that short average path lengths imply low resource us-
age and thus high network capacity. Intuitively, the best
known degree-diameter topologies should support a large
number of servers with high network bandwidth and low
cost (small degree). While we note the distinction be-
tween average path length (which relates more closely
to the network capacity) and diameter, degree-diameter
graphs will have small average path lengths too.

Thus, we propose the best-known degree-diameter
graphs as a benchmark for comparison. Note that such
graphs do not meet our incremental expansion objec-
tives; we merely use them as a capacity benchmark for
Jellyfish topologies. But these graphs (and our measure-
ments of them) may be of independent interest since they
could be deployed as highly efficient topologies in a set-
ting where incremental upgrades are unnecessary, such
as a pre-fab container-based data center.

For our comparisons with the best-known degree-
diameter graphs, the number of servers we attach to the
switches was decided such that full-bisection bandwidth
was not hit for the degree-diameter graphs. (That would
be unfair to the degree-diameter graphs because they
could still have additional capacity to support some ad-
ditional servers.)

Our results, in Fig. 2, show that the best-known
degree-diameter graphs do indeed achieve higher
throughput than Jellyfish, and thus an even bigger im-
provement over fat-trees. But in the most extreme of
these comparisons, Jellyfish still achieves ∼86% of the
degree-diameter graph’s aggregate throughput. In all
other cases, Jellyfish achieves over 90% of the degree-
diameter graph’s throughput. While optimal degree-
diameter graphs are not (known to be) provably optimal
for our bandwidth optimization problem, these results

 0

 0.2

 0.4

 0.6

 0.8

 1

Jellyfish Small World
Ring

Small World
2D-Torus

Small World
3D-Hex-Torus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Figure 3: Jellyfish has higher capacity than the (same-
equipment) small world data center topologies [35] built us-
ing a ring, a 2D-Torus, and a 3D-Hex-Torus as the underlying
lattice. Results are averaged over 5 runs.

strongly suggest that Jellyfish’s random topology leaves
little room for improvement, even with very carefully-
optimized topologies. And what improvement is possi-
ble may not be worth the loss of Jellyfish’s incremental
expandability.
Comparison with small world data centers
(SWDC) [35]: We use the same degree-6 topolo-
gies described in the SWDC paper. We emulate their
6-interface server-based design by using switches
connected with 1 server and 6 network ports each. We
build the 3 SWDC variants described in [35] at topology
sizes as close to each other as possible (constrained by
the lattice structure underlying these topologies) across
sizes we can simulate. Thus, we use 484 switches for
Jellyfish, the SWDC-Ring topology, and the SWDC-
2D-Torus topology; for the SWDC-3D-Hex-Torus, we
use 450 nodes. (Note that this gives the latter topology
an advantage, because it uses the same degree, but a
smaller number of nodes. However, this is the closest
size where that topology is well-formed.) At these sizes,
the first three topologies all gave full throughput, so, to
distinguish between their capacities, we added 2 servers
instead of just one, to each switch across all topologies.
The results are shown in Fig. 3. Jellyfish throughput is
∼119% of that of the closest competitor, the ring-based
small world topology.
Path Length: Short path lengths are important to en-
sure low latency, and to minimize network utilization. In
this context, we note that the theoretical upper-bound on
the diameter of regular random graphs used by Jellyfish
is fairly small: Bollobás and de la Vega [10] showed that
in almost every r-regular graph with N nodes, the di-
ameter is at most 1 + dlogr−1((2 + ε)rN logN)e for
any ε > 0. Thus, the server-to-server diameter is at
most 3 + dlogr−1((2 + ε)rN logN)e. Thus, the path
length increases logarithmically (base r) with the num-

6

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 B
e
tw

e
e
n
 S

w
it
c
h
e
s

#Servers [in Thousands]

Starting point

Jellyfish; Diameter
Expanded Jellyfish; Diameter

Jellyfish; Mean
Expanded Jellyfish; Mean

Figure 4: Jellyfish has short paths: Path length versus number
of servers, with k = 48 port switches of which r = 36 connect
to other switches and 12 connect to servers. Each data point
is derived from 10 graphs. For the fat-tree, almost all paths
between switches are of length 4.

ber of nodes in the network. Given the availability of
commodity servers with large port counts, this rate of in-
crease is very small in practice.

We measured path lengths using an all-pairs shortest-
paths algorithm. The average path length and diame-
ter (Fig. 4) in Jellyfish is much smaller than in the fat-
tree. For example, for RRG(3200, 48, 36) with 38,400
servers, the average path length between switches is
<2.7 (Fig. 4), while the fat-tree’s average is ∼4. The
99.99th percentile switch-to-switch path-length across
10 runs did not exceed 3 for any topology size in Fig. 4.

4.2 Flexibility
Arbitrary-sized Networks: Several existing proposals
admit only the construction of interconnects with very
coarse parameters. For instance, a 3-level fat-tree allows
only k3/4 servers with k being restricted to the port-
count of available switches, unless some ports are left
unused. This is an arbitrary constraint, extraneous to op-
erational requirements. In contrast, Jellyfish permits any
number of racks to be networked efficiently.
Incremental Expandability: Jellyfish’s construc-
tion makes it amenable to incremental expansion by
adding either servers and/or network capacity (if not full-
bisection bandwidth already), with increments as small
as one rack or one switch. Jellyfish can be expanded
such that rewiring is limited to the number of ports be-
ing added to the network; and the desirable properties are
maintained: high bandwidth and short paths at low cost.

As an example, consider an expansion from an
RRG(N , k, r) topology to RRG(N + 1, k, r). In other
words, we are adding one rack of servers, with its ToR
switch u, to the existing network. We pick a random link
(v, w) such that this new ToR switch is not already con-
nected with either v or w, remove it, and add the two

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600 700

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

#Servers

Jellyfish (Incremental)
Jellyfish (From Scratch)

Figure 5: Incrementally constructed Jellyfish has the same ca-
pacity as Jellyfish built from scratch: We built a Jellyfish topol-
ogy incrementally from 20 switches to 160 switches in incre-
ments of 20 switches, and compared the throughput per server
of these incrementally grown topologies to Jellyfish topologies
built from scratch using our construction routine. The plot
shows the average, minimum and maximum throughput over
20 runs.

links (u, v) and (u,w), thus using 2 ports on u. This
process is repeated until all ports are filled (or a single
odd port remains, which could be matched with another
free port on an existing rack, used for a server, or left
free). This completes incorporation of the rack, and can
be repeated for as many new racks as desired.

A similar procedure can be used to expand network
capacity for an under-provisioned Jellyfish network. In
this case, instead of adding a rack with servers, we only
add the switch, connecting all its ports to the network.

Jellyfish also allows for heterogeneous expansion:
nothing in the procedure above requires that the new
switches have the same number of ports as the exist-
ing switches. Thus, as new switches with higher port-
counts become available, they can be readily used, ei-
ther in racks or to augment the interconnect’s bandwidth.
There is of course, the possibility of taking into account
heterogeneity explicitly in the random graph construc-
tion and to improve upon even what the vanilla random
graph model yields. This endeavor remains future work
for now.

We note that our expansion procedures (like our con-
struction procedure) may not produce uniform-random
RRGs. However, we demonstrate that the path length and
capacity measurements of topologies we build incremen-
tally match closely with ones constructed from scratch.
Fig. 4 shows this comparison for the average path length
and diameter where we start with an RRG with 1,200
servers and expand it incrementally. Fig. 5 compares the
normalized throughput per server under a random per-
mutation traffic model for topologies built incrementally
against those built from scratch. The incremental topolo-

7

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

B
is

e
c
ti
o
n
 B

a
n
d
w

id
th

 Expansion Stage

Jellyfish

LEGUP

Increasing cost

Figure 6: Incremental expansion with Jellyfish is substan-
tially more cost-effective than in LEGUP’s expansion of Clos
networks. Using the same equipment and rewiring cost at
each stage of expansion (x axis), Jellyfish obtains significantly
higher bisection bandwidth (y axis). (The drop in Jellyfish’s
bisection bandwidth from stage 0 to 1 occurs because bisection
bandwidth is normalized by server capacity, and the number of
servers has increased in that step.)

gies here are built by adding successive increments of
20 switches, and 80 servers to an initial topology also
with 20 switches and 80 servers. (Throughout this exper-
iment, each switch has 12 ports, 4 of which are attached
to servers.) In each case, the results are close to identical.
Network capacity under expansion: Note that the ex-
pression for (the lower bound on) Jellyfish’s bisection
bandwidth (§4.1) is independent of N , i.e., (the lower
bound on) bisection bandwidth stays constant as the net-
work grows. Of course, as N increases with fixed net-
work degree r, average path length increases, and there-
fore, the demand for additional per-server capacity in-
creases6. But since path length increases very slowly
(as discussed above), bandwidth per server is likely to
remain high even for relatively large factors of growth.
Thus, operators can keep the servers-per-switch ratio
constant even under large expansion, with minor band-
width loss. Adding only switches (without servers) is an-
other avenue for expansion which can preserve (or even
increase) network capacity. Our below comparison with
LEGUP uses both these forms of expansion.
Comparison with LEGUP [13]: While a LEGUP im-
plementation is not publicly available, the authors were
kind enough to supply a series of topologies produced
by LEGUP. In this expansion arc, there is a budget
constraint for the initial network, and for each succes-
sive expansion step; within the constraint, LEGUP at-
tempts to maximize network bandwidth, and also may
keep some ports free in order to ease expansion in future
steps. The initial network is built with 480 servers and 34
switches; the first expansion adds 240 more servers and

6This discussion also serves as a reminder that bisection-bandwidth,
while a good metric of network capacity, is not the same as, say, capac-
ity under worst-case traffic patterns.

some switches; and each remaining expansion adds only
switches. To build a comparable Jellyfish network, at
each expansion step, under the same budget constraints,
(using the same cost model for switches, cabling, and
rewiring) we buy and randomly cable in as many new
switches as we can. The number of servers supported is
the same as LEGUP at each stage.

LEGUP attempts to optimize for bisection bandwidth,
so we compare both LEGUP and Jellyfish on that metric
(using code provided by the authors of [13]) rather than
on our previous random permutation throughput metric.

The results are shown in Fig. 6. Jellyfish obtains
substantially higher bisection bandwidth than LEGUP at
each stage. In fact, by stage 2, Jellyfish has achieved
higher bisection bandwidth than LEGUP in stage 8,
meaning (based on each stage’s cost) that Jellyfish builds
an equivalent network at cost 60% lower than LEGUP.

A minority of these savings is explained by the fact
that Jellyfish is more bandwidth-efficient than Clos net-
works, as exhibited by our earlier comparison with fat-
trees. But in addition, LEGUP appears to pay a sig-
nificant cost to enable it to incrementally-expand a Clos
topology; for example, it leaves some ports unused in or-
der to ease expansion in later stages. We conjecture that
to some extent, this greater incremental expansion cost is
fundamental to Clos topologies.

4.3 Failure Resilience
Jellyfish provides good path redundancy; in particular, an
r-regular random graph is almost surely r-connected [9].

Also, the randomness of the topology implies that the
graph maintains its structure (or rather, the lack of it!)
in the face of link or node failures – a random graph
topology with a few failures is just another random graph
topology of slightly smaller size, with a few unmatched
ports on some switches.

Fig. 7 shows that the Jellyfish topology is even more
resilient than the fat-tree (which itself is no weakling).
Fig. 7(a) compares a fat-tree and a same-equipment Jel-
lyfish topology as the fraction of links failed (uniformly
at random) increases. Fig. 7(b) compares the failure re-
silience of the fat-tree and Jellyfish as the size of the
topology increases (with a fixed failure rate of 9%).
Note that the comparison features a fat-tree with fewer
servers, but the same cost. (This is to justify Jellyfish’s
claim of supporting a larger number of servers using the
same equipment as the fat-tree, in terms of capacity, path
length, and resilience.)

5 Routing & Congestion Control

While we have pointed out that structure impedes incre-
mental expansion, we also note that structure lends itself

8

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Fraction of Links Failed Randomly

Jellyfish (544 Servers)
Fat-tree (432 Servers)

(a)

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Equipment Cost [Total #Ports] Using Identical Equipment

Jellyfish
Fat-tree

(b)

Figure 7: Jellyfish is highly resilient to failures: a) Normalized
throughput per server decreases more gracefully for Jellyfish
than for a same-equipment fat-tree as the percentage of failed
links increases. Note that the y-axis starts at 60% throughput;
both topologies are highly resilient to failures. b) With a fixed
link failure rate (9%), across increasing topology size, Jellyfish
maintains the resilience advantage over the fat-tree. We note
that the particular topology used for the experiment in a) is the
one with equipment cost 2,160, i.e. the last-to-second point in
the plot in b). Results are averaged over 5 runs.

to simple and efficient routing schemes. In this section,
we test whether the high ideal capacity made available by
the Jellyfish topology can be exploited by simple routing
and congestion control. Through early experiments, we
discovered that Jellyfish (as well as the fat-tree) did not
perform well with single-path routing. Hence, we use
the recently proposed multipath TCP (MPTCP) [40]. It
turns out that a simple routing scheme, when coupled
with MPTCP, is able to reach >86%7 of the optimal net-
work throughput as measured using CPLEX. (A 5-7%
loss of capacity also occurs for the fat-tree when using
MPTCP.)
Routing: We use a simple, standard, k-shortest paths

7A gap of <14% of the optimal throughput is reasonable; prior
work has shown that using currently deployed network protcols (TCP;
VLB over ECMP), this gap is 23% for the fat-tree [6].

 0

 0.2

 0.4

 0.6

 0.8

 1

70 165 335 600 960

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

#Servers

Jellyfish (Packet-level)
Jellyfish (CPLEX)

Figure 8: Simple routing with MPTCP exploits Jellyfish’s high
capacity well: We compare the throughput using the same Jel-
lyfish topology with both optimal routing, and our simple rout-
ing mechanism using MPTCP, which results in throughput be-
tween 86%− 90% of the optimal routing in each case. Results
are averaged over 10 runs.

algorithm (Yen’s Loopless-Path Ranking algorithm [1,
42]) to determine routes. Throughout our experiments,
k = 8 shortest paths are used. Thus, each switch main-
tains a routing table containing for each other switch, k
shortest paths. Note that a few thousand switches can
support several tens of thousands of servers, so routing
table sizes are unlikely to be a problem. In any case, our
evaluation is primarily a proof-of-concept for routing and
congestion control to be able to use the network capac-
ity. There are certainly other routing methods available
for use (e.g., source routing, MPLS, or methods based on
centralized management by an OpenFlow controller).

Evaluation methodology: We use the packet simulator
developed by the MPTCP authors, also using their rec-
ommended value of 8 MPTCP subflows throughout our
experiments. Our comparisons with the fat-tree use the
same number of MPTCP subflows i.e. 8 for both topolo-
gies. The traffic model used continues to be random per-
mutation at the server-level, and as before, for the fat-
tree comparisons, we use the same switching equipment
as the fat-tree.

Routing and Congestion Control Efficiency: First, we
set out to measure how well our simplistic routing works
with MPTCP, as compared to the optimal performance
discussed in §4. Using both the packet-level simulator,
and the optimizer, we compute the throughput obtained
with and without routing and congestion control ineffi-
ciencies. At each size, we use the same slightly oversub-
scribed (to make the comparison clear) Jellyfish topology
for both setups. The results are shown in Fig. 8. Even in
the worst of these comparisons, the packet level through-
put is at ∼86% of the CPLEX optimal throughput for
Jellyfish. For the fat-tree, this throughput is 93-95% of

9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000 12000 14000

#S
er

ve
rs

 a
t F

ul
l T

hr
ou

gh
pu

t

Equipment Cost [Total #Ports] Using Identical Equipment

Jellyfish (Packet-level)
Fat-tree

Figure 9: Jellyfish supports a larger number of servers (>25%
at the largest scale shown, with an increasing trend) than the
same-equipment fat-tree at the same (or higher) throughput,
even with inefficiencies of routing and congestion control ac-
counted for. Results are averages over 20 runs for topolo-
gies smaller than 1,400 servers, and averages over 10 runs for
larger topologies.

the optimal for the fat-tree. There is a possibility that
this gap can be closed using smarter routing schemes,
but nevertheless, as we discuss below, Jellyfish maintains
most of its advantage over the fat-tree in terms of number
of servers supported at the the same throughput.

Fat-tree Throughput Comparison: To compare Jel-
lyfish’s performance against the fat-tree, we first find
the average per-server throughput a fat-tree yields in
the packet simulation. We then find (using a binary
search method) a number of servers for which the av-
erage per-server throughput for the comparable Jellyfish
topology is either the same, or higher than the fat-tree.
We repeat this exercise for several fat-tree sizes. The
results (Fig. 9) reveal that Jellyfish can support signifi-
cantly more servers at the same per-server capacity as the
fat-tree. Moreover, this advantage becomes more pro-
nounced with larger scale. At the maximum scale of our
experiment, Jellyfish supports 25% more servers than the
fat-tree (3,330 in Jellyfish, versus 2,662 for the fat-tree).
We note however, that even at smaller scale (for instance,
496 servers in Jellyfish, to 432 servers in the fat-tree) the
improvement can be as large as ∼15%.

We also show in Fig. 10 the stability of our through-
put experiments, by plotting the average, minimum and
maximum throughput for both Jellyfish and the fat-tree
at each size, over 20 runs for small sizes and 10 runs for
sizes larger than 1,400 servers. (Although using a larger
number of runs increases the spread of the extremes for
the smaller topologies, we used a smaller number of runs
for the larger topologies in the interest of running time.
We note that results were more stable for large topolo-
gies, with a standard deviation of less than 0.5% of the
mean value. For smaller sizes, this value was smaller

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0 500 1000 1500 2000 2500 3000 3500

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

#Servers

Using Identical
Equipment

Jellyfish
Fat-tree

Figure 10: The packet simulation’s throughput results for Jel-
lyfish show similar stability as the fat-tree. (Note that the y-axis
starts at 91% throughput.) Average, minimum and maximum
throughput-per-server values are shown. The data plotted is
from the same experiment as Fig. 9. Jellyfish has the same or
higher average throughput as the fat-tree while supporting a
larger number of servers. Each Jellyfish data-point uses equip-
ment identical to the closest fat-tree data-point to its left (as
highlighted in one example).

than 2% of the mean in each case.)
Fairness: We also evaluate how flow-fair the routing
and congestion control is for Jellyfish. We use the packet
simulator to measure each flow’s throughput in both
topologies and show in Fig. 11, the normalized through-
put per flow in increasing order. Note that Jellyfish has a
larger number of flows because we make all comparisons
using the same network equipment and the larger num-
ber of servers supported by Jellyfish. Both the topologies
have similarly good fairness. We also computed Jain’s
fairness index [23] over the same flow throughput values

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t

Rank of Flow

Jellyfish
Fat-tree

Figure 11: Both Jellyfish and the fat-tree show good flow-
fairness: The distribution of normalized flow throughputs in
Jellyfish and fat-tree is shown for one typical run. After the
few outliers (shown with points), the plot is virtually continu-
ous (hence the line). Note that Jellyfish has more flows because
it supports a higher number of servers (at same or higher per-
server throughput). Jain’s fairness index for both topologies is
∼99%.

10

as in the plot for both topologies: 0.991 for the fat-tree
and 0.988 for Jellyfish.

6 Physical Construction and Cabling

Key considerations in wiring data center networks in-
clude:

• Number of cables: Each cable is both a material
and a labor cost.

• Length of cables: The cable price/meter is $5-6 for
both electrical and optical cables, but, the cost of an
optical transceiver can be close to $200 [32]. Thus,
we limit our interest in cable length to whether a
cable is short enough, i.e.,<10 meters in length [15,
24], for use of an electrical cable or not.

• Cabling complexity: Will Jellyfish awaken the
dread spaghetti monster? Complex cabling layouts
may be hard to wire and thus susceptible to more
wiring errors. We will consider whether this is a
significant factor. In addition, we attempt to design
layouts that result in aggregation of cables in bun-
dles, in order to reduce manual effort (and hence,
expense) for wiring.

How much each of the above considerations matters,
depends on the deployment scenario in question. Thus,
in this section we describe physical packaging and wiring
approaches for three deployment scenarios for Jellyfish:
(a) as an interconnect for small data centers (∼1,000
servers); (b) as the intra-container interconnect for a
‘Container Data Center’ (CDC) [2–4, 41]; (c) as a net-
work interconnect for a massive-scale data center.

We note that small data centers and CDCs form a sig-
nificant section of the market for data centers. In a 2011
survey [38] of 300 US enterprises (with revenues ranging
from $1B-$40B) which operate data centers, 57% of data
centers occupy between 5,000 and 15,000 square feet;
and 75% have a power load <2MW, implying that these
data centers house a few thousand servers [12].

For each deployment scenario, we also discuss how
cabling works with incremental expansion.

6.1 Jellyfish in Small Data Centers
As our results in §4.1 show, even at a few hundred
servers, cost-efficiency gains from Jellyfish can be sig-
nificant (∼20% at 1,000 servers). Thus, it is useful to
deploy Jellyfish in this scenario.
Number of cables: For a ∼1,000 server data center,
Jellyfish uses ∼15% fewer cables than a fat-tree.
Length of cables: At such sizes, the cable lengths
will be short enough to use electrical cables without

repeaters. Nevertheless, we propose an optimization
(along similar lines as the one proposed in [5]) based
on the observation that in a high-capacity Jellyfish topol-
ogy, there are more than twice as many cables running
between switches than from servers to switches. Thus,
placing all the switches in close proximity to each other
reduces cable length, as well as manual labor.

Complexity: For 1,000 servers, space equivalent to 3
standard racks can accommodate all the switches nec-
essary to build a full bisection bandwidth network (using
48-port switches available today). These 3 racks can then
be placed at the physical center of the data center, with
aggregate cable bundles running between them. From
this ‘switch-cluster’, aggregate cables can be run to each
rack of servers in the data center. In this example sce-
nario, 20 server-racks will suffice, leaving us with 20
aggregate cable assemblies, each with 50 cables, run-
ning from the switch-cluster to the server-racks. Thus,
the nightmare cable-mess image a random graph network
may spring to mind is, at best, alarmist.

Also, the manual work involved includes connecting
the 20 bundles of 50 cables from the switches to the
servers in a trivial manner. The only constraint is for
each switch to contribute 14-15 ports to this total of 1,000
connections. The remaining cabling task is to connect
the random graph component. This part of the cabling
plan can be computer-generated based on the topology
and physical layout of devices, and handed to workers to
connect.

Handling Mis-wiring: While some human errors
are likely in cabling, these are easy to detect and fix.
Given Jellyfish’s sloppy topology, a small number of
miswirings need not even require fixing in many cases.
Nevertheless, an estimate [32] of the labor cost of ca-
bling puts it at ∼10% of cable cost at this scale. The
cable cost itself would be only a fraction of the net-
work cost; assuming that fraction is a rather high 50%,
the cost of correcting (for example) 10% mis-wirings
would be just 0.5% of the network cost. We note that
running a link-layer topology discovery protocol [29]
yields enough information to check the resulting cabling
against a computer-generated connection plan and detect
errors.

Cabling under expansion: Jellyfish can be expanded
in such a setting either by leaving enough space near the
‘switch-cluster’ for addition of more switches as more
servers are added at the periphery of the network. In
case no existing switch-cluster has room for additional
switches, a new cluster can be started. Cable aggregates
run from this switch-cluster to all server-racks and to
the other switch-clusters. We note that for this to work
with only electrical cabling, the switch-clusters need to
be placed within 10 meters of each other as well as the

11

servers. Given the constraints the support infrastructure
already places on such facilities, we do not expect this to
be a significant issue.

As discussed before, the Jellyfish expansion procedure
requires a sequence of edge swaps. After an automated
computation of the network cables that need to be moved
and new ones that need attachment, these can be run
parallel to existing cable bundles, or in the case of new
switch-clusters, new cable aggregates can be started. Ad-
dition of each two ports requires two cables to be moved
(one end of an existing cable is connected to one of the
two new ports, and a new cable is connects the orphaned
attachment point of the old cable to the second new port).
Note that with the ’switch-cluster’ configuration, all this
activity happens at one location (or with multiple clus-
ters, the activity happens only between these clusters).
The only cables not at the switch-cluster are the ones be-
tween the new switch and the servers attached to it (if
any). This is just one cable aggregate.

6.2 Intra-container Jellyfish

As early as 2006, The Sun Blackbox [2] promoted the
idea of using shipping containers for the construction of
data centers. There are also new products in the market
exploiting similar physical design ideas [3, 4, 22].

Much of the appeal of container data centers is
in their ‘deploy and forget’ nature. These are ideal
for enterprises that seek quickly deployable and low-
maintainence systems that literally work out of the box.
Besides providing high capacity, the network must also
be reliable, so as to not require frequent intervention in-
side the container. The utility of using Jellyfish in such
a scenario is its efficiency and reliability. As we have
shown in §4.1 and §4.3, Jellyfish provides high capacity,
low latency, and high failure resilience, all at low cost. In
comparison with the fat-tree, Jellyfish uses less switch-
ing equipment to support the same server-pool at higher
performance.
Number of cables: Given the roughly linear switch-
server curve in Fig. 9, 25% more servers with same
switching equipment as a fat-tree also translates to 20%
less switching equipment (and hence, cabling) for sup-
porting the same server-pool size. This implies that there
is more room (and budget) for packing servers in a single
container.
Length of cables: The optimization of placing all the
switches in close proximity near the center of the con-
tainer is useful in this scenario too. Given a shipping con-
tainer’s dimensions, this also results in all connections
being short enough for use of electrical cabling through-
out.
Complexity: A unique possibility allowed by the

assembly-line nature of CDCs, is that of fabricating a
random-connect patch panel such that workers only plug
cables from the switches into the panel in a regular easy-
to-wire pattern, and the panel’s internal design encodes
the random interconnect. This could significantly accel-
erate the cabling process.

Whether or not a patch panel is used, the problems of
layout and wiring need to be solved only once at design
time for CDCs. With a standard layout and construction,
building automated tools for verifying and detecting mis-
wirings is also a one-time exercise. Thus, the cost of any
additional complexity introduced by Jellyfish would be
amortized over the production of many containers.
Cabling under expansion: We note that the CDC
usage may or may not be geared towards incremental
expansion. There are certainly products in the market
which bring the modularity idea containers brought to
mega-data centers, to containers themselves – allowing
gradual build-up of a container with smaller container-
modules [4]. The more common scenario, however, ap-
pears to be standard, packed containers, where the chief
utility of Jellyfish is its efficiency and reliability. Nev-
ertheless, Jellyfish expansion ideas apply to the modular
containers in similar fashion to their application to small
data centers. If patch panels are used in CDCs as sug-
gested, then they play a role similar to the switch-cluster
in the small data center: most rewiring can be completed
at the patch panel.

6.3 Jellyfish in Massive-Scale Data Centers

Massive scale data centers may be built by connect-
ing together multiple containers of the type described
above. (This is already an industry trend, with several
players, Google and Microsoft included, already having
container-based deployments [15].) Inside the contain-
ers, the same arguments for number, length, and com-
plexity of cables apply as discussed before. However,
extending Jellyfish to such settings naı̈vely, might result
in excessive cabling costs: As the number of containers
grows, almost all cables are likely to be between con-
tainers, thus necessitating the use of expensive optical
connectors. Thus, for these scales, our comparisons with
the fat-tree might be considered unfair in absence of ac-
counting for cabling.

To bring fairness to this comparison, we restrict Jelly-
fish to the same physical constraints and available cable
lengths. For the fat-tree we apply the same optimiza-
tion as suggested in [5] for laying out the fat-tree at such
scale8. With this optimized layout, we know the num-
ber of cables inside containers (henceforth, ‘local’) and

8The core idea was to make each fat-tree ‘pod’ a container, and to
divide the core-switches among these pods equally.

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t N

or
m

al
iz

ed
 to

 U
nr

es
tr

ic
te

d
R

R
G

#Local (in-pod) Connections

240 Servers
500 Servers
900 Servers

Figure 12: Localization of Jellyfish random links is a promis-
ing approach to tackle cabling for massive scale data centers:
As links are restricted to be more and more local, the network
capacity decreases (as expected). However, at the largest scale
shown, with 5 of 8 random links for each switch constrained to
remain inside the pod, there is only 5% loss of throughput.

outside (‘global’).
With the same number of switches and the same phys-

ical structuring (in terms of number of pods and equal
number of switches per pod) as the fat-tree, we build Jel-
lyfish networks varying the number of local and global
connections to see how this affects performance in rela-
tion to the unrestricted Jellyfish network. By restricting
Jellyfish, we mean that we only allow the local connec-
tions to be picked to nodes inside the pod (randomly),
and the rest only to nodes outside (randomly). This ef-
fectively results in a 2-layer random graph.

With the same switching equipment as the fat-tree, Jel-
lyfish networks would be overprovisioned with this de-
sign. Thus, we add a larger number of servers per switch
to make the topology over-subscribed. Then we vary the
number of local and global connections (such that the
sum is constant, and the same as the fat-tree) and mea-
sure performance in relation to the unrestricted Jellyfish.

The results are shown in Fig. 12. For the largest size
in this test, throughput does not drop significantly until 6
out of the total of 8 network links are restricted to be in-
side the pod. In this scenario, 2-layering (with 5 out of 8
links ‘localized’) reduces Jellyfish throughput to 95% of
its optimal. In the same setting, in the fat-tree, the frac-
tion of local links is 13/24 = 0.542 < 5/8 = 0.62.
Thus, we can achieve a higher degree of localization,
while still having a higher capacity network. (Note that
our results from §4.1 show that Jellyfish is 26% more ef-
ficient than the fat-tree at this scale.)

Separate from the favorable fat-tree comparison, we
note that the localization strategy reduces the number of
global cables (in expectation) from 11 of every 12 links
(each pod has the same number of switches;there are 12
pods) to 3 of every 8 links – a 59% decrease, for the loss

of 5% of network capacity. More evaluation of this as-
pect, in particular, to determine whether the fraction of
links one can localize without losing significant through-
put keeps increasing with network size is on our agenda
for future work. For the fat-tree layout, the answer is
known: the fraction of local links (which is conveniently
given by 0.5(1 + 1/k)) decreases with size.

Complexity: Building a random graph between
switches at the inter-container layer will, with high prob-
ability, result in cable assemblies running between ev-
ery pair of containers. A 100,000 server data center can
be built with ∼40 containers. Even if all the ports (ex-
cept those attached to servers) from each switch in each
container were to be connected to other containers, we
could aggregate cables between each pair of containers
leaving us with roughly 800 such cable assemblies, each
with fewer than 200 cables. With the external diame-
ter of a 10GBASE-SR cable being only 245um, each
such assembly could be packed within a pipe of radius
<1cm. Of course, with higher over-subscription at the
inter-container layer, these numbers could be decreased
several times.

Cabling under expansion: In massive-scale data cen-
ters, expansion can occur both through addition of new
containers and expansion of containers (if permissible).
The random connections for each layer are added inde-
pendently by the standard Jellyfish procedure. Laying
out spare cables together with the aggregates between
containers is helpful in scenarios where a container is be-
ing expanded. When a new container is added, new ag-
gregates must be laid out to every other container. Patch
panels can again make this process easier. In each con-
tainer, all the global-connection ports from switches can
be connected from the inside to a patch panel (using short
electrical cables) which is easily accessible. In this sce-
nario, the use of patch panels is limited to making these
connections accessible for later change, and not for en-
coding the random interconnect.

7 Conclusion

We argue that random graphs are a highly flexible archi-
tecture for data center networks. They represent a novel
approach to the significant problems of incremental and
heterogeneous expansion, still enabling high capacity,
short paths, and resilience to failures and miswirings.

References
[1] An implementation of k-shortest path algorithm. http://

code.google.com/p/k-shortest-paths/.
[2] Project blackbox. http://www.sun.com/emrkt/

blackbox/story.jsp.

13

http://code.google.com/p/k-shortest-paths/
http://code.google.com/p/k-shortest-paths/
http://www.sun.com/emrkt/blackbox/story.jsp
http://www.sun.com/emrkt/blackbox/story.jsp

[3] Rackable systems. ice cube modular data center. http://www.
rackable.com/products/icecube.aspx.

[4] Sgi ice cube air expandable line of modular data cen-
ters. http://www.sgi.com/products/data_center/
ice_cube_air/.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commod-
ity data center network architecture. In SIGCOMM, 2008.

[6] T. Benson, A. Anand, A. Akella, and M. Zhang. The case for
fine-grained traffic engineering in data-centers. In INM/WREN,
2010.

[7] L. N. Bhuyan and A. D. P. Generalized hypercube and hyperbus
structures for a computer network. IEEE Transactions on Com-
puters, 1984.

[8] B. Bollobás. The isoperimetric number of random regular graphs.
Eur. J. Comb., 1988.

[9] B. Bollobás. Random graphs, 2nd edition. 2001.
[10] B. Bollobás and W. F. de la Vega. The diameter of random regular

graphs. In Combinatorica 2, 1981.
[11] F. Comellas and C. Delorme. The (degree, diameter) prob-

lem for graphs. http://maite71.upc.es/grup_de_
grafs/table_g.html/.

[12] A. R. Curtis, T. Carpenter, M. Elsheikh, A. Lopez-Ortiz, and
S. Keshav. Rewire: An optimization-based framework for data
center network design. Technical report, August 2011.

[13] A. R. Curtis, S. Keshav, and A. Lopez-Ortiz. LEGUP: using het-
erogeneity to reduce the cost of data center network upgrades. In
CoNEXT, 2010.

[14] Facebook. Facebook to expand prineville data center. http:
//goo.gl/fJAoU.

[15] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: A hybrid
electrical/optical switch architecture for modular data centers. In
SIGCOMM, 2010.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: A scal-
able and flexible data center network. In SIGCOMM, 2009.

[17] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,
and S. Lu. Bcube: A high performance, server-centric network
architecture for modular data centers. In SIGCOMM, 2009.

[18] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A
scalable and fault-tolerant network structure for data centers. In
SIGCOMM, 2008.

[19] L. Gyarmati and T. A. Trinh. Scafida: A scale-free network in-
spired data center architecture. In SIGCOMM Comput. Commun.
Rev., 2010.

[20] J. Hamilton. Datacenter networks are in my way. http://
goo.gl/Ho6mA.

[21] HP. Hp ecopod. http://goo.gl/8A0Ad.
[22] HP. Pod 240a data sheet. http://goo.gl/axHPp.
[23] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A quantitative

measure of fairness and discrimination for resource allocation in
shared computer systems. Technical report, Digital Equipment
Corporation, 1984.

[24] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven,
highly-scalable dragonfly topology. ACM SIGARCH, 2008.

[25] F. T. Leighton. Introduction to parallel algorithms and architec-
tures: Arrays, trees, hypercubes. 1991.

[26] A. Licis. Data center planning, design and optimization: A global
perspective. http://goo.gl/Sfydq.

[27] B. D. McKay and N. C. Wormald. Uniform generation of random
regular graphs of moderate degree. J. Algorithms, 1990.

[28] A. B. Michael, M. Nolle, and G. Schreiber. A message passing
model for communication on random regular graphs. In Interna-
tional Parallel Processing Symposium (IPPS), 1996.

[29] Microsoft. Link layer topology discovery protocol. http://
goo.gl/bAcZ5.

[30] R. Miller. Facebook now has 30,000 servers. http://goo.
gl/EGD2D.

[31] R. Miller. Facebook server count: 60,000 or more. http://
goo.gl/79J4.

[32] J. Mudigonda, P. Yalagandula, and J. Mogul. Taming the flying
cable monster: A topology design and optimization framework
for data-center networks. 2011.

[33] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat. Portland: A
scalable fault-tolerant layer 2 data center network fabric. In SIG-
COMM, 2009.

[34] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and
I. Stoica. A cost comparison of datacenter network architectures.
In CoNEXT, 2010.

[35] J.-Y. Shin, B. Wong, and E. G. Sirer. Small-world datacenters.
ACM SOCC, 2011.

[36] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Network data centers randomly. In HotCloud, 2011.

[37] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang.
Proteus: a topology malleable data center network. In HotNets,
2010.

[38] D. R. Trust. What is driving the us market? white paper, 2011.
http://goo.gl/qiaRY.

[39] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
T. S. E. Ng, M. Kozuch, and M. Ryan. c-through: Part-time optics
in data centers. In SIGCOMM, 2010.

[40] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multi-
path tcp. In NSDI, 2011.

[41] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. Mdcube: A high
performance network structure for modular data center intercon-
nection. In CoNext, 2009.

[42] J. Yen. Finding the k shortest loopless paths in a network. Man-
agement Science, 1971.

14

http://www.rackable.com/products/icecube.aspx
http://www.rackable.com/products/icecube.aspx
http://www.sgi.com/products/data_center/ice_cube_air/
http://www.sgi.com/products/data_center/ice_cube_air/
http://maite71.upc.es/grup_de_grafs/table_g.html/
http://maite71.upc.es/grup_de_grafs/table_g.html/
http://goo.gl/fJAoU
http://goo.gl/fJAoU
http://goo.gl/Ho6mA
http://goo.gl/Ho6mA
http://goo.gl/8A0Ad
http://goo.gl/axHPp
http://goo.gl/Sfydq
http://goo.gl/bAcZ5
http://goo.gl/bAcZ5
http://goo.gl/EGD2D
http://goo.gl/EGD2D
http://goo.gl/79J4
http://goo.gl/79J4
http://goo.gl/qiaRY

	1 Introduction
	2 Related Work
	3 Jellyfish Topology
	4 Jellyfish Topology Properties
	4.1 Efficiency
	4.2 Flexibility
	4.3 Failure Resilience

	5 Routing & Congestion Control
	6 Physical Construction and Cabling
	6.1 Jellyfish in Small Data Centers
	6.2 Intra-container Jellyfish
	6.3 Jellyfish in Massive-Scale Data Centers

	7 Conclusion

