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ABSTRACT
The importance of scalability and fault-tolerance in modern
distributed systems has led to considerable research in multi-
cast protocols using gossip. In a gossip protocol, each node
forwards messages to a small set of “gossip partners” chosen
at random from the entire group membership. By discarding
the strong reliability guarantees of traditional protocols in
favour of probabilistic guarantees, gossip protocols can de-
liver greater scalability and fault tolerance. In early gossip
algorithms, partners were chosen uniformly at random from
the entire membership, limiting scalability because of the
resources required to store and maintain complete member-
ship views at each node. Later protocols avoided this issue
by storing much smaller random subsets of the membership
at each node, and choosing gossip partners only from these
local views. Such protocols are subtle: at least some local
views must change in response to group membership changes
in order to preserve connectivity and performance guaran-
tees. While these protocols have been the subject of much
simulation and analysis, formal proofs of key properties – in
particular the probability of partitioning – have remained
elusive.

In this paper we give a new scalable gossip-based algo-
rithm for local view maintenance, together with a proof that
the expected time until a network partition is at least ex-
ponential in the square of the view size. We also develop
probabilistic bounds on the in-degree (hence the load) of
individual nodes, and argue that protocols lacking our rein-
forcement component eventually converge to star-like net-
works, whose connectivity depends on a small set of over-
loaded nodes. We also argue that the undirected connectiv-
ity graph is an expander, for which application-level gossip
multi-cast protocols will converge rapidly.

Our theoretical results are supported by simulations.
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1. INTRODUCTION
The importance of scalability and fault-tolerance in mod-

ern distributed systems has led to considerable research in
gossip-based multi-cast protocols, first introduced in [5]. In
a gossip protocol, each node forwards messages to a small set
of “gossip partners” chosen at random from the entire group
membership. The resulting “epidemic” yields a probabilistic
guarantee of delivery to all group members. By discarding
the strong reliability guarantees of traditional protocols such
as [2] in favour of probabilistic guarantees, a gossip protocol
can deliver much greater scalability and fault tolerance.

The application that inspired [5] was the Xerox Clearing-
house, a distributed name service comprising hundreds, but
not thousands, of nodes. At that scale, a strongly-consistent
replication algorithm as described in [2] is infeasible, but it
is still fairly cheap to store complete group membership in-
formation at every node. Thus, it was straightforward for
the Clearinghouse system to select gossip partners uniformly
at random from the entire group membership, using gossip
to keep the entire membership data current at all nodes.

Modern distributed systems have grown to be orders of
magnitude larger than the original Clearinghouse system.
As a result, scalability of membership maintenance algo-
rithms has become a serious limitation and much effort is
being devoted to gossip-based algorithms that do not require
knowledge of the full group membership at each node.

Broadly, there are two bodies of work relevant to this
paper:

1. Rigorous analysis of properties of gossip protocols. Most
existing work ignores the practical difficulty of imple-
menting gossip partner selection distributions that re-
quire full knowledge of group membership. Such work
includes [4, 10, 11, 12] and many others.
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2. Design of practical algorithms that scale beyond the
limits imposed by full group membership. A number
of different approaches have been taken:

• Nodes are clustered into (possibly overlapping)
subgroups, with uniform gossip partner selection
within subgroups, with a mechanism to propagate
information between subgroups. Astrolabe [15]
takes this approach, partitioning nodes according
to an explicit, administrator-defined hierarchy.

• The choice of gossip partner is limited using prop-
erties of the real underlying network topology.
This is the approach taken by [13].

• Instead of full group membership, the algorithm
maintains a small local view of the membership at
each node. The local views are chosen to maintain
desired properties of the connection graph (e.g. it
is k-connected, or it is an expander). The algo-
rithm must respond to membership changes by
updating some local views as needed to maintain
these desired properties. This is the approach
taken in this paper. Other examples include [6,
7, 14].

Up to now, analysis of practical algorithms based on local
views has proven difficult, and most work has been vali-
dated primarily by simulation. For example, reference [6],
the work closest in spirit to our own, contains an analysis of
delivery latency and partition probability under the assump-
tion that the view distribution remains uniformly random.
In their simulations, however, this assumption is violated.
Reference [14] gives a different local view maintenance algo-
rithm. A claim is made for randomness of the local views,
but the accompanying simulations do not fully demonstrate
this. In fact, we are unaware of any algorithm yielding prov-
ably uniform views, and we doubt the existence of such an
algorithm.

In this paper we give a new scalable gossip-based algo-
rithm for local view maintenance. Using this membership
information, any gossip algorithm using randomly selected
gossip partners can be run at the application level, or even
be piggybacked on our protocol.

The simplicity and elegance of the protocol were key as-
sets to derive a framework in which we rigorously prove that
the expected time until a network partitions is at least ex-
ponential in the square of the view size, without assuming
the views to be uniform.

We also develop probabilistic bounds on the degree (hence
the load) of individual nodes, and argue that protocols lack-
ing our reinforcement component eventually converge to star-
like networks, whose connectivity depends on a small set of
high-degree (hence overloaded) nodes. We also argue that
the undirected connectivity graph is an expander, for which
application-level gossip multi-cast protocols will converge
rapidly.

The remainder of the paper is organised as follows. In
Section 2, we present the protocol. In Section 3, we present
an intuitive explanation of its robustness. In Section 4, we
prove our claims about the probability of partitioning, even
in the presence of churn. We give bounds on the load of
the nodes in Section 5. Section 6 presents some simulations
matching our theoretical results. Section 7 presents alterna-
tive protocols, and a discussion of design choices.

2. PROTOCOL
In this section we describe our protocol and give an infor-

mal discussion of its behaviour.

2.1 Protocol
Our protocol is based on the notion of a local view, a fixed-

size random subset of the group membership maintained by
each node. Let n be the number of nodes and k the size of
a local view. Two additional parameters, f , the fanout, and
ω, the weight of reinforcement, are discussed below. Each
node repeatedly updates its local view in rounds; in each
round, a node s will:

• construct a list L1 comprising the local views of f
nodes chosen at random from the local view of s,

• construct a list L2 of the other nodes that requested
its view during the round,

• create a new local view by choosing k distinct elements
at random from L1 and L2.1 The reinforcement weight
ω determines how much more likely nodes are to be
selected from L2 than L1. If ω is 0, nodes in L2 are
ignored; if ω is 1, we make no distinction between L1

and L2; and in the limit as ω goes to ∞, all nodes are
taken from L2 if possible.

The protocol can be synchronous (all nodes are updated
simultaneously), loosely synchronised (nodes are updated
sequentially in some random order, each node being up-
dated exactly once per round) or asynchronous (n nodes
chosen uniformly at random with replacement are sequen-
tially updated in the round, so some nodes may be updated
more than once, and others not at all). Simulations show
no significant differences in behaviour.

Joins and Leaves
Nodes join the network by copying the view of some node.
If the rate of nodes joining the network is small, they can
all bootstrap from the same node. Since the node’s view
changes at each iteration, this will not lead to a major im-
balance in the graph. And even if it did, the graph auto-
matically re-balances itself as we shall see below.

Since it is unreasonable to expect nodes always to leave
gracefully, the protocol has been designed not to require
any termination messages from a node leaving the network,
and there are no “heartbeat” or “keepalive” messages. This
solves the often overlooked scaling issue of the cost of nodes
leaving the network. Whenever a node leaves, some dangling
edges are left in the network. However, these edges gradually
disappear. If the reinforcement weight is at least 1, which it
should be, these edges will be purged from the network in
an expected approximately k/f iterations. Dangling edges
are not an issue for reliability, as we will prove below that
the probability of the network partitioning is exponentially
small even in the presence of churn.

2.2 Explanation of the functioning of the
Protocol

Here we describe the main characteristics of the protocol
behaviour. These characteristics are proven in the next few
sections, backed by our simulations.

1The exact details of duplicate removal are unimportant.
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An easy way to summarise the protocol is:

New View(u) =
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k nodes from
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Due to its dynamic nature, the protocol automatically adapts
and re-equilibrates the network (the connectivity graph) each
time the connectivity graph (the directed graph built from
the views) does not look like a uniform random graph with
constant out degree, regardless of what caused that imbal-
ance. There are two forces responsible for this, correspond-
ing to the two different parts of the protocol:

The views requested by u. We call this mixing. Node
u pulls views from several nodes, and almost all the
nodes of the new view come from the pulled views.
This process by itself, as we shall see later, ensures that
the graph doesn’t partition. This mixing is “pull” only.
The push and push-pull alternatives are discussed in
section 7.

The nodes that requested u’s view. We call this rein-
forcement. The idea behind it is simple: by pulling,
node u learns second hand of some nodes in the sys-
tem. But u learns first hand that the nodes that pulled
it exist. The node u positively reinforce the nodes that
pulled it by adding them to the list out of which it cre-
ates its new view. Under some conditions (that the
mixing part provides) this process ensures that the
network stays relatively balanced. Also, the process
removes older edges, thus ultimately eliminating edges
pointing to dead nodes, and adds fresh edges, includ-
ing some to newly joined members.

Without reinforcement the network would collapse into
a star-like structure. This is why the “Weight of Re-
inforcement” parameter ω should be set to at least 1.
Larger is better and will be either 1 or ∞ on a typical
implementation.

Labelling this process pushing to oppose the pulling
process described above would be quite misleading: it
is correct that nodes are pushing some information.
However, the nodes are pushing their own names, not
the information in their views as done in the mix-
ing (pulling) part. The crucial part is that nodes are
adding their names to the pool of names, it is sec-
ondary that this is done by pushing.

These two processes will be analysed in detail in later
sections. After connectivity and load balancing, the third
desirable property of the protocol is to have views which
are uniform samples of the membership set and changing
over time so as to emulate each node having the complete
membership set, choosing different gossip targets at each
iteration. This pseudo uniformity of the views is outside of
the scope of the present work, but will slightly be touched
upon in Section 7.

3. DYNAMIC BEHAVIOUR OF THE
PROTOCOL

In this section, we consider the synchronous version of the
protocol and provide an intuitive analysis using expected
values. More rigorous proofs are found in the following sec-
tions.

3.1 Definitions, Partitioning and Size Estimates
Consider a partition of the set of nodes into two sets

A and B. Let x be the fraction of edges from nodes in
A that go to nodes in A. Conversely, let y be the frac-
tion of edges from nodes in B that go to nodes in A. Let

A B

x

1-x

y

1-y

Figure 1: Edge fractions

γ = |A|/n be the frac-
tion of A nodes. A help-
ful interpretation is that
x is the estimate made by
the A nodes of the nor-
malised2 size of A, and
y is the estimate made
by the B nodes of the
normalised size of A. If
the edges were drawn uni-
formly at random, the ex-
pected number of edges
to nodes in A (from nodes
in either A or B) would be
proportional to the size of A. Consider a set S of nodes. If
these nodes think A represents 30 % of the nodes, and B
the other 70 %, one expects 30 % of the edges from nodes in
S to point to A, and 70 % to point to B, even if A is only
10 % of the nodes. The fraction of edges pointing to A is
the estimate of the normalised size of A by the nodes of S.
Applying this to set A instead of S, we see that x is the
estimate by the A nodes of the size of A.

For our purposes, the graph is partitioned if and only if
there are no edges across the partition A-B, that is, both
x = 1 and y = 0, or equivalently x−y = 1. However, if both
parts agree on their size estimate, however far from the the
correct size that estimate may be, we have x − y = 0 6= 1,
and (many) edges across the A-B cut. Luckily, the protocol
ensures that x ≈ y. Applying this fact to all possible A-
B partitions, we see that the graph cannot be partitioned.
In the next subsection we prove that in expected value the
convergence to x = y is extremely fast.

Furthermore, this also shows (in expected values) that an
application level push-pull gossip will converge rapidly since
the diameter of the undirected graph is small. Assume |A| =
γn ≤ |B|. From x = y there are at least kγn edges across
the cut, thus making the (undirected) graph an expander.

3.2 Evolution of the estimates of the size of A

3.2.1 Mixing
Neglecting reinforcement, it is easy to see that both A and

B converge to the same estimate of the size of A. The act of
pulling and merging the views corresponds to asking nodes
from both sides for their estimate, then averaging them.

Let xn and yn denote the fractions of edges to set A re-
spectively from the A nodes and the B nodes after n iteration
of the protocol. Considering the A nodes, with probability

2number of nodes in the considered set divided by the total
number of nodes
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xn they pull nodes from set A (and get a fraction xn of edges
to A), and with probability 1 − xn, they pull nodes from B
(and get a fraction yn of edges to A). Similarly for yn+1.
Hence we get, in expected3 values :


xn+1 = xn ∗ xn + (1 − xn) ∗ yn

yn+1 = yn ∗ xn + (1 − yn) ∗ yn
(1)

Both new estimates of the size of A are a weighted aver-
age between A’s and B’s current estimate, the weight being
proportional to the estimated size of A.

By subtracting one equation from the other, we get xn+1−
yn+1 = (xn − yn)2. In other words:

(xn − yn) = (x0 − y0)
2n

(2)

The convergence to x = y is extremely fast. The only
cases not converging are (x0 = 1, y0 = 0), we start with
a partition and there exists no way to recover, and (x0 =
0, y0 = 1), a degenerate case which leads to a partition only
because we neglect reinforcement.

The estimate of the size of set A by the A nodes, and
that estimate by the B nodes quickly converge to the same
value. This value, however, has no tangible reason for being
the true size of A. Not only does agreeing on the estimate
ensure that the graph is not partitioned, it also provides the
necessary conditions for reinforcement to drag the estimate
to the correct value of the size. If we were to rewrite equa-
tions (1) to take into account the reinforcement, we would
notice that the effect of reinforcement is negligible unless
x = y, and when x = y, it pushes the estimates to the
correct value γ, but at a much slower rate than (2).

3.2.2 Reinforcement
Consider set A, with both sides agreeing on their estimate

of the size of A. Some nodes from A, and some nodes from
B are going to pull A nodes. But what proportion of each?
Actually, the same proportion as the sizes of A and B. To fix
the ideas say x = y = 30 %. Then 30 % of the A nodes pull
from A and 30 % of the B nodes pull from A. So A really
sees 30 % of the A nodes, and 30 % of the B nodes, that
is, it sees the same fraction of both sets and thus correctly
estimate the fractions of A and B nodes in the network.

This is why reinforcement brings the estimate of the size
to the correct value: the reinforcement process injects a little
bit of true value in the size estimate at each iteration, thus
pushing the estimate towards the correct value. Note, this
only works when both sides agree on their estimate of the
size of A. Otherwise, A would not be pulled by the correct
proportion of nodes. Note also that by symmetry, the same
applies to B.

3A comparable result for a given partition of the set of nodes
can be obtained with high probability, even taking into ac-
count the fanout and the resulting dependency on the vari-
ables, thanks to some versions of the Chernoff Bounds and
their insensitivity to probabilistic dependencies. This result
is useful when considering a sudden in-balance in the graph
across a given partition of the set of nodes. However, our
result was not strong enough to capture the evolution of the
whole graph: this required us to take a union bound on all
2n possible partitions and a multiplicative factor of 2n has
an unhealthy tendency of rendering all bounds meaningless.
A work around is to look for the limit probability distribu-
tion of the number of edges across each partition, an exces-
sively complex computation.

4. NON PARTITIONING
In this section, we present our framework in which we

prove that the expected time before a fraction γ of the nodes
partitions away from the rest of the nodes is exponential in
γkn, where k is the size of the views and n the number of
nodes in the network. Let µ be the churn rate: at each
round of the protocol, µ randomly selected nodes die, and
µ new nodes join the network. Our proof holds as long as
µ � γkn. See supporting simulations in Section 6.

The above result on the time to partition proves that if,
and when, the network partitions, only a very small com-
ponent disconnects, and the rest of the network stays con-
nected. Furthermore, the nodes of the small disconnected
component can easily detect they have partitioned away by
looking at the (lack of) diversity in the content of their views
over time. They then attempt to re-join the network. Set-
ting γ = 1/n in the above formula means considering a single
node and its probability of getting disconnected for having
only dangling edges in its view. The view size needs to be
larger than the churn rate for the expected time until par-
tition to be exponential.

We present a detailed overview of the proof that the net-
work does not partition. Here, for simplicity, we assume the
churn rate µ to be zero. The complete proof can be found
in appendix A. The modifications to the proof for µ 6= 0 are
detailed in appendix B.

4.1 Model and Definitions

4.1.1 Model Intuition
The model is obtained from a slightly modified version of

the completely unsynchronised protocol further simplified
by some sort of mean-field approximation.

At each iteration in our modified protocol, when pulling,
one node chosen uniformly at random replaces a (randomly
chosen) node v in its view by a (randomly chosen) node from
the view of v. That is, it updates a single element of its
view instead of all of them. Reinforcement works as follows:
certain times, a node u, chosen uniformly at random, tags a
randomly chosen node v from its view. Then v reinforces u
by replacing one of the nodes in its view by u.

Our assumption is the following: consider a partition of
the set of nodes into two sets A and B. Each node has some
number of edges pointing to nodes in A, and some number
of edges pointing to nodes in B. We assume a node’s edge
distribution to be independent of that of its neighbours. For
a node u, this means that the number of edges pointing to A
its neighbour v ∈A has is the same as an arbitrary x ∈A has.
In other words, the (out)-edges of A nodes are identically
distributed. The same holds for B nodes. The need for this
assumption is clear when looking at Equations 3: consider
a node u having an edge to a node v ∈A, the assumption
allows us to consider a random node x ∈A instead of v.

While this is clearly incorrect for a system with a small
number of nodes, we believe the approximation to hold when
the number of nodes is large.

4.1.2 Model
Consider a partition of the set of nodes into two sets A

and B, and two arrays A and B. Consider the views of the
A nodes. For each occurrence of an A node, place a 0 in
A, and for each occurrence of a B node, place a 1. Let a
be the number of 0’s (the number of edges from nodes in
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A to nodes in A) and c (as in cross edges) the number of
1’s (the number of edges to nodes in B). The length of A is
a + c = γkn. Recall γ = |A|/n.

A B

a

c

b

d

Figure 2: Number of edges

a + c = γkn
b + d = (1 − γ)kn

Conversely for B: con-
sider the views of the
B nodes. Place a 0
in B for each occur-
rence of an A node, and
place a 1 for each oc-
currence of a B node.
Let b be the number of
0’s, and d be the num-
ber of 1’s. There are
b + d = (1 − γ)kn el-
ements in B. Each ar-
ray represents the con-
catenation of the views
of the nodes of one set
where a 0 denotes an
edge pointing to a node
in A, and a 1 denotes an edge pointing to a node in B.

Mixing (pull) updates can now be made precise. If the
element being updated is a 0, the new value is the value of
a position chosen uniformly at random from A. If it is a
1, the value is the value of a position chosen uniformly at
random from B. As for reinforcement, if the node doing the
tagging is in A, put a zero, otherwise, a 1.

The modifications we made to the protocol ensure that a
single array entry is updated each time. To correctly mimic
the protocol, with probability p the update will be reinforce-
ment, and with probability q = 1 − p � p the update will
be by pulling, where the parameter p is an increasing func-
tion of the protocol parameter “Weight of Reinforcement”
ω, taking value 0 when ω = 0, 1/k when ω = 1, and f/k

when ω = ∞. In a later claim, we require p � 1/√ln γkn.
This inequality is verified even when p = f/k, for all values

of γ by having f /
√

k. This is the case since we take f to
be a small constant.

4.1.3 State Diagram and Limit Probability
The system is fully characterised by the values a and b, or

equivalently, by b and c as we use later. The state diagram
is then a rectangular grid of size γkn by (1 − γ)kn, where
the only possible state transitions are from a node to one of
the four nearest neighbours on the grid. See Figure 3.

4.1.4 Limit Probability Distribution
The limit probability distribution is 1 for the partitioned

state (a = γkn, b = 0), and 0 for the rest of the grid, because
there is no transition out of the partitioned state. We add a
transition out of the partitioned state to the two neighbour
states (a = γkn − 1, b = 0) and (a = γkn, b = 1). Each
time the graph partitions, we restart with a single directed
edge across the partition. The fraction of time spent in the
partitioned state in this never ending process is clearly a
lower bound on the expected time until the (real) system
partitions.

4.1.5 Claim
In the model described above, the fraction of time spent in

the partitioned state of this finite (2-dimensional) Markov
Chain is exponentially small in γkn when µ � γkn and
p � 1/√ln γkn.

b0

a

Dead
State

Added
Transitions

Figure 3: State Diagram

4.2 Equations
The probabilities of changing the number of zeros in A

are:

Pr[(a, b) → (a − 1, b)] = (1 − p)
a

kn

c

γkn
+ p

b

kn

a

γkn

=
a

k2n2

„
(1 − p)c

γ
+

pb

γ

«

Pr[(a, b) → (a + 1, b)] = (1 − p)
c

kn

b

(1 − γ)kn
+ p

c

kn

a

γkn

=
c

k2n2

„
(1 − p)b

1 − γ
+

pa

γ

«

(3)

The first term on the right-hand side of the first equation,
corresponds to updating by pulling. To decrease the number
of 0’s in the array A, we need to pick a 0 in A, which happens
with probability a/kn. This 0 denotes an edge pointing to a
node in A. We follow that edge and use the target’s value
for our update. In our model, “following the edge” means
“choose a position in A uniformly at random”.4 We need to
pick a one in A, which happens with probability c/γkn.

With probability p, we do some reinforcement. To de-
crease the number of zeros in A, we need to have a node
from B tag a node from A, which happens with probability
b/kn, and the element in A receiving the reinforcement needs
to be a zero, which happens with probability a/γkn. The
reasoning is similar to increase the number of zeros by 1 in
A; hence Equations (3). We shall not present the analysis
for the evolution of B, since it can be obtained by symmetry,
exchanging a by d, b by c, and γ by 1 − γ.

The following analysis confirms the behaviour suggested
by our earlier analysis in expected value. If one neglects
reinforcement, the probability to step towards the diagonal
line a/γ = b/(1 − γ) (corresponding to both sides agreeing on
their estimate of the size of A), is larger than stepping away.
In other words, the system has a natural tendency of re-
equilibrating itself. The same is true of the reinforcement,
as will be made apparent in Section 5.

4This is where our assumption about neighbour indepen-
dence is being used.

296



4.3 Proof Intuition and Summary
Denote by P(a,b) the limit probability of state (a, b). As-

sume for one instant that

P(a,b) Pr[(a, b) → (a + 1, b)] = P(a+1,b) Pr[(a + 1, b) → (a, b)]

P(a,b) Pr[(a, b) → (a, b − 1)] = P(a,b−1) Pr[(a, b − 1) → (a, b)]
(4)

holds for all a’s and b’s. Then

Pr[(a, b) → (a + 1, b)]

Pr[(a + 1, b) → (a, b)]
=

Pa+1,b

Pa,b
≈ γ

1 − γ

b

a

Pr[(a, b) → (a, b − 1)]

Pr[(a, b − 1) → (a, b)]
=

Pa,b−1

Pa,b
≈ (1 − γ)

γ

(γkn − a)

b − (1 − γ)kn

=
(1 − γ)

γ

c

d
(5)

These two terms, γ/(1 − γ)
b
a

and (1 − γ)/γ
c
d

are smaller than
one for any position above the diagonal, a/γn ≥ b/(1 − γ)n,
and decrease as we step away from the diagonal and get
closer to the partitioned (dead) state. These two approx-
imations come from Equations 3 where we neglected the
terms in p.

Consider any path between a state on the diagonal and
the partitioned state such that for each transition, either a
increases, or b decreases, that is, we only use the two tran-
sitions written in (5). Express the ratio between the limit
probability of these two states as the cascading product of
the limit probability distribution of the intermediary points
on the path:

R =
Pγkn,0

Pastart,bstart

=
Pa1,b1

Pastart,bstart

Pa2,b2

Pa1,b1

Pa3,b3

Pa2,b2

· · · · Pγkn,0

Pafinish−1,bfinish−1

(6)

This ratio R is also a product of many right-hand terms
from (5), hence making the ratio exponentially small. All
the terms in the ratio are non-zero since all states of the
Markov Chain are reachable.

Unfortunately, Equations (4) do not hold. However, the
cascading product (6) is still useful and meaningful if we re-
place the equalities of (4) by inequalities in the appropriate
direction. We can build a path such that the inequalities are
always in the direction of the next point in the path. Sadly,
now we can have transitions where b increases or a decreases,
that is, some of the numbers in the cascading ratio are now
larger than 1. Some algebra work overcomes that issue ex-
cept when the start state – that we cannot choose anymore
– is close to the edge of the grid. Starting on the diagonal,
we cannot be close to both bad sides, which solves this last
issue.

This however requires p to be moderately small. While
this is the case for our protocol and all the other protocols we
are aware of, one might want to design a protocol where p is a
constant. We believe the result to hold true even with larger
p’s. The constraint on p came in when we had to consider
the worst possible starting point for the path. This was
seemingly due to a technical difficulty, not a fundamental
one. Any reasonable starting point of the path lifts the
requirement on p.

The complete proof can be found in appendix A.

5. NETWORK BALANCE
Each view consists of k distinct nodes. Consider the array

V formed by concatenation of all the views. This array con-
tains kn nodes. Ideally, each node would appear exactly k
times. However, some nodes appear more than k times and
some less. The number of times node u appears in V is the
same as the number of nodes having node u in their view.
This the best indicator of how many times node u will be
pulled in one round of the protocol.

Consider V: it is updated at every round by the protocol.
Instead of analysing this very complex process, we intro-
duce a simpler model which can be analytically analysed
and which captures the essence of the protocol, while being
general enough to be valid for other protocols as well. In
essence, this is the model from Section 4 with the added
assumption that the nodes from sets A and B are indistin-
guishable. This corresponds to assuming there is agreement
on the size estimate of the partition as defined in Section 3.

5.1 Simplified Model
We have the array V of length kn representing the con-

catenation of all views. Assume no node leaves or joins the
network. At each iteration, a randomly chosen array ele-
ment is replaced by the following value:

• with probability p pick a node uniformly at random,
that is, randomly pick a number between 1 and n
where n is the number of nodes and use this value;
this corresponds to the reinforcement,

• with probability 1 − p copy the value of an element
chosen uniformly at random from the array; this cor-
responds to the pulling of the views.

The parameter p is the same as in the previous section.
Consider a partition of the nodes into sets A and B. Set the
array elements to 0 or 1, denoting whether the element is in
A or B.

In this simplified model, when reinforcing, a node replaces
an element in its view by a node randomly chosen from the
list of nodes currently in the system. When pulling, a node
replaces a node in its view by picking a node from an arbi-
trary view. Remember, in Section 4, we had assumed that
the distribution of the number of edges to A nodes was the
same for all views of A nodes, but different from the distri-
bution of the views of the B nodes. Here, we furthermore
assume there is no such difference between A and B: picking
from a view from A or B does not matter, the distribution
governing the edge distribution is the same for all nodes.

This model is justified when, and only when, both sets
agree on their partition size estimates. Then, nodes in A
are indistinguishable from nodes in B since all nodes have
the same (out-)edge distribution. Because both sides of the
partition behave in the same manner, there is no longer the
need to distinguish sides when selecting a node, allowing
us to obtain stronger results than in Section 4. Again, we
make the assumption that the conditioning on neighbours
to be negligible: if v is a neighbour of u, we assume the
edges of v are independent of those of u. That is, given a
node u pointing to a neighbour v, we can consider the edges
out-going a random node x instead of the ones out-going v.

Note: in the model, when pulling, an element is updated
by selecting some element from the array and copying its
value. We assumed the probability distribution of the el-
ement selected to be copied is uniform. Uniformity is not
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crucial. However, being identical for all nodes when pulling
is. This happens (only) when there is agreement on the
estimate.

5.2 Without Reinforcement (case p=0 in the
simplified model)

Reinforcement is crucial to the functioning of the protocol.
Indeed, without reinforcement, many nodes quickly disap-
pear from the union of the views as we show below. They
do not partition out, but they do not get pulled anymore,
since all the edges point to the small core of nodes left in the
union of the views, which bear the whole load by themselves.

Choose a set X of i nodes. After an expected number of
iterations E[i] in the simplified model there will be either no
node from X, or only nodes from X left in the views, with

E[i] = ikn

kn−1X

j=1

1

j
− k2n2

i−1X

j=1

i − j

j(m − j)
≤ ikn ln kn

Proof omitted.
The ikn ln kn iterations correspond to i ln kn rounds. This

result suggests that the number of rounds it takes for some i
nodes to disappear from the views is much smaller. Indeed,
from our simulations, it looks like the number of iterations
before more than 90 % of the nodes have disappeared from
the views5 is logarithmic in n.

We believe the protocol of [14] to be accurately captured
by our model with no reinforcement. As such, after the
initial phase where the views are filled, the network will
rapidly converge to a star, with a core whose size is the
view size.

In fact, any membership protocol which re-samples ran-
domly from the views without adding the names of the nodes
currently in the system in some way or another is doomed
to collapse. Consider V, the concatenation of all the views.
Iterating the protocol once corresponds to creating a new
V by some kind of sampling with replacement from the old
V. Some nodes might disappear from V at each iteration.
Once a node has disappeared, it cannot reappear without
an external mechanism like reinforcement. The diversity
of the content of V decreases over time, and in fact rather
rapidly, indicating a star like network. Note that it is the-
oretically possible to evade the issue by creating a protocol
which would correspond to a permutation on V, but this is
rather tricky to implement, and doesn’t necessarily behave
nicely in the presence of nodes leaving or joining the net-
work. Otherwise, one needs to actively add the names of
the nodes currently in the network to V, a process we call
reinforcement. LwPBCast [6] has some reinforcement, even
though not specifically mentioned in the article: each pro-
cess adds itself to the “subs” field when sending a message.
The same holds for Newscast [9] and Cyclon [16] as well:
nodes add their own address to their view that they then
disseminate.

Note the following interesting behaviour in say the context
of news propagation [9]: assume all the “News Events” are
created by some subset S of the nodes. Let only the nodes
creating “News Events” reinforce: nodes add their names to
their views when creating a “News Events” instead of every
T seconds. Then the network will converge to having a core
(S, the nodes creating messages) and a fringe (the other

5We only simulated with views of logarithmic size, fanout
didn’t have any effect.

nodes). Were these nodes to change, the star would adapt
and recenter itself on the nodes currently emitting messages.

5.3 With Reinforcement
When there is reinforcement in the system, one can solve

for the limit distribution, with Pi the number of 0’s in V:

Pi

P0
=

 

kn

i

!

γp

1 − γp − i
kn

(1 − p)

i−1Y

j=1

γp + j
kn

(1 − p)

1 − γp − j
kn

(1 − p)

For all but p extremely small (less than 2/kn) the limit prob-
ability distribution looks like a peak function centred around
imax = γkn. Looking at how fast the function drops around
the peak in comparison with the number of partitions of size
γ yields estimates of the extrema numbers of occurrence of
A nodes in the views. For example: with γ = 1/n, solving
nPi ≈ 1 yields the likely expected maximum occurrence of
a node in the views. The peak is narrower for higher values
of p, but keep in mind that p � 1 for the protocol to make
sense. In Section 3 terms, imax is the correct value for the
estimate of the size of the partition.

This analysis shows that once both sides have agreed on
estimates of the size of the partition, the estimate will con-
verge to the correct value and stay there, ensuring that the
network stays well balanced.

6. SIMULATIONS
Simulations for large numbers of nodes have shown that

the performance of the protocol is quite good. For 217 ≈
100, 000 nodes, view sizes of 17, a fanout of 3, and a loosely
synchronised system, the maximum in-degree was always
below 4.5 times that of a random graph and the standard
deviation was not more than 3.2 times larger than that of a
random graph. These values would improve with increased
fanout, but even a fanout of 2 gives satisfactory perfor-
mance.
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Figure 4: Number of iterations until partitioning

We were interested in matching our theoretical results
about partitioning and churn. We ran simulations evaluat-
ing the number of iterations until partitioning. By partition-
ing, we include single nodes getting disconnected for having
only dangling edges. Unsurprisingly, increasing view sizes
or decreasing the churn increased the number of iterations
before partitioning. More interestingly, so did increasing the
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number of nodes without increasing the view size. For ex-
ample, with no churn, the average number of iterations until
partitioning with a view of 4 elements and a fanout of 2 was
respectively 2 × 105, 3 × 106 and 7 × 106 for 16, 64 and 256
nodes. Due to the exponential nature of the phenomena, it
is only possible to simulate for small view sizes and / or high
churn rates. Also, increasing the fanout from 2 to 3 very sig-
nificantly increased the time to partition. More details will
appear in [1].

In Figure 6, we verified the scaling properties of the pro-
tocol. With n the number of nodes in the system, we set the
view size to k = log2 n and the churn to µ = n/32. Such a
high churn is required to actually see partitioning in a rea-
sonable time. Even though there were over a 120 runs for
each point (except 40 for the last one), the standard devi-
ation was of the same order of magnitude as the average.
The fact that the curve is increasing suggests that the sys-
tem scales. It also suggests that the requirement µ � k of
our theorem may not be necessary.

The size of the small partition decreases when the churn
increases. It goes from an average of 5.8 when there is no
churn down to 1 or 2 for high churn.

7. ALTERNATIVE PROTOCOLS
There were several choices made in the design of the al-

gorithm: push, pull, randomised, etc. Here we explore some
of the alternatives and cite some relevant work. Reference
[8] simulates many of these alternatives. Note however that
they do not distinguish between reinforcement and pulling
(view mixing), using the same process for both. We point
out their results where applicable. SCAMP [7] and follow up
papers explore mechanisms to dynamically adjust the view
size. This is outside the scope of our work.

7.1 Reinforcement
Reinforcement was implemented using a push mechanism:

every node pushes its name onto the view of some (random)
node. The idea is to actively add one’s name to a (multi)
set defined by the concatenation of the views (V in section 5
terms) in order to compensate for the drop due to selection
randomness in the pulling part, node failures, etc.

The alternative implementation, a pull mechanism, makes
little sense. Adding node u to one’s view is only useful if u is
not already present, but the nodes for which this is the case
cannot contact u! As mentioned above, lack of reinforcement
yields a star network. This has also been noted in [8].

7.2 Mixing
This part of the protocol was implemented by a pull mech-

anism for simplicity. Really, it is about mixing the content of
the views. Pushing, Pulling or Push-Pull are valid options.
For example, the analysis of Section 3 (neglecting reinforce-
ment) yields the exact same result considering a push only
mechanism: while the equations 1 are different and rather
intractable, one can numerically verify that the expected
speed of convergence given by Equation 2 is the same in
both push and pull cases. We believe this push analysis to
reasonably capture the essence of LwPBCast.

However, we chose Pulling and have the following non-
rigorous argument to support our choice. Set reinforcement
aside and consider the (directed) connectivity graph G at
t = 0. Under a pull mechanism, an element of the view of
node i at time t is obtained by a random walk of 2t steps in

G starting from i. This might suggests the following memo-
ryless property: after ln n rounds, the views are independent
of their initial value.6

Under a push mechanism, the random walk in not neces-
sarily directed and can be significantly shorter since the walk
can actually backtrack. Reference [8] also notes that Push
increases the risk of partitioning when the network grows.

When implementing view mixing and reinforcement as a
whole, push-pull ensures the presence of the good features
of both.

7.3 Randomisation
Instead of making all choices at random, each view entry

could have a time-stamp. Then the random choices (commu-
nication partner, replacement) can be based on these time-
stamps. Again, see [8] for some simulations. Randomisation
ensured that old edges were eventually removed from the
views, replaced by fresh ones. The variance in the life span
of the edges is the primary source of node in-degree vari-
ance. Time-stamps can advantageously replace randomisa-
tion, sharply decreasing the in-degree variance. See Cyclon
[16] for a protocol quite similar to ours, but using time-
stamps.

Conclusion
We have analysed an algorithm for local view maintenance
without requiring the assumption of uniformly random views.
The strong guaranties offered by our proofs should apply to
other protocols as well. Extending them to cover protocols
with time-stamps in the views is of particular interest since
these protocols have sharp node in-degree concentration.
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APPENDIX

A. EXPONENTIALLY SMALL PROBABIL-
ITY OF PARTITIONING (PROOF)

Non-negative-Flow Path
There exists a path P = {(a0, b0), (a1, b1), . . . , (ai, bi),. . . ,
(al, bl)} between any initial state (a0, b0) and any final state
(al, bl) such that, for each transition (ai, bi) → (ai+1, bi+1)
on the path, we have Pai,bi

Pr[(ai, bi) → (ai+1, bi+1)] ≥
Pai+1,bi+1

Pr[(ai+1, bi+1) → (ai, bi)].
This can be interpreted as having a non-negative (probabil-
ity) flow between (ai, bi) and (ai+1, bi+1).

Proof: Consider the set S of states reachable from (a0, b0).
By reachable we mean there exists a path from (a0, b0) satis-
fying our non-negative flow constraint. If S is not the whole
set, there is a positive (probability) flow from the outside
to S, since all transitions into S are positive. This situation
violates the steady state definition (no sinks, flows are at
equilibrium).

Simplified Path
Let us define an upper parallel D to the diagonal a/γ =
b/(1 − γ):

D : a =
γb

1 − γ
+ 0.5γkn (7)

We consider a non-negative flow path between a random
start point of D and (γkn, 0) and simplify it by getting rid
of all loops, if any. Furthermore, we only keep the tail of
the path, the part between the last time it intersects D and
the partitioned state. This ensures that our path P stays in
the region above D. Our choice of the diagonal makes the
bound in (5) less than 1/2. Keeping only the tail also ensures
that P does not spiral around the starting point, which we
need later for the algebra to work out.

Ratio and Analysis
We break R = RA · RB from (6) into two parts, RA for all
the transitions on the path where the change in the number
of 0’s and 1’s is in A (that is, a and c change, b and d are
constant) and RB when the changes are is B.

RA =
Y

(ai,bi)∈P
bi=bi+1

Pai+1,bi

Pai,bi

≤
Y

(ai,bi)∈P
bi=bi+1

Pr[(ai, bi) → (ai+1, bi)]

Pr[(ai+1, bi) → (ai, bi)]

Group the terms for a given value of a

RA(a) =
Y

b, such that

{(a,b)→(a+1,b)}∈P′

Pa+1, b

Pa,b

Y

b, such that

{(a+1,b)→(a,b)}∈P′

Pa, b

Pa+1,b

≤
Y

b, such that

{(a,b)→(a+1,b)}∈P′

UP(a, b)
Y

b, such that

{(a+1,b)→(a,b)}∈P′

1

UP(a, b)

(8)

so that RA =
Q

a RA(a), and with

UP(a, b) =
Pr[(a, b) → (a + 1, b)]

Pr[(a + 1, b) → (a, b)]
=

c

a + 1
·

(1−p)b
1−γ

+ pa
γ

(1−p)(c−1)
γ

+ pb
γ

(9)
UP(a, b) is a monotonically increasing function of b, for all

but large values of a where it is monotonically decreasing.
From now on, it is easier to work with c instead of a, so
we shall mostly use c, keeping in mind that a + c = γkn,
and that the partitioned state occurs when b = c = 0. Let
c0 = γkn−a0 be such that UP(a, .) is increasing for a ≤ a0,
and decreasing for a ≥ a0. We have

c0 =
p2(1 − γ)kn + (1 − p)2

(1 − p)2 + p (1 − γ)/γ
≈ p2(1 − γ)kn

(1 − p)2
≤ f2n

k
(10)

The terms in RA(a) correspond to the points of intersec-
tion of P with the line for constant a, with the following
orientation: if the direction is towards the partitioned state,
then it is “Up”, and the corresponding term is UP(a, b).
Otherwise, it is “Down” with 1/UP(a, b). Consider the terms
of RA(a) sorted in increasing order of b. We have a suc-
cession of “Up”, “Down”, “Up”, “Down” etc. There is an
odd number of terms in RA(a) when c ≤ cstart (we finish
with a “Down”), and an even number otherwise. The fact
that “Up” and “Down” alternate is a property of our path,
coming from a simple topological argument.
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Since UP(a, .) is monotonic, when there is an odd number
of terms, we can always combine an “Up” with the next (or
previous) “Down” to form ratios less than one. We are left
with the last (or first) “Up” unpaired. Because we are above
the upper diagonal defined in (7), this last term is less than
a half, except for two exceptions where it can be bounded by
2: on the edge of the grid and for the hand-created transition
out of the dead state.

When there is an even number of terms in RA(a), when
UP(a, .) is increasing, we pair each “Up” with the following
“Down”, getting ratios less than one. When UP(a, .) is de-
creasing, we pair the first “Up” with the last “Down”, then
each “Down” with the next “Up”. All these ratios will be
less than one, except the first one for which some algebra

shows that it is bounded by 1 + p(1−γ)kn
1−p

.
Putting everything together, we get

RA ≤
„

1

2

«cstart
„

1 +
p(1 − γ)kn

1 − p

«max(c0−cstart,0)

We get RB by symmetry. Combining both, we have:

R ≤
„

1

2

«bstart+cstart
„

1 +
p

1 − p
γkn

«max(b0−bstart ,0)

×
„

1 +
p

1 − p
(1 − γ)kn

«max(c0−cstart,0)

At most one of the two right most terms is raised to a non-
zero power. When γ ≤ 1/2, our bound is worst, that is, the
above ratio is largest for bstart = 0, yielding cstart = γkn/2.
By symmetry for equation (10), we have b0 = (p/1 − p)

2γkn.
The bound simplifies to:

R ≤

0

@
(1 + p

1−p
γkn)(

p

1−p
)2

√
2

1

A

γkn

As long as (1 − p/p)
2 ≤ ln kn the upper term is negligible.

This is the case since we set p ≥ 1/k.
We now apply a union bound on all possible partitions of

size γ. This multiplies our bound by something negligible
as long as k ≥ O(ln n). Finally:

R ≤
„

1

2

«γkn/2

B. CHANGES TO APPENDIX A AND
SECTION 4 TO INCLUDE CHURN

We detail here the changes necessary to make the proof
outlined in Section 4 apply when there is a churn rate of
µ 6= 0. In evaluating whether a set A of nodes partitions
away from the network, it makes sense to assume that these
nodes don’t die. In our proof, all the nodes joining and
dying are B nodes, the A nodes do not change.

Handling dead edges
The definitions of a, b, c and d are unchanged. Let α be the
number of dangling edges in A, and β the number of dangling
edges in B. We have a+c+α = γkn, and b+d+β = (1−γ)kn.

We cannot analyse this 4-dimensional model: we do not
know how to prevent the path P from spiralling around the
start point. Instead, we assume the fraction of dead edges
to be constant: α = λc and β = λb. Edges pointing to A
nodes cannot be dangling since the A nodes don’t fail.

In steady state, the number of dangling edges removed
and created at each iteration of the protocol are equal. We
have λ = µ

pn
.

Equations
There were (1−p)kn pulls and pkn reinforcements per round.
Now there are also (b+ c) µ

(1−γ)n
creations of dangling edges

per round. Dangling edges are removed by the reinforce-
ment process. In B, the view of a failing node needs to be
removed, replaced by the view of a joining node. It is easier
to assume that the view of a failing node is taken over by
a joining node. Not doing so would mean adding an extra
term (insignificant in the end) to the following probabilities.

Pr[(b, c) → (b, c − 1)] =

cµ
(1−γ)n

kn + (b+c)µ
(1−γ)n

+
kn

kn + (b+c)µ
(1−γ)n

„

p
a

kn

c

γkn
+ (1 − p)

c

kn

b + β

(1 − γ)kn

«

Pr[(b, c) → (b, c + 1)] =

kn

kn + (b+c)µ
(1−γ)n

„

p
b

kn

a + α

γkn
+ (1 − p)

a

kn

c

γkn

«

(11)

Up down ratio
For UP(a, b), we now have: Note that a + c do not add up
to γkn anymore.

UP(b, c) =
pλac

γ
+ (1 − p) bc

(1−γ)(1+λ)
+ (1 − p)λckn

1+λ
+ ckµ

(1−γ)

(1 − p) (a+1)(c−1)
γ

+ pb(kn − c−1
γ

)

For our results to hold, UP(b, c) needs to be less than one,
meaning that we are less likely to step toward the partitioned
state than away. The main difference with equation (9) in
Section 4 is the third and fourth terms of the numerator,
corresponding to the creation of dangling edges. They need
to be small – otherwise the result won’t hold – and they are.

The monotonicity of UP(a, .) changes direction at c0 where

c0 ≈ (1−γ)p2kn+γkµ

(1−p)2
By symmetry we get b0:

b0 ≈ γp2kn + (1 − γ)kµ

(1 − p)2
(12)

Again, our bound on R is worse (for γ ≤ 1/2) when cstart =
γkn/2 and bstart = 0. The bound is:

R ≤ poly(n)b0

2
γkn/2

=

 

poly(n)
b0/γkn

√
2

!γkn

The ratio b0/γkn needs to go to 0 for the bound to be
small.7 From (12), dropping irrelevant terms we have the
claimed result when the following ration is small:

b0

γkn
≈ µ

γkn
� 1

Comment on model:
The case of nodes dying and joining in both sets of the par-
tition is a straight forward modification. The third term of
equation (11) changes, and α and β are now constant. The
algebra giving b0 and c0 is also simpler.

7Being less than Cst ln n is sufficient
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