
Consensus: Paxos
Haobin Ni

Oct 22, 2018

What is consensus?

A group of people go to the same place for the same meal.

→ A set of nodes have the same value for the same variable.

X=7 X=7 X=7

Why is it important?

In state machine replication (SMR):

● We need to keep replicas “the same” = consensus

In blockchain:

● We need to maintain the integrity of global ledger = consensus

What are the goals?

Safety properties:

● Agreement: any two correct nodes decide the same value
● Validity: any value decided should be a value proposed by some node

Liveness properties:

● Termination: eventually all correct nodes should decide

What are the goals? cont’

Performance:

● The number of replicas needed
● The number of message rounds
● The total number of messages
● Overhead (throughput/latency)
● average/optimistic/etc

What are the assumptions?

Failure/adversary model

● Fault-stop/Crash/Byzantine
● Limited computational/mining power
● Rational

What are the assumptions? cont’

Network model

● Delay: Synchronous/Partial synchronous/Asynchronous
● Integrity/Confidentiality: Authenticated channel/Public key infrastructure
● Clock
● Topology

The Part-time Parliament 98’

● Paxos Algorithm
● Assumes:

○ Crash failure
○ Asynchronous network

● Achieves:
○ With f faulty nodes:
○ Needs f+1 for safety
○ Needs 2f+1 for liveness
○ 3 message rounds for each decision made

The Part-time Parliament 98’ cont’

Paxos is a Mediterranean island

The Part-time Parliament 98’ cont’

Paxos is a Mediterranean island

The Part-time Parliament is a fictional parliamentary system of ancient Paxos
where people experience asynchrony and crash failures.

“Recent archaeological discoveries on the island of Paxos reveal that the
parliament functioned despite the peripatetic propensity of its part-time
legislators…”

Leslie Lamport

Hey, we’ve met before!

Time, Clocks, and the Ordering of Events in a Distributed System

And we’ll meet again!

The Byzantine Generals Problem

Leslie Lamport on The Part-time Parliament

“My attempt at inserting some humor into the subject was a dismal failure… I
submitted the paper to TOCS in 1990. All three referees said that the paper
was mildly interesting, though not very important, but that all the Paxos stuff
had to be removed. I was quite annoyed at how humorless everyone working
in the field seemed to be, so I did nothing with the paper…”

http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos

http://lamport.azurewebsites.net/pubs/pubs.html#lamport-paxos

“how humorless everyone working in the field
seemed to be…”

“Legislators could communicate only by messenger and were provided with
funds to hire as many messengers as they needed. A messenger could be
counted on not to garble messages, but he might forget that he had already
delivered a message, and deliver it again. Like the legislators they served,
messengers devoted only part of their time to parliamentary duties. A
messenger might leave the Chamber to conduct some business—perhaps
taking a six-month voyage—before delivering a message. He might even leave
forever, in which case the message would never be delivered.”

“how humorless everyone working in the field
seemed to be…”

“Legislators could communicate only by messenger and were provided with
funds to hire as many messengers as they needed. A messenger could be
counted on not to garble messages, but he might forget that he had already
delivered a message, and deliver it again. Like the legislators they served,
messengers devoted only part of their time to parliamentary duties. A
messenger might leave the Chamber to conduct some business—perhaps
taking a six-month voyage—before delivering a message. He might even leave
forever, in which case the message would never be delivered.”

“We assume the messages could not be changed
and an asynchronous network where messages
could be duplicated or delayed indefinitely.”

Paxos Made Simple 01’

“The Paxos algorithm, when presented in plain English, is very simple.”

The description of the algorithm is greatly simplified by deleting all the Paxos stuff
and use modern terms. (11pages vs 37pages)

But the author is still hand-waving many details (such as leader) and how to
implement SMR with Paxos.

“...Do not try to implement the algorithm from this paper. Use [parliament] instead.”

Paxos Made Moderately Complex 15’

Robbert van Renesse and Deniz Altinbuken

SMR implemented with a practical version of
multi-Paxos. Specified and explained in detail with
invariants, pseudocode and a Python
implementation.

Disclaimer: I will now try to
explain Paxos in a different and
maybe very confusing way

Paxos Outline

● “Single-decree synod” (Single value consensus)
○ Basic protocol ← In this talk
○ Leader selection

● Multi-decree synod
○ Running multiple parallel “Single-decree synod” protocols
○ Each instance decide one value

■ The decided values are ordered by their instance

● + optimization + state machine repilication = Moderately complex

Single-decree Synod

● Run many rounds of 3-phase commit protocol
○ Each round either decides some value or abort

● Maintains agreement across rounds
○ If a round decides X, all other rounds can only decide X
○ The execution of each instance may interleave each other.

3 Phase Commit - Setting

Each round of 3 phase commit will have a node to
initiate this round.

This node is called the leader of that round.

We can make sure each round only have 1 node act as
the leader by enforcing different nodes use different
round numbers.

This also defines a total order on all rounds. (with
smaller/larger round number).

1

2

5

Phase 1: Prepare

4

3

3 Phase Commit - Prepare

A leader choose a majority/quorum set.

Poll that set on what value to propose.

It should always propose a value if that value could
become the decision.

The acceptors will abort previous rounds unless it has
accepted that round. In this case it informs the leader
that value could still become the decision.

1

2

5

Phase 1: Prepare

4

3

3 Phase Commit - Prepare

Leader: We now start round 8. What do you feel like for
lunch?

Acceptor 1: I have no idea.

Acceptor 2: I already accepted Thai in round 6.

Acceptor 3: … (Never receive this message)

Acceptor 1,2: Now we give up all rounds < 8.

1

2

5

Phase 1: Prepare

4

3

3 Phase Commit - Prepare

Leader: We now start round 10. What do you feel like
for lunch?

Acceptor 1: I have no idea.

Acceptor 2: I already accepted Thai in round 6.

Acceptor 3: I already accepted Taco in round 7.

Acceptor 1,2,3: Now we give up all rounds < 10.

1

2

5

Phase 1: Prepare

4

3

3 Phase Commit - Propose

The leader now propose the latest value some
acceptors has accepted to the same majority set.

This value gives safety. (we’ll explain this later)

The acceptors will respond with an accept message
unless it has aborted this round.

1

2

5

Phase 2: Propose

4

3

3 Phase Commit - Propose

Leader’: Let’s try agree on Thai in round 6.

Acceptor 2: OK. Accept Thai in round 6.

Acceptor 3: No I aborted since I’m now participating
round 10.

Acceptor 4: … (Crashes)

1

2

5

Phase 2: Propose

4

3

3 Phase Commit - Propose

Leader: Let’s try agree on Taco in round 10.

Acceptor 1: OK. Accept Taco in round 10.

Acceptor 2: OK. Accept Taco in round 10.

Acceptor 3: OK. Accept Taco in round 10.

1

2

5

Phase 2: Propose

4

3

3 Phase Commit - Learn

If all nodes in the majority/quorum set of a round
accepted that value, anyone is safe to decide that value.

Someone collects the accept messages and shares the
information “I have seen a round of 3 phase commit
succeeds”.

The decision will be the output of a single-decree synod
instance.

1

2

5

Phase 3: Learn

4

3

3 Phase Commit - Learn

Leader (learner): I see we have agreed on Taco in round
10.

Everyone: Yay, Taco!

1

2

5

Phase 3: Learn

4

3

3 Phase Commit - Learn

Leader (learner): I see we have agreed on Taco in
round 10 … and it crashes!

Acceptor 1,2,5: Yay, Taco!

Acceptor 3,4: ???

But Acceptor 3,4 will learn that decision eventually as
all other rounds can now only decide Taco.

1

2

5

Phase 3: Learn

4

3

Single-decree Synod

We now analyze the single-decree synod protocol.

Remember our goals:

● Agreement
● Validity (trivial)
● Liveness

Agreement

Each round of 3 phase commit either succeeds or aborts.

We only need to prove if any round succeeds, then any round with a larger
round number either aborts or proposes the same value.

Suppose round i succeeds, round j is some round after i.

Agreement cont’

There must exist a node that belongs to the intersection of two quorums of two
rounds.

1

2

5

4

3

1

2

5

4

3

Agreement cont’

There must exist a node that belongs to the intersection of two quorums of two
rounds.

For all such nodes, each round it only receives prepare and propose messages
and it must have replied both messages of round i for it to succeed.

Since i < j, it must receive round j’s prepare message after it have accepted in
round i. (Otherwise it will abort round i) Now we induct on j.

Agreement cont’

Base case: j = i + 1

The only possible scenarios (for a node in the intersection) are:

Prepare i (OK _ _) → Propose i v (Accept i v) → Prepare j (Abort)

Prepare i (OK _ _) → Propose i v (Accept i v) → Prepare j (OK i v)

In the latter case, round j is either aborted by some other node or has value v
since i is the largest round number smaller than j.

Agreement cont’

1

2

5

4

3

Round i: Prepare

1

2

5

4

3

Round i: Propose

1

2

5

4

3

Round j: Prepare

← OK(i, v)

1

2

5

4

3

Round j: Propose

→ Propose
(j=i+1, v)

Agreement cont’

Induction case: j > i + 1, and all rounds i + 1, …, j - 1 satisfies the claim.

The only possible scenarios are the sane:

Prepare i (OK _ _) → Propose i v (Accept i v) → Prepare j (Abort)

Prepare i (OK _ _) → Propose i v (Accept i v) → Prepare j (OK ? ?)

In the latter case, any node in the intersection will only propose a value it has
accepted with a round number >= i.

Agreement cont’

1

2

5

4

3

Round i: Prepare

1

2

5

4

3

Round i: Propose

1

2

5

4

3

Round j: Prepare

← OK(>i, ?)

1

2

5

4

3

Round j: Propose

→ Propose
(j, v=round i<=i’<j)

Agreement cont’

Thus round j can only propose a value accepted in round no earlier than i. By
our IH, this value can only be v.

Liveness

For the single-decree synod to succeed, some round of 3 phase commit must
succeed, which requires the leader and the majority of that round to be
non-faulty. This gives us the 2f+1 bound.

However, even all nodes are non-faulty, we can still make no progress by having
2 conflicting leaders trying to outrun each other:

Liveness cont’

Leader 1: prepare 1 (Acceptors: OK)

Leader 2: prepare 2 (Acceptors: OK, abort 1)

Leader 1: propose 1(Acceptors: Aborted)

Leader 1: prepare 3 (Acceptors: OK, abort 2)

Leader 2: propose 2 (Acceptors: Aborted)

…

Liveness cont’

Due to FLP, we cannot prevent the latter scenario from happening if we want
the leaders to be fault tolerant as well.

One can circumvent this by strengthen the assumptions: physical clocks,
fault-detection, randomness etc and use a leader selection sub-protocol.

Paxos Variants http://paxos.systems/variants.html

http://paxos.systems/variants.html

Conclusion: Paxos

● Paxos is a consensus protocol that defends against f crash failures with
2f+1 replicas.

● It is a useful technique to implement state machine replication and has
many variants which optimized its different aspects.

CORFU: A Distributed Shared Log

Corfu is another Mediterranean island on the North of Paxos

By Mahesh Balakrishnan, Dahlia Malkhi, John Davis, Vijayan Prabhakaran,
Michael Wei, and Ted Wobber

CORFU: A Distributed Shared Log

It is a distributed log designed for high write throughput. (read can scale with
the number of replicas)

A writer of the log first requests a new write position then write at the position
without conflicts.

Possible holes due to slow writes/crashes are filled by empty writes.

