
HIGH-PERFORMANCE NETWORKING
:: USER-LEVEL NETWORKING
:: REMOTE DIRECT MEMORY ACCESS

Moontae Lee (Nov 20, 2014) Part 1 CS6410

Overview
00

 Background
 User-level Networking (U-Net)
 Remote Direct Memory Access (RDMA)
 Performance

Index

Background

00

Network Communication
01

 Send
 Application buffer Socket buffer
 Attach headers
 Data is pushed to NIC buffer

 Receive
 NIC buffer Socket buffer
 Parsing headers
 Data is copied into Application buffer

 Application is scheduled (context switching)

Today’s Theme

Faster and lightweight communication!

02

Terms and Problems
03

 Communication latency
 Processing overhead: message-handling time at

sending/receiving ends
 Network latency: message transmission time between

two ends (i.e., end-to-end latency)

Terms and Problems
03

 Communication latency
 Processing overhead: message-handling time at

sending/receiving ends
 Network latency: message transmission time between

two ends (i.e., end-to-end latency)

 If network environment satisfies
 High bandwidth / Low network latency
 Long connection durations / Relatively few connections

TCP Offloading Engine (TOE)

THIS IS NOT OUR STORY!

04

Our Story
05

 Large vs Small messages
 Large: transmission dominant new networks improves

(e.g., video/audio stream)
 Small: processing dominant new paradigm improves

(e.g., just a few hundred bytes)

Our Story
05

 Large vs Small messages
 Large: transmission dominant new networks improves

(e.g., video/audio stream)
 Small: processing dominant new paradigm improves

(e.g., just a few hundred bytes)

 Our underlying picture
 Sending many small messages in LAN
 Processing overhead is overwhelming

(e.g., buffer management, message copies, interrupt)

Traditional Architecture
06

 Problem: Messages pass through the kernel
 Low performance
 Duplicate several copies
 Multiple abstractions between device driver and user apps

 Low flexibility
 All protocol processing inside the kernel
 Hard to support new protocols and

new message send/receive interfaces

History of High-Performance
07

 User-level Networking (U-Net)
 One of the first kernel-bypassing systems

 Virtual Interface Architecture (VIA)
 First attempt to standardize user-level communication
 Combine U-Net interface with remote DMA service

 Remote Direct Memory Access (RDMA)
 Modern high-performance networking
 Many other names, but sharing common themes

Index

U-Net

00

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication

path

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication

path

 Focusing on small messages, key goals are:
 High performance / High flexibility

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication path

 Focusing on small messages, key goals are:
 High performance / High flexibility
 Low communication latency in local area setting
 Exploit full bandwidth
 Emphasis on protocol design and integration flexibility
 Portable to off-the-shelf communication hardware

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication path

 Focusing on small messages, key goals are:
 High performance / High flexibility
 Low communication latency in local area setting
 Exploit full bandwidth
 Emphasis on protocol design and integration flexibility
 Portable to off-the-shelf communication hardware

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication path

 Focusing on small messages, key goals are:
 High performance / High flexibility
 Low communication latency in local area setting
 Exploit full bandwidth
 Emphasis on protocol design and integration flexibility
 Portable to off-the-shelf communication hardware

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication path

 Focusing on small messages, key goals are:
 High performance / High flexibility
 Low communication latency in local area setting
 Exploit full bandwidth
 Emphasis on protocol design and integration flexibility
 Portable to off-the-shelf communication hardware

U-Net Ideas and Goals
08

 Move protocol processing parts into user space!
 Move the entire protocol stack to user space
 Remove kernel completely from data communication path

 Focusing on small messages, key goals are:
 High performance / High flexibility
 Low communication latency in local area setting
 Exploit full bandwidth
 Emphasis on protocol design and integration flexibility
 Portable to off-the-shelf communication hardware

U-Net Architecture
09

 Traditionally
 Kernel controls network

 All communications via the
kernel

 U-Net
 Applications can access

network directly via MUX

 Kernel involves only in
connection setup

* Virtualize NI provides each process the illusion of owning interface to network

U-Net Building Blocks

 End points: application’s / kernel’s handle into network
 Communication segments: memory buffers for sending/receiving

messages data
 Message queues: hold descriptors for messages that are to be sent or have

been received

10

U-Net Communication: Initialize

 Initialization:
 Create single/multiple endpoints for each application
 Associate a communication segment and send/receive/free

message queues with each endpoint

11

U-Net Communication: Send
START

Composes the data
in the communication

segment

[NI] leaves the
 descriptor in the

queue
NEGATIVE POSITIVE

12

Push a descriptor
for the message

onto the send queue

Backed-
up?

[NI] picks up the
message and inserts

into the network

[NI] indicates
messages injection

status by flag

Associated send
buffer can be

reused

[NI] exerts back-
pressure to the user

processes

Is Queue
Full?

Send as simple as changing one or two pointers!

U-Net Communication: Receive
13

START

polling

 event driven

Read the data using
the descriptor from
the receive queue

Get available
space from the

free queue

Receive
Model?

Use upcall to signal
the arrival

Periodically check
the status of queue

Transfer data into
the appropriate
comm. segment

[NI] demultiplexes
incoming messages
to their destinations

Receive as simple as NIC changing one or two pointers!

Push message
descriptor to the
receive queue

U-Net Protection

 Owning process protection
 Endpoints
 Communication segments
 Send/Receive/Free queues

 Tag protection
 Outgoing messages are tagged with the originating

endpoint address
 Incoming messages are only delivered to the correct

destination endpoint

14

Only owning
process can access!

U-Net Zero Copy
15

 Base-level U-Net (might not be ‘zero’ copy)
 Send/receive needs a buffer
 Requires a copy between application data structures

and the buffer in the communication segment
 Can also keep the application data structures in the

buffer without requiring a copy

 Direct Access U-Net (true ‘zero’ copy)
 Span the entire process address space
 But requires special hardware support to check address

Index

RDMA

00

RDMA Ideas and Goals
16

 Move buffers between two applications via network

 Once programs implement RDMA:
 Tries to achieve lowest latency and highest throughput
 Smallest CPU footprint

RDMA Architecture (1/2)

 Traditionally, socket interface involves the kernel
 Has a dedicated verbs interface instead of the socket interface
 Involves the kernel only on control path
 Can access rNIC directly from user space on data path bypassing kernel

17

RDMA Architecture (2/2)

 To initiate RDMA, establish data path from RNIC to application memory
 Verbs interface provide API to establish these data path
 Once data path is established, directly read from/write to buffers
 Verbs interface is different from the traditional socket interface.

18

RDMA Building Blocks

 Applications use verb interfaces in order to
 Register memory: kernel ensures memory is pinned and accessible by DMA
 Create a queue pair (QP): a pair of send/receive queues
 Create a completion queue (CQ): RNIC puts a new completion-queue

element into the CQ after an operation has completed.
 Send/receive data

19

RDMA Communication (1/4)

 Step 1

20

RDMA Communication (2/4)

 Step 2

21

RDMA Communication (3/4)

 Step 3

22

RDMA Communication (4/4)

 Step 4

23

Index

Performance

00

U-Net Performance: Bandwidth
24

* UDP bandwidth * TCP bandwidth

size of messages data generation by application

U-Net Performance: Latency
25

 End-to-end round trip latency

size of messages

RDMA Performance: CPU load
26

 CPU Load

Modern RDMA

• Several major vendors: Qlogic (Infiniband), Mellanox, Intel,
Chelsio, others

• RDMA has evolved from the U/Net approach to have three
“modes”

• Infiniband (Qlogic PSM API): one-sided, no “connection setup”
• More standard: “qpair” on each side, plus a binding

mechanism (one queue is for the sends, or receives, and the
other is for sensing completions)

• One-sided RDMA: after some setup, allows one side to read or
write to the memory managed by the other side, but pre-
permission is required

• RDMA + VLAN: needed in data centers with multitenancy

Modern RDMA

• Memory management is tricky:
• Pages must be pinned and mapped into IOMMU
• Kernel will zero pages on first allocation request: slow
• If a page is a mapped region from a file, kernel may try

to automatically issue a disk write after updates, costly
• Integration with modern NVRAM storage is “awkward”
• On multicore NUMA machines, hard to know which core owns

a particular memory page, yet this matters

• Main reason we should care?
• RDMA runs at 20, 40Gb/s. And soon 100, 200… 1Tb/s
• But memcpy and memset run at perhaps 30Gb/s

SoftROCE

• Useful new option
• With standard RDMA may people worry programs won’t be

portable and will run only with one kind of hardware
• SoftROCE allows use of the RDMA software stack (libibverbs.dll)

but tunnels via TCP hence doesn’t use hardware RDMA at all
• Zero-copy sends, but needs one-copy for receives

• Intel iWarp is aimed at something similar

• Tries to offer RDMA with zero-copy on both sides under the
TCP API by dropping TCP into the NIC

• Requires a special NIC with an RDMA chip-set

HIGH-PERFORMANCE NETWORKING
:: USER-LEVEL NETWORKING
:: REMOTE DIRECT MEMORY ACCESS

Jaeyong Sung (Nov 20, 2014) CS6410 Part 2

Hadoop
2

 Big Data
 very common in industries
 e.g. Facebook, Google, Amazon, …

 Hadoop
 open source MapReduce for handling large data
 require lots of data transfers

Hadoop Distributed File System
3

 primary storage for Hadoop clusters
 both Hadoop MapReduce and HBase rely on it

 communication intensive middleware
 layered on top of TCP/IP

Hadoop Distributed File System
4

 highly reliable fault-tolerant replications
 in data-intensive applications, network performance

becomes key component

HDFS write:

replication

Software Bottleneck
5

 Using TCP/IP on Linux,
 TCP echo

RDMA for HDFS
6

 data structure for Hadoop
 <key, value> pairs
 stored in data blocks of

HDFS

 Both write(replication) and

read can take advantage
of RDMA

FaRM: Fast Remote Memory
7

 relies on cache coherent DMA
 object’s version number
 stored both in the first word of the object header and at the

start of each cache line
 NOT visible to the application (e.g. HDFS)

Traditional Lock-free reads
8

 For updating the data,

Traditional Lock-free reads
9

 Reading requires three accesses

FaRM Lock-free Reads
10

 FaRM relies on cache coherent DMA
 Version info in each of cache-lines

FaRM Lock-free Reads
11

 single RDMA read

FaRM: Distributed Transactions
12

 general mechanism to ensure consistency
 Two-stage commits

(checks version
number)

Shared Address Space
13

 shared address space consists of many shared
memory regions

 consistent hashing for mapping region identifier to
the machine that stores the object
 each machine is mapped into k virtual rings

Transactions in Shared Address Space
14

 Strong consistency
 Atomic execution of multiple operations

Shared Address Space

Read Free Read Write Write Alloc

Communication Primitives
15

 One-sided RDMA reads
 to access data directly

 RDMA writes
 circular buffer is used for

unidirectional channel
 one buffer for each

sender/receiver pair
 buffer is stored on

receiver

benchmark on communication primitives
16

Limited cache space in NIC
17

 Some Hadoop clusters
can have hundreds and
thousands of nodes

 Performance of RDMA

can suffer as amount of
memory registered
increases
 NIC will run out of space

to cache all page tables

Limited cache space in NIC
18

 FaRM’s solution: PhyCo
 kernel driver that allocates a large number of

physically contiguous and naturally aligned 2GB
memory regions at boot time

 maps the region into the virtual address space aligned
on a 2GB boundary

PhyCo
19

Limited cache space in NIC
20

 PhyCo still suffered as number of clusters increased
 because it can run out of space to cache all queue pair
 2 × 𝑚𝑚 × 𝑡𝑡2 queue pairs per machine

 𝑚𝑚 = number of machines, 𝑡𝑡 = number of threads per machine

 single connection between a thread and each remote
machine
 2 × 𝑚𝑚 × 𝑡𝑡

 queue pair sharing among 𝑞𝑞 threads
 2 × 𝑚𝑚 × 𝑡𝑡 / 𝑞𝑞

Connection Multiplexing
21

 best value of q depends on cluster size

Experiments
22

 Key-value store: lookup scalability

Experiments
23

 Key-value store: varying update rates

	Slide Number 1
	Overview
	Index
	Network Communication
	Today’s Theme
	Terms and Problems
	Terms and Problems
	TCP Offloading Engine (TOE)
	Our Story
	Our Story
	Traditional Architecture
	History of High-Performance
	Index
	U-Net Ideas and Goals
	U-Net Ideas and Goals
	U-Net Ideas and Goals
	U-Net Ideas and Goals
	U-Net Ideas and Goals
	U-Net Ideas and Goals
	U-Net Ideas and Goals
	U-Net Architecture
	U-Net Building Blocks
	U-Net Communication: Initialize
	U-Net Communication: Send
	U-Net Communication: Receive
	U-Net Protection
	U-Net Zero Copy
	Index
	RDMA Ideas and Goals
	RDMA Architecture (1/2)
	RDMA Architecture (2/2)
	RDMA Building Blocks
	RDMA Communication (1/4)
	RDMA Communication (2/4)
	RDMA Communication (3/4)
	RDMA Communication (4/4)
	Index
	U-Net Performance: Bandwidth
	U-Net Performance: Latency
	RDMA Performance: CPU load
	Modern RDMA
	Modern RDMA
	SoftROCE
	Slide Number 44
	Hadoop
	Hadoop Distributed File System
	Hadoop Distributed File System
	Software Bottleneck
	RDMA for HDFS
	FaRM: Fast Remote Memory
	Traditional Lock-free reads
	Traditional Lock-free reads
	FaRM Lock-free Reads
	FaRM Lock-free Reads
	FaRM: Distributed Transactions
	Shared Address Space
	Slide Number 57
	Communication Primitives
	benchmark on communication primitives
	Limited cache space in NIC
	Limited cache space in NIC
	PhyCo
	Limited cache space in NIC
	Connection Multiplexing
	Experiments
	Experiments

