
CAN CLOUD COMPUTING SYSTEMS
OFFER HIGH ASSURANCE WITHOUT
LOSING KEY CLOUD PROPERTIES?

Ken Birman, Cornell University

1

CS6410

High Assurance in Cloud Settings
2

 A wave of applications that need high assurance is fast approaching
 Control of the “smart” electric power grid
 mHealth applications
 Self-driving vehicles….

 To run these in the cloud, we’ll need better tools
 Today’s cloud is inconsistent and insecure by design
 Issues arise at every layer (client… Internet… data center) but we’ll focus on

the data center today

Isis2 System
3

 Core functionality: groups of objects
 … fault-tolerance, speed (parallelism), coordination
 Intended for use in very large-scale settings

 The local object instance functions as a gateway
 Read-only operations performed on local state
 Update operations update all the replicas

myGroup
state transfer

“join
myGroup”

update update

Isis2 Functionality
4

 We implement a wide range of basic functions
 Multicast (many “flavors”) to update replicated data
 Multicast “query” to initiate parallel operations and collect the results
 Lock-based synchronization
 Distributed hash tables
 Persistent storage…

 Easily integrated with application-specific logic

A distributed request that
updates group “state”...

Some service

A B C D

Example: Cloud-Hosted Service
5

SafeSend

SafeSend

SafeSend

SafeSend is a version of Paxos.

... and the response

Standard Web-Services method
invocation

Isis2 System

 Elasticity (sudden scale changes)

 Potentially heavily loads

 High node failure rates

 Concurrent (multithreaded) apps

 Long scheduling delays, resource contention

 Bursts of message loss

 Need for very rapid response times

 Community skeptical of “assurance properties”

 C# library (but callable from any .NET language)
offering replication techniques for cloud computing
developers

 Based on a model that fuses virtual synchrony and
state machine replication models

 Research challenges center on creating protocols
that function well despite cloud “events”

6

Isis2 makes developer’s life easier

 Formal model permits us to
achieve correctness

 Think of Isis2 as a collection of
modules, each with rigorously
stated properties

 These help in debugging
(model checking)

 Isis2 implementation needs to
be fast, lean, easy to use, in
many ways

 Developer must see it as easier
to use Isis2 than to build from
scratch

 Need great performance under
“cloudy conditions”

7

Benefits of Using Formal model Importance of Sound Engineering

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);
};
g.Join();

g.SafeSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering aseen for event upcalls
and the assumptions user can
make

8

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

Dictionary<string,double> Values = new Dictionary<string,double>();

g.ViewHandlers += delegate(View v) {
Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);

};

g.Join();

g.SafeSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

9

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);
};
g.Join();

g.SafeSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a
member. State transfer isn’t
shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

10

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {
g.Reply(Values[s]);

};
g.Join();

g.SafeSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();
nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

11

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
Dictionary<string,double> Values = new Dictionary<string,double>();
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);

};

g.Join();

g.SafeSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();

nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

12

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);

Dictionary<string,double> Values = new Dictionary<string,double>();

g.ViewHandlers += delegate(View v) {
Console.Title = “myGroup members: “+v.members;

};

g.Handlers[UPDATE] += delegate(string s, double v) {

Values[s] = v;

};

g.Handlers[LOOKUP] += delegate(string s) {

g.Reply(Values[s]);

};

g.SetSecure(myKey);

g.Join();

g.SafeSend(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>();

nr = g.Query(ALL, LOOKUP, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query. Runtime
callbacks to the “delegates” as
events arrive

 Easy to request security,
persistence, tunnelling on TCP...

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

13

Consistency model: Virtual synchrony meets Paxos
(and they live happily ever after…)

14

 Membership epochs: begin when a new configuration is installed and
reported by delivery of a new “view” and associated state

 Protocols run “during” a single epoch: rather than overcome failure, we
reconfigure when a failure occurs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

Exact comparison
15

 What I am calling a synchronous (by which I mean “step by step”)
execution actually matches what Paxos offers, but Paxos, as we will
see, uses quorum operations to implement this without group views

 Virtual synchrony has managed group membership, but also has some
optimistic steps (early message delivery, which speeds things up, but it
comes at the price of needing to do a “flush” to sync to the network)
 Analogy: when you write to a file often the IO system buffers and until you

do a file-sync, data might not yet be certain to have reached the disk

Formalizing the model
16

 Must express the picture in temporal logic equations
 Closely related to state machine replication, but optimistic early delivery of

multicasts (optional!) is tricky.
 What can one say about the guarantees in that case?

 Either I’m going to be allowed to stay in the system, in which case all the properties
hold

 … or the majority will kick me out. Then some properties are still guaranteed, but
others might actually not hold for those optimistic early delivery events

 User is expected to combine optimistic actions with Flush to mask speculative lines
of execution that could turn out to be risky

Core issue: How is replicated data used?
17

 High availability

 Better capacity through load-balanced read-only requests, which can
be handled by a single replica

 Concurrent parallel computing on consistent data

 Fault-tolerance through “warm standby”

Do users find formal model useful?
18

 Developer keeps the model in mind, can easily visualize the possible
executions that might arise
 Each replica sees the same events
 … in the same order
 … and even sees the same membership when an event occurs. Failures or

joins are reported just like multicasts

 All sorts of reasoning is dramatically simplified

But why complicate it with optimism?
19

 Optimistic early delivery kind of breaks the model, although Flush
allows us to hide the effects

 To reason about a system must (more or less) erase speculative events
not covered by Flush. Then you are left with a more standard state
machine model

 Yet this standard model, while simpler to analyze, is actually too slow
for demanding use cases

Roles for formal methods
20

 Proving that SafeSend is a correct “virtually synchronous”
implementation of Paxos?
 I worked with Robbert van Renesse and Dahlia Malkhi to optimize Paxos for

the virtual synchrony model.
 Despite optimizations, protocol is still bisimulation equivalent

 Robbert later coded it in 60 lines of Erlang. His version can be proved
correct using NuPRL

 Leslie Lamport was initially involved too. He
suggested we call it “virtually synchronous Paxos”.

Virtually Synchronous Methodology for Dynamic Service Replication. Ken Birman,
Dahlia Malkhi, Robbert van Renesse. MSR-2010-151. November 18, 2010. Appears as
Appendix A in Guide to Reliable Distributed Systems. Building High-Assurance
Applications and Cloud-Hosted Services. Birman, K.P. 2012, XXII, 730p. 138 illus.

The resulting theory is of limited value
21

 If we apply it only to Isis2 itself, we can generally get quite far. The
model is valuable for debugging the system code because we can
detect bad runs.

 If we apply it to a user’s application plus Isis2, the theory is often
“incomplete” because the theory would typically omit any model for
what it means for the application to achieve its end-user goals
 This pervasive tendency to ignore the user is a continuing issue throughout

the community even today. It represents a major open research topic.

The fundamental issue...
22

 How to formalize the notion of application state?
 How to formalize the composition of a protocol such as SafeSend with

an application (such as replicated DB)?
 No obvious answer… just (unsatisfying) options

 A composition-based architecture: interface types (or perhaps phantom
types) could signal user intentions. This is how our current tool works.

 An annotation scheme: in-line pragmas (executable “comments”) would tell
us what the user is doing

 Some form of automated runtime code analysis

A further issue: Performance causes complexity
23

 A one-size fits-all version of SafeSend wouldn’t be popular with “real”
cloud developers because it would lack necessary flexibility
 Speed and elasticity are paramount
 SafeSend is just too slow and too rigid: Basis of Brewer’s famous CAP

conjecture (and theorem)

 Let’s look at a use case in which being flexible is key to achieving
performance and scalability

Integrated glucose monitor and Insulin pump
receives instructions wirelessly

Motion sensor,
fall-detector

Cloud Infrastructure

Home healthcare application

Healthcare provider monitors
large numbers of remote

patients
Medication station

tracks, dispenses pills

Building an online medical care system
24

Monitoring subsystem

Two replication cases that arise
25

 Replicating the database of patient records
 Goal: Availability despite crash failures, durability, consistency and security.
 Runs in an “inner” layer of the cloud: A back-end database

 Replicating the state of the “monitoring” framework
 It monitors huge numbers of patients

(cloud platform will monitor many, intervene rarely)
 Goal is high availability, high capacity for “work”
 Probably runs in the “outer tier” of the cloud

Patient Records DB
Patient Records DB

Patient Records DB

Real systems demand tradeoffs
26

 The database with medical prescription records needs strong
replication with consistency and durability
 The famous ACID properties. A good match for Paxos

 But what about the monitoring infrastructure?
 A monitoring system is an online infrastructure
 In the soft state tier of the cloud, durability isn’t available
 Paxos works hard to achieve durability. If we use Paxos, we’ll pay for a

property we can’t really use

Why does this matter?
27

 Durability is expensive
 Basic Paxos always provides durability
 SafeSend is like Paxos and also has this guarantee

 If we weaken durability we get better performance and scalability, but we
no longer mimic Paxos

 Generalization of Brewer’s CAP conjecture:
one-size-fits-all won’t work in the cloud.
You always confront tradeoffs.

Weakening properties in Isis2

28

 SafeSend: Ordered+Durable
 OrderedSend+Flush: Ordered but “optimistic” delivery
 Send, CausalSend+Flush: FIFO or Causal order
 RawSend: Unreliable, not virtually synchronous

 Out of Band file transfer: Uses RDMA to asynchronously move big
objects using RDMA network; Isis2 application talks “about” these
objects but doesn’t move the bytes (might not even touch the bytes)

Update the monitoring and
alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen
by end-user would
also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an
individual first-tier replica

Soft-state first-tier service

A B C D

 In this situation we can replace SafeSend with Send+Flush.
 But how do we prove that this is really correct?

29

Monitoring in a soft-state service with a primary
owner issuing the updates

g.Send is an optimistic, early-deliverying virtually
synchronous multicast. Like the first phase of Paxos

Flush pauses until prior Sends have been acknowledged and
become “stable”. Like the second phase of Paxos.

In our scenario, g.Send + g.Flush ≈ g.SafeSend

Isis2: Send v.s. SafeSend
30

Send scales best, but SafeSend with
modern disks (RAM-like performance) and small

numbers of acceptors isn’t terrible.

Variance from mean,
32-member case

Jitter: how “steady” are latencies?
31

The “spread” of latencies is much
better (tighter) with Send: the 2-phase

SafeSend protocol is sensitive to
scheduling delays

Flush delay as function of shard size
32

Flush is fairly fast if we only wait for
acks from 3-5 members, but is slow

if we wait for acks from all members.
After we saw this graph, we changed

Isis2 to let users set the threshold.

What does the data tell us?
33

 With g.Send+g.Flush we can have
 Strong consistency, fault-tolerance, rapid responses
 Similar guarantees to Paxos (but not identical)
 Scales remarkably well, with high speed

 The experiment isn’t totally fair to Paxos
 Even 5 years ago, hardware was actually quite different
 With RDMA and NVRAM the numbers all get (much) better!

Sinfonia
34

 A more recent system somewhat in the same style, but very different
API and programming model

 Starts with a kind of atomic transaction model, which more recent work
(this year’s SOSP!) has made more explicit

Key Sinfonia idea
35

 Allow the application to submit “mini-transactions”
 Not the full SQL + begin / commit / abort, but rather “RISC” in style

 They consist of:
 Precomputation: Application prepares a mini-transaction however it likes
 Validation step: objects and versions: the mini-transaction will not be

performed (will abort) if any of these objects have been updated
 Action step: If validation is successful, a series of updates to those objects,

which will generate new versions. The actions are done atomically.

Illustration
36

 The server members are exact replicas, so all either perform the action or
reject it. So the data replicas stay in the identical state

Sinfonia Core: A kind of state
machine replicated process group

Check that:
X.ver = 1661
Y.ver = 73
Z.ver = 9908

If so:
X = “apple”
Y = 1.22
Z = 2000

Totally ordered
protocol, like
OrderedSend

Success!

Precomputation step
37

 This gives Sinfonia remarkable scalability

 Idea is that we can keep cached copies of the system state, or even
entire read-only replicas, and run any code we wish against it

 State = Any collection of data with some form of records we can
identify and version numbers on each record

 Code = Database transaction, graph crawl, whatever…

Why does this give scalability?
38

 At the edge, we soak up the potentially slow, complex compute costs
 Transactions can be very complex to carry out (joins, projections,

aggregation operations, complex test logic…)
 All of this can be done “offline” from the perspective of the core

 Then we either commit the request all at once if the versions still match,
or abort it all at once if not, so Sinfonia core stays in a consistent state
 In fact, the edge can manage perfectly well with a slightly stale cache!

Generality?
39

 Paper explains how this model can support a great variety of use
cases from the web, standard databases, financial settings (banking
or stock trading), etc.
 Basically, you just need an adaptor to “represent” your data in Sinfonia

format with data records and version numbering

 And in recent work at Vmware, they add sharding (partitioning),
automatic support for commutative actions, many other features, and
get even more impressive performance

Summary?
40

 We set out to bring formal assurance guarantees to the cloud
 And succeeded: Many systems like Isis2 exist now and are in wider and wider use

(Corfu, Zookeeper, Zab, Raft, libPaxos, Sinfonia, and the list goes on)
 Industry is also reporting successes (e.g. entire SOSP program this year)
 Formal tools are also finding a major role now (model checking and constructive

logic used to prove these kinds of systems correct)

 Can the cloud “do” high assurance?
 At Cornell, and in Silicon Valley, the evidence now is “yes”
 … but even so, much more research is still needed because they are slow “on first

try” and much optimization generally has to occur to make them fast

	Can Cloud Computing Systems Offer High Assurance Without Losing Key Cloud Properties?
	High Assurance in Cloud Settings
	Isis2 System
	Isis2 Functionality
	Example: Cloud-Hosted Service
	Isis2 System
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Consistency model: Virtual synchrony meets Paxos (and they live happily ever after…)
	Exact comparison
	Formalizing the model
	Core issue: How is replicated data used?
	Do users find formal model useful?
	But why complicate it with optimism?
	Roles for formal methods
	The resulting theory is of limited value
	The fundamental issue...
	A further issue: Performance causes complexity
	Building an online medical care system
	Two replication cases that arise
	Real systems demand tradeoffs
	Why does this matter?
	Weakening properties in Isis2
	Monitoring in a soft-state service with a primary owner issuing the updates
	Isis2: Send v.s. SafeSend
	Jitter: how “steady” are latencies?
	Flush delay as function of shard size
	What does the data tell us?
	Sinfonia
	Key Sinfonia idea
	Illustration
	Precomputation step
	Why does this give scalability?
	Generality?
	Summary?

