
DISTRIBUTED HASH TABLES
Soumya Basu

November 5, 2015
CS 6410



OVERVIEW

• Why DHTs?

• Chord

• Dynamo



PEER TO PEER

• What guarantees does IP provide?

• What features do you get?

• What happens if you want more?

• Overlay networks!



CHORD PROTOCOL

• Intended as another building block

• Supports one operation:

• Mapping keys to nodes



FEATURES OF CHORD

• Scalability

• Provable correctness and performance

• O(log(N)) lookups

• Simplicity



HOW CHORD WORKS

Finger Table for a node



HOW CHORD WORKS

How routing works



UNFAIR LOADS



LOAD BALANCING



FAULT TOLERANCE



IMPACT

• Distributed Hash Tables were a hot topic!

• Chord: 12193* citations

• Pastry: 9606* citations

• CAN: 9010* citations

*According to Google Scholar



DISCUSSION

• Why was this so impactful?

• What limitations are there to Chord? Is it easy to 
overcome? Why/why not?



DYNAMO
• Another distributed hash table

• Similar structure to Chord

• Ring

• Only supports get() and put()

• Follows the CAP theorem (no strong consistency)



STRICT PERFORMANCE

• Service level agreements in 99.9th percentile

• Availability

• Latency

• Explicitly don’t care about averages!



FAULT TOLERANCE

• Nodes fail all the time

• Keys can’t be lost

• Solution: replicate keys for next N successors



REPLICATION

• Sloppy quorum

• Each nodes maintains a “preference list” of replicas

• Requests are made on first N healthy nodes

• Need R nodes to respond for read

• Need W nodes to respond for write



REPLICATION
• Sloppy quorum

• Developers can tune R, N and W

• Hinted handoff

• If node is down, periodically check for recovery

• Include “hint” declaring original replica for key



CONSISTENCY
• Replication leads to consistency problems

• Most systems resolve conflicts on writes

• Amazon needs high write throughput

• e.g. adding to a cart

• Gives up on consistent reads: “eventual consistency”



HANDLING CONFLICTS



PERFORMANCE


