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● Fully synchronous?

● Network is magically immune to attacks

● Actual implementations were still slow between 

1982-1999



Practical Byzantine Fault Tolerance - OSDI 1999
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One of these things is not like the other...

delay(t) doesn’t grow faster than t forever.

FLP can be circumvented!



Filesystem Basic Structure...
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Results (which I don’t think we talk about enough)
(Anyone else feel this way?) /tangent
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Question
See anything potentially misleading about this table?

Task 3: Examine all files, Task 4: Examine all Bytes

Did you buy the “3%” claim?
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(nice breakdown of where each part comes from!)
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0 Request:
● Operation requested
● Timestamp of 

request by client
● Client ID
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Discussion Question
Does Byzantine fault tolerance matter?

Do you buy the motivation?



Atomic Broadcast: From Simple Message Diffusion 
to Byzantine Agreement
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Byzantine
(arbitrary
behavior)

Timing
(early, late,

or never)

As you already know...

Omission
(messages lost)
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T -> T + 

1. A
2. B
3. C

ABC

ABC

ABC

ABC
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Assumptions (seeing a pattern? few unifying assumptions, assumptions made for ease of proof rather than realism)

(Anyone else feel this way?) /tangent
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“Diffusion Induction Principle”
In a connected graph, everyone will eventually get the message.
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CASD for Timing Failures...

i = f(Diameter of network, clock skew, processing/messaging time, 
number of hops for a given message)

Note on page 16: “This type of faulty behavior may not be very common in practice, but it does fit the definition 
of early timing failure…” Very weird case!



CASD for Byzantine Failures...

● Add signing and authentication

● Slower





Jack’s thoughts...

● Relation to hyperparameters in machine 
learning

● Framing as an online learning problem?


