
Byzantine Agreement
In Practice

Jack Hessel

Used Slide Outlines from Ion Stoica + Fang Zhang for help

Recall...

Recall...

Recall...

Recall...

Recall...

Recall...

Exponential Time!

Recall...

Exponential Time!
FLP!

● Fully synchronous?

● Network is magically immune to attacks

● Actual implementations were still slow between

1982-1999

Practical Byzantine Fault Tolerance - OSDI 1999

No photo available

Miguel Castro Barbara Liskov

Take-aways...

Take-aways...

Asynchronous
and correct

Take-aways...

Asynchronous
and correct

Optimizations
(3%* slowdown)

Take-aways...

Asynchronous
and correct

Optimizations
(3%* slowdown)

BFS

One of these things is not like the other...

One of these things is not like the other...

One of these things is not like the other...

delay(t) doesn’t grow faster than t forever.

One of these things is not like the other...

delay(t) doesn’t grow faster than t forever.

FLP can be circumvented!

Filesystem Basic Structure...

Results

Results (which I don’t think we talk about enough)
(Anyone else feel this way?) /tangent

Results (Realistic Use Case Benchmark)
Dire

cto
ry

Cre
ati

on
, R

ead
 Ev

ery
thi

ng
, et

c.

Byzantine Fault
Tolerant

Existing System

Question
See anything potentially misleading about this table?

Question
See anything potentially misleading about this table?

Task 3: Examine all files, Task 4: Examine all Bytes

Did you buy the “3%” claim?

Results (worst case overhead)

Null Operation
Variants

Baseline -- Still
Their System

Time in ms
(slowdown)

Results (worst case overhead)

Null Operation
Variants

Time in ms
(slowdown)

(nice breakdown of where each part comes from!)

Baseline -- Still
Their System

Algorithm Overview

Algorithm Overview

0

1

2

3

...

3f+1 State Machines

Algorithm Overview

0

1

2

3

...

Algorithm Overview

0

1

2

3

...

0

1

2

3

...

0

2

3

...

1

0

3

...

1

2 Cycle through “views” when
leader fails

Algorithm Overview

0

1

2

3

...

3f+1 State Machines

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Please complete
operation X. I am client
C! I’ll be waiting for f+1

of you to get back to
me...

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

f+1

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Listen… This is taking
too long… How many
times do I need to tell

you?

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

I already
processed this...
I already
processed this...
I already
processed this...

I already
processed this...

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

I already
processed this...
I already
processed this...Uhh… Chief?

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

1

2

3

...

3f+1 State Machines

0

Algorithm Overview

3f+1 State Machines

0

1

2

3

...

Some detail...

1

2

3

...

0

Some detail...

1

2

3

...

0 Request

Some detail...

1

2

3

...

0 Request:
● Operation requested
● Timestamp of

request by client
● Client ID

Some detail...

1

2

3

...

0Request m

Some detail...

1

2

3

...

0Request m

State Tracker: Pre-prepare

Some detail...

1

2

3

...

0

State Tracker: Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Request m

Some detail...

1

2

3

...

0

State Tracker: Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Request m

Digest by process 0

Some detail...

1

2

3

...

0

State Tracker: Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

1. Is this digest for m?

2. Am I in the same view?

3. Am I sure I haven’t accepted a

similar message for this view

and sequence number with a

different digest?

4. Do the watermarks work out?

(will talk about later)Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Pre-prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

1. Is this digest for m?

2. Am I in the same view?

3. Am I sure I haven’t accepted a

similar message for this view

and sequence number with a

different digest?

4. Do the watermarks work out?

(will talk about later)Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

Pre-prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m

Prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m
● My number

Request mDigest by process 0

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

Prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m
● My number

Digest by process 2

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

Prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m
● My number

Digest by process 2

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

Prepare Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m
● My number

Digest by process 2

Hey y’all -- lets
do this one!

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

… okay I’ll just
wait for folks to

agree...

Some time later...

Some time later...

... after process 2 collects enough matching
“prepare” statements from other replicas….

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Prepare

2f-2… 2f-1…
2f!!!

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Commit

Commit Message
● Current view number
● Sequence number

assigned by primary
● “Digest” of m
● My number

Digest by process 2

2f-2… 2f-1…
2f!!!

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Commit

… okay I’ll just
wait for folks to

commit...

Some time later...

Some time later...

... after process 2 collects enough matching
“commit” statements from other replicas….

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Commit

2f-2… 2f-1…
2f!!!

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Reply

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Reply

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Reply

Some detail...

1

2

3

...

0

State Tracker For Node 2:
Reply

Failure Sketch...

Failure Sketch...

0

1

2

3
.
.
.

0

1

2

3
.
.
.

0

2

3
.
.
.

1

0

3
.
.
.

1

2 Cycle through
“views” when
leader fails

Failure Sketch...

0

1

2

3
.
.
.

0

1

2

3
.
.
.

0

2

3
.
.
.

1

0

3
.
.
.

1

2 Cycle through
“views” when
leader fails

1

2

3
.
.
.

0

Failure Sketch...

0

1

2

3
.
.
.

0

1

2

3
.
.
.

0

2

3
.
.
.

1

0

3
.
.
.

1

2 Cycle through
“views” when
leader fails

1

2

3
.
.
.

0

1. Time out
2. Message: View Change

Please
3. Message: View Change

Discussion Question
Does Byzantine fault tolerance matter?

Do you buy the motivation?

Atomic Broadcast: From Simple Message Diffusion
to Byzantine Agreement

No photo available

Flaviu Cristian Danny DolevHoutan Aghili Ray Strong

No photo available No photo available

ByzantineTiming

As you already know...

Omission

Byzantine
(arbitrary
behavior)

Timing
(early, late,

or never)

As you already know...

Omission
(messages lost)

Broadcast

Broadcast

Atomic Broadcast?

Atomic Broadcast

Atomic Broadcast

Atomic Broadcast

T -> T +

Atomic Broadcast

T -> T +

Atomic Broadcast

T -> T +

Atomic Broadcast

T -> T +

1. A
2. B
3. C

Atomic Broadcast

T -> T +

1. A
2. B
3. C

ABC

ABC

ABC

ABC

Assumptions

Assumptions (seeing a pattern? few unifying assumptions, assumptions made for ease of proof rather than realism)

(Anyone else feel this way?) /tangent

Assumptions

Assumptions
This processor won’t fail.

Assumptions
This processor won’t fail.

|Clock1(t) - Clock2(t)| < eps

Assumptions
This processor won’t fail.

|Clock1(t) - Clock2(t)| < eps

This communication time is
bounded

Assumptions
This processor won’t fail.

|Clock1(t) - Clock2(t)| < eps

This communication time is
bounded

“Diffusion Induction Principle”

“Diffusion Induction Principle”
In a connected graph, everyone will eventually get the message.

CASD for Omission Failures...

CASD for Omission Failures...

● Big enough so you don’t time out on normal runs

● Small enough so you actually do what you want

CASD for Omission Failures...

 =
● Big enough so you don’t time out on normal runs

● Small enough so you actually do what you want

f(Diameter of network, clock skew, processing/messaging time)

CASD for Omission Failures...

 =
● Big enough so you don’t time out on normal runs

● Small enough so you actually do what you want

f(Diameter of network, clock skew, processing/messaging time)

CASD for Timing Failures...

 = f(Diameter of network, clock skew, processing/messaging time)

CASD for Timing Failures...

● New cases: too early and too late

○ Too early: “history log at any correct process is

bounded”

CASD for Timing Failures...

● New cases: too early and too late

○ Too early: “history log at any correct process is

bounded”

Note on page 16: “This type of faulty behavior may not be very common in practice, but it does fit the definition
of early timing failure…” Very weird case!

CASD for Timing Failures...

CASD for Timing Failures...

 = f(Diameter of network, clock skew, processing/messaging time,
number of hops for a given message)

CASD for Timing Failures...

i = f(Diameter of network, clock skew, processing/messaging time,
number of hops for a given message)

CASD for Timing Failures...

i = f(Diameter of network, clock skew, processing/messaging time,
number of hops for a given message)

Note on page 16: “This type of faulty behavior may not be very common in practice, but it does fit the definition
of early timing failure…” Very weird case!

CASD for Byzantine Failures...

● Add signing and authentication

● Slower

Jack’s thoughts...

● Relation to hyperparameters in machine
learning

● Framing as an online learning problem?

