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The Consensus Problem

I Set of n processes. Each process starts with a value

I Every correct process at the end outputs a value

The solution must satisfy

I Termination : Every correct process must decide some value

I Validity : If all processes start with the same input value v ,
then the correct processes decide v

I Agreement : Every correct process decides the same value
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I Asynchronous processing : A process can take arbitrarily long
to execute its next step

I Crash failures : A process cannot detect the failure of another
process

I Every message is eventually delivered, but can take arbitrarily
long to reach or delivered out of order
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I Step : Consists of a step by a single process p, which is the
change in its internal state based on event (p,m)

I Let C be a configuration. e(C ) denotes the resulting
configuration on event e, if e can be applied.

I Run : A sequence of steps (or events) σ

I A configuration C ′ is reachable from C , if there exists a from
C that ends in C ′

I Deciding Run : A run is a deciding run if some process
reaches a decision in that run
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I Bivalent Configuration : A configuration from which runs
deciding both 0 and 1 are possible

I Univalent Configuration : A configuration from which runs
deciding either 0 or 1 are possible

I 0(1)-valent configuration : A configuration from which runs
deciding only 0(1) exist
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There is no consensus protocol that can tolerate the failure of one
process

What does impossibility mean? Any consensus protocol that
respects validity and agreement conditions, must have a possible
run, in which no correct process terminates.
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Intuition : 2 process case

Scenario 1:

I p1 starts with input 0

I p2 fails without executing any step

I p1 decides 0 and terminates

Scenario 2:

I p1 fails without executing any step

I p2 starts with input 1

I p2 decides 1 and terminates

Scenario 3:

I p1 starts with 0 and p2 stars with 1

I Messages take a long time to reach, so p1’s and p2’s view of
the system is same as Scenario 1 and 2, resp.

I p1 decides 0 and p2 decides 1
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Proof of the Impossibility Result

I The proof proceeds by contradiction. Suppose an algorithm P
exists that solves consensus despite one failure

I We show that P has a bivalent initial configuration

I Then we show that from every bivalent configuration, a
possible sequence of events can again result in a bivalent
configuration
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Lemma
There exists a bivalent initial configuration of P

Suppose not.Initial configuration (0, 0, ..., 0 is 0−valent while
(1, 1, ..., 1 is 1−valent.
Take a path
(0, 0, 0, ..., 0), (1, 0, 0, ..., 0), (1, 1, 0, ..., 0), ..., (1, 1, 1, ..., 1)
There exists two adjacent configurations in the path that are of
different valency. And they differ in the input value of only one
process i
Now construct a run where i crashes without taking any steps.
Then, processes < i decide on 0 and process > i decide on 1.
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Lemma
Let C be a bivalent configuration and e = (p,m) be an event
applicable to C. Then, there exists a bivalent configuration
reachable from C in which e has been applied.



What to do now?

I Even if there is no “perfect” protocol, cases when processes
do not terminate may be rare

I Look for relaxation in the model or make extra assumptions

One approach : Every process has access to a local failure
detector module

I The module need not be perfect. It can suspect a correct
process to have failed or not suspect a failed process
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properties they satisfy.

I Strong Completeness : There is a time after which every
process that crashes is suspected by all correct processes
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I Perpetual Strong Accuracy : Any correct process is never
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A practical implementation of �W

I Every process sends “I am alive” messages periodically

I If a process p does not hear from another process q for some
time, it adds q to the list of processes suspected to have failed

I If p later receives the “I am alive” message from q, it removes
q from its list and increases length of timeout for q

Works well in practice, but does not guarantee �W
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Solving consensus using �W

Outline of the Algorithm

I Proceeds in rounds. Each round has a coordinator that
rotates among the set of processes

I In each round all messages are sent to or from the coordinator

I In each round, the coordinator tries to determine a consistent
value

I If in a round, the coordinator is not suspected by any correct
process, then it succeeds

I Otherwise, the algorithm enters the next round
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Weakest failure detector

Instead of emulating �W , we show that any failure detector can
emulate Ω (defined below) which can in turn emulate �W

Definition
A failure detector Ω satisfies the following properties :

I Its output at a process p is a single process q that p trusts to
be correct at that time

I There is a time after which all correct processes trust the
same correct process

I Easy to see that Ω is at least as strong as �W
I An emulator for �W using Ω outputs the set of processes that

are not trusted in Ω
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Construction Outline

I Every process maintains a DAG which models a causal
relation between queries to the failure detector

I A processes p queries its failure detector D for the kth time
and gets response d

I It sends (p, d , k) to other processes which add this node to
their DAGs

I After process q adds a node (p, d , k), all nodes corresponding
to future queries of q to its failure detector take an edge from
(p, d , k)

I Processes exchange and update their graphs

I A finite subgraph of this graph contains the node that every
process should trust
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Conclusion

I A consensus algorithm satisfying all the three properties in an
asynchronous environment tolerating a single node failure is
impossible

I Since a purely asynchronous system does not exist, it tells us
any practical algorithm can get into infinite executions,
however rare they are

I We need to relax constraints that make extra assumptions
about the system to solve consensus

I �W solves consensus algorithm by assuming weak properties
about the failure detection module

I It is the weakest failure detection module using which we can
solve consensus
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