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Failure Models

Fail stop

Fail crash (Paxos)

Byzantine Failure
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Terminology

Byzantine Fault
Running system can arbitrarily deviate from its protocol.

System can lie, conspire, send wrong messages etc.

Byzantine Failure
The loss of a system service due to a Byzantine fault in systems that
require consensus. (Driscoll et al. 2003)

Worst type of failure
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Motivating Problem

You are managing a critical system (power grid, ballistic missile shield)

There are several systems each listening to input from its
sensors/radar or a common source.
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Motivating Problem

You are managing a critical system (power grid, ballistic missile
shield).

There are several systems each listening to input from its
sensors/radar or a common source.

Systems should achieve consensus
I reduce the load or do not reduce it.
I fire all missiles at the enemy or fire none.

Be able to handle a few sensors/radar or systems behaving arbitrarily.
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Several Possibilities

1 Single faulty input source, giving different input to different systems.

2 Different input sources with some of them being faulty.

3 Single faulty input source which is consistently lying. [Cannot do
anything here]

4 A system getting hacked or corrupt but keeps running.

Situation 1,2,4 come under Byzantine failure.

Observation:

Cannot use majority voting.

No way to achieve consensus without systems talking to each other.

Need to tell each other what they observed.
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Problem Statement

System:

Directed graph

Nodes are devices/processes/complex systems

Every node has an input

Edges represent communication
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Problem Statement

Byzantine Agreement:
Let there be protocol Au for every node u in the system.

Every correct node follows the protocol.

Protocols solve the Byzantine Agreement iff

Agreement: Every correct node chooses the same value.

Validity: If all the correct nodes have the same input then that input
must be the value chosen.
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Impossibility Theorem

Intuition: Consensus should be possible with sufficiently few faulty nodes.

Maybe 2f + 1 as majority (f + 1) of nodes are not faulty.

Theorem

In order to tolerate f Byzantine faulty nodes, one needs n ≥ 3f + 1
systems.
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Intuition
Special Case: Consensus not possible in 3 systems if 1 is faulty.
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Formal Proof

Special Case: Consensus is not possible with 3 nodes when 1 is faulty.

Known as the three general problem.

Say there is a protocol for node p, q, r which solves the problem.

Protocol should work any input and atmost one faulty node.
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Formal Proof

Special Case: Consensus is not possible with 3 nodes when 1 is faulty.

Let us say there is a protocol for A,B,C which solves the problem.

Derive contradiction from a construction.
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Formal Proof (Special Case)

Case 1: Consider the nodes v and w

Same condition as q, r with p as Byzantine.

Validity dictates that q, r decide 0 and hence v ,w must decide 0.
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Formal Proof (Special Case)

Case 2: Consider the nodes w and x

Same condition as p, r with q as Byzantine.

Agreement dictates that p, r decide one value.

As w decides 0 hence x decides 0.
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Formal Proof (Special Case)
Case 3: Consider the nodes x and y

Same condition as p, q with r as Byzantine.

Validity dictates that p, q must decide 1 hence x , y must decide 1.

Wait! we already concluded that x must decide 0
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Formal Proof (General Case)

Say a protocol achieves agreement with ≤ 3f nodes (≤ f are faulty).

Create 3 groups p, q, r containing atmost f nodes each.

w.l.o.g. all faulty nodes reside in group p.

Simulate solution for 3 general problem.
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Formal Proof (General Case)
Simulating solution for 3 general problem

u, v ,w simulate group p, q, r resp.
Given input 0 to node v ,w run the protocol with input to all nodes in
q, r as 0.

Eventually all nodes in q, r accept 0 hence v ,w accept 0.
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Formal Proof (General Case)

Do similarly when v ,w are given input as 0, 1 resp.

We have found a solution to three general problem. Contradiction.
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So how to achieve agreement when n ≥ 3f + 1

Oral Message Algorithm
Due to Lamport, Shostak and Pease (1982)

Assumption

Every message that is sent is delivered correctly.

The receiver of a message knows who sent it.

The absence of a message can be detected.

Are these assumptions realistic?
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Rephrasing the problem

System as a graph with nodes taking input.

Agreement: All correct nodes accept same value.

Validity: If all correct nodes have the same input, that input must be
the value accepted.

can be reformulated as

Commander node sending order to a set of lieutenant nodes in a
graph.

Agreement: All correct lieutenant nodes accept the same value.

Validity: If the commander is loyal then every loyal lieutenant obeys
the order he/she sends.

From formulation 2 to 1

1. Input to a node is then the order given by the commander.

2. Loyal commander orders and obeys the input given to it.
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Problem Statement (Fully Connected Graph)

There are n nodes in a fully connected graph.

One node is a commander and remaining are lieutenants.

Find a protocol for every node such that following holds:

Agreement: All correct lieutenant nodes accept the same value.

Validity: If the commander is loyal then every loyal lieutenant obeys
the order he/she sends.
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Oral Message Algorithm

Algorithm OM(0)

The commander sends his/her value to every lieutenant.

Each lieutenant uses the value he/she receives from the commander.

Algorithm OM(m),m > 0

The commander sends his/her value to every lieutenant.

For each i , let vi be the value Lieutenant received from the
commander else RETREAT if no value is received. Lieutenant acts as
the commander and sends the value vi to each of the n − 2 other
lieutenants using OM(m − 1).

For each i , and each j 6= i , let vj be the value lieutenant received
from Lieutenant j in step(2) or else RETREAT if he received no such
value. Lieutenant i uses the value majority{v1, v2, · · · , vn−1}.
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Oral Message Algorithm OM(1)
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Oral Message Algorithm OM(1)
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OM Algorithm: Proof of Correctness

Lemma

For any m, k Algorithm OM(m) satisfies validity if there are more than
2k + m generals and at most k traitors.

Validity is defined when commander is loyal.

Induction on m. For m = 0, its trivial.

Assume hypothesis works for m′ < m.

In step 1, loyal commander sends value v to n − 1 lieutenant.

In step 2, loyal lietuenant uses OM(m− 1) and sends v to n− 2 other
lieutenant.

As n − 1 > 2k + m − 1 hence OM(m − 1) works in step 2.

Therefore, all loyal lieutenant get v from every other loyal lieutenant
and the loyal commander.

Hence, each loyal lieutenant receives atleast n − k copies of value v .
As n − k > k + m > n/2 and hence he/she chooses v .
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OM Algorithm: Proof of Correctness

Theorem

For any m, algorithm OM(m) satisfies validity and agreement if there are
atleast 3m + 1 generals and atmost m traitors.

Induction on m. The case m = 0 (no traitor) is trivial.

Assume the hypothesis works for all m′ < m.

When commander is loyal
I Previous lemma shows that validity holds.
I When validity holds then agreement holds as well.
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OM Algorithm: Proof of Correctness

Theorem

For any m, algorithm OM(m) satisfies validity and agreement if there are
atleast 3m + 1 generals and atmost m traitors.

When commander is a traitor

I In step 2, we have ≥ 3m generals and ≤ m − 1 traitors.
I 3m > 3(m − 1) hence OM(m − 1) satisfies validity and agreement.
I For every j in step 2, each loyal lieutenant gets the same value vj .
I Each loyal lieutenant accepts the same value given by

majority{v1, v2, · · · vn−1}.
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Time Complexity of Oral Message Algorithm

Let T (n,m) be time complexity of OM(m) for n nodes.

Step 1: commander sends messages to n − 1 lieutenant.

Step 2: each lieutenant runs OM(m − 1) algorithm with n − 1 nodes.

Each lieutenant computes the majority of values.

T (n,m) = O(n)+nT (n−1,m−1)+O(n2) = O(n2)+nT (n−1,m−1)

T (n,m) = O(nm)

Exponential in number of traitors!
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Can we do better?

Why did we need ≥ 3f + 1 generals?

Systems could lie about each other.

Add digital signature to messages.

Dipendra K. Misra (Cornell University) Byzantine Agreement 20th October 2015 30 / 43



Can we do better?

Why did we need ≥ 3f + 1 generals?

Systems could lie about each other.

Add digital signature to messages.

Dipendra K. Misra (Cornell University) Byzantine Agreement 20th October 2015 30 / 43



Can we do better?

Why did we need ≥ 3f + 1 generals?

Systems could lie about each other.

Add digital signature to messages.

Dipendra K. Misra (Cornell University) Byzantine Agreement 20th October 2015 30 / 43



Digital Signature Assumptions

i th general signs a message m as m : i before sending.

A loyal general’s message cannot be forged.

Anyone can verify the authenticity of a general’s signature.

Theorem

Using above assumptions, one can handle f traitors with ≥ f + 2 generals.
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Digital Signature Algorithm SM(m)

Vi = ∅ ∀i ∈ {1, 2, · · · n}
Commander signs and sends his/her value to every lieutenant.

For each i :
I If a Lieutenant receives a message v : 0 from the commander and

he/she has not received any order then.
1 Let Vi = {v}.
2 Send message v : 0 : i to other lieutenant.

I if Lieutenant receives a message v : 0 : j1 : j2 : · · · : jk and v 6∈ Vi .
1 add v to Vi .
2 if k < m then send message v : 0 : j1 : j2 : · · · : jk : i to every lieutenant

other than j1, j2 · · · jk .

For each i : lieutenant i accepts majority(Vi ) (0 if Vi is empty).
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Digital Signature Algorithm: Formal Proof

Theorem

For any m, SM(m) solves the Byzantine agreement if there are atmost m
traitors.

Let commander be loyal

Each lieutenant receives v : 0.

No lieutenant can forge v ′ : 0 hence every lieutenant receives only
value v .

Every lieutenant end up choosing v .
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Digital Signature Algorithm: Formal Proof

Theorem

For any m, SM(m) solves the Byzantine agreement if there are atmost m
traitors.

If commander is a traitor

show that Vi = Vj for every loyal lieutenant i , j .

let lieutenant i add a message v : 0 : j1 : j2 : · · · jk to Vi .

if j ∈ {j1, j2 · · · jk} then lieutenant j received the message.

else:
I if k < m then i sends this message to j in next step.
I if k = m then there is atleast one loyal lietenant in {j1, j2 · · · jm}.
I this loyal lieutenant must have send this message to lieutenant j .
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More on Byzantine Agreement

We assumed fully connected graph in OM, SM algorithm.

Theorem

Cannot achieve Byzantine agreement in a graph with ≤ 2f node
connectivity and f traitors.

Proof technically similar to the one presented.
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More on Byzantine Agreement

Can we solve a simpler problem?

Can we weaken the validity condition

Weak Validity: Only when all nodes are correct and have the same input,
that input is the value chosen.

Theorem

Cannot achieve weak Byzantine agreement in a graph with ≤ 3f nodes
with f traitors.
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Byzantine Agreement: Take Away

Used in places where security takes precedence over performance.

Example credentials system, space shuttle.

Modern protocols are less expensive than OM,SM algorithms.

Whenever possible use less expensive models such as fail-by-halt.
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Byzantine Failure: An example

Bit value 1/2

(taken from Driscoll et al. 2003)
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Byzantine Failure: An example

Byzantine Failure Propagation

(taken from Driscoll et al. 2003)
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Byzantine Failure: Be Realistic

Murphys Law:
“If anything can go wrong, it will go wrong.”
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Conclusion

Byzantine fault and Byzantine agreement

3f + 1 theorem

Oral Message algorithm

Digital Signature algorithm

Protocols are expensive

Byzantine failures can occur in strange places
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Figure on slide 5-6:
Power Grid: http://www.jmccp.com/strategy/
Ballistic Missile: http://manglermuldoon.blogspot.com/
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Backup Slide: Rephrasing the problem

From formulation 1 to 2

1 We go in n rounds.

2 In i th round, node i acts as commander and sends his/her input to
the j th node.

3 We then run the protocol for formulation 2.

4 At the end of all rounds, each node accepts the majority decisions of
the n rounds.

Why this works?

Agreement: In all rounds, all loyal nodes accept the same value. Hence,
at the end of the round; they all accept the same value.
Validity: If all correct nodes have the same input, then that input will be
accepted by all loyal nodes in atleast 2f + 1 rounds and hence will be the
majority at the end.
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