Clocks and Snapshots

Michael Whittaker

September 30, 2015



“1v/1PCy5ye

http://bi


http://bit.ly/1PCy5ye

Mathematical Preliminaries: Relations

A relation R on sets A and B is a subset of A x B. Alternatively, a
relation R on a set A is a subset of A x A.

RCAxB, RCAxA



Mathematical Preliminaries: Relations

A relation R on sets A and B is a subset of A x B. Alternatively, a
relation R on a set A is a subset of A x A.

RCAxB, RCAxA

For example, the following sets are relations on A = {1,2} and
B={xy,z}.

> {(1,x),(2,x)}

> {(1,x),(1,5),(2,2)}

» AxB

> {}



Mathematical Preliminaries: Relations

A relation R on sets A and B is a subset of A x B. Alternatively, a
relation R on a set A is a subset of A x A.

RCAxB, RCAxA

For example, the following sets are relations on A = {1,2} and
B={xy,z}.

> {(1,x),(2,x)}

> {(1,x),(1,5),(2,2)}

» AxB

- 0
We denote (a, b) € R as aRb. For example 1 = 1 denotes
(1,1) €=, and 1 < 42 denotes (1,42) <.



Mathematical Preliminaries: Partial Orderings

An irreflexive partial ordering < on a set A is a relation on A that
satisfies three properties:

1. irreflexivity a £ a.
2. antisymmetry If a < b then b £ a.
3. transitivity If a < b and b < ¢, then a < c.



Mathematical Preliminaries: Partial Orderings

For example, the strict subset relation C is an irreflexive partial
order on the powerset 24 of some a set A.

1. irreflexivity {1,2,3} ¢ {1,2,3}.

2. antisymmetry {1,2} C {1,2,3}, so {1,2,3} ¢ {1,2}.

3. transitivity {1} C {1,2} and {1,2} C {1,2,3}, so
{1} € {1,2,3}.



Mathematical Preliminaries: Partial Orderings

For example, the strict subset relation C is an irreflexive partial
order on the powerset 24 of some a set A.

1. irreflexivity {1,2,3} ¢ {1,2,3}.
2. antisymmetry {1,2} C {1,2,3}, so {1,2,3} ¢ {1,2}.
3. transitivity {1} C {1,2} and {1,2} C {1,2,3}, so
{1} € {1,2,3}.
Note it's not always true that a < b or b < a. For example,

{1,2} ¢ {2,3} and {2,3} ¢ {1,2}.



Mathematical Preliminaries: Total Orderings

A irreflexive total ordering < on a set A is an irreflexive partial
ordering on A that satisfies the additional property:

1. totality If a = bthena< bor b< a.



http://bit.ly/1WnG32¢



2 ssad0.4d

q ssa20.d

» ssad0.d




Constructing a Partial Order

We want to define an irreflexive partial ordering — on the set of
events in a distributed system. Define — to be the smallest
relation satisfying the following rules:

1. If a; comes before a; is a process a, then a; — a;.

2. If ais the sending of a message and b is the receipt of the
message, then a — b.

3. Ifa— band b — ¢, then a — c.



2 ssad0.4d

q ssa20.d

» ssad0.d




Logical Clocks

Define a clock C as a function from events to natural numbers
where we denote C (a) as the number assigned to a by C. A clock
is correct if it satisfies the Clock Condition:

Va,b.a— b = C(a) < C(b)

Note that the converse does not need to be satisfied!



Implementing Logical Clocks

Each process i maintains a register C;. For an event a that occurs
on process i, let C (a) be C; at the time of a. Each process
updates C; as follows:

1. C; is incremented between any two events.

2. If ais the sending of a message m from process i to process j,
then m includes C (a) and j updates C; to be larger than the
old value of Cj and C (a).



2 ssad0.4d

q ssa20.d

» ssad0.d




Constructing a Total Ordering

Consider an arbitrary total ordering < on processes. Let's define a
= be a total ordering of events where a; = b; if and only if

1. Claj) < C<bj>, or
2. C(aj) = C(bj) and a < b.



2 ssad0.4d

q ssa20.d

» ssad0.d




Distributed Mutual Exclusion

A set of processes share a single resource that should be held by at
most one processor at a time. We want an algorithm to enforce
mutual exclusion such that:

1. safety: At most one process holds the resource.

2. ordering: Resource requests should be granted according to
the happens before relation —.

3. progress: If the resource is held for a finite amount of time,
all requests will eventually be granted.

Assume processes form a clique and never fail and that the
network guarantees reliable FIFO communication. Also assume one
process has the resource initially.



2 ssadoud

q ssa920ud

» ss930.4d

a,
LN



Lamport's Mutual Exclusion Algorithm

Each process maintains a request queue which initially contains
0 : p. Each process follows five rules.

1. To request the resource, process a sends i : a to all processes.

2. When a process receives i : a, it inserts it in the queue and
acknowledges.

3. To release the resource, sends a release message to all
processes.

4. When a process receives a release message from a it removes
all i : a from its queue.

5. Process a is granted the resource when the head of the queue
is [/ : a] and it has seen acknowledgements from all processes
later than i.



[0:a]

ol

2 ssad0ud

q ssa@d0ud

» ss@d04d




process a
process b
process c

[2:b,4:c]ay

[4:c]ay

¢y [2:b,4:]

c; [2:0]

ll

[Jag [0:a]




process a
process b
process ¢

(2:b4:c]ay ¢ ¢3 [2:b,41c]
[4:cla;

Cy [2:0,4:(]

¢y [2:0)]




¢ [l
cs [4:]
cy [4:(]

c3 [2:b,4:]

¢y [2:b,4:]
cp [2:0)]

<[]
[0:q]










o] —— oo

=N o=n



Distributed System Model

A process p is a set of states S, an initial state s, and a set of
events E.
A
p=(S,s,E)



Distributed System Model

A process p is a set of states S, an initial state s, and a set of
events E.

p=(S,s,E)

An event e € E is defined by a process p, the state s and s’ of p
before and after e, the channel (c|L) modified by e, and the
message (M|L) sent or received on c.

e = (p,s,s',(M|1),(c[L))



Distributed System Model

A process p is a set of states S, an initial state s, and a set of
events E.
A
p=(S,s,E)

An event e € E is defined by a process p, the state s and s’ of p
before and after e, the channel (c|L) modified by e, and the
message (M|L) sent or received on c.

e = (p,s,s',(M|1),(c[L))

A global state is a set of process and channel states. The initial
global state has all processes in their initial states and all channels
empty. A computation of the system is a sequence of events.






o] —— oo

=N o=n



Snapshot Algorithm

Marker-Sending Rule. For each process p and for each channel ¢
away from p, p records its state and immediately sends a token
along c.

Marker-Receiving Rule. For each process g and for each channel
c into g, when g receives a token from c,

> If g has not yet recorded its state, it records its state and
records the state of ¢ as the empty sequence.

» If g has recorded its state, it records the state of ¢ as the
sequence of messages since it recorded its state.



S

-

Ay




S

-

Ay




S

-

Ay




S

-

Ay






















S




S




< — o=n
i XQ-:-D
]






Snapshot Properties

Consider a computation seq = SpepSie;...5.e,...54€4...5.€,
where we initiate the snapshot algorithm in S, and the algorithm
termiantes in S4. Denote the snapshot state 5*. We've seen that
S$* might not be equal to any S; for ¢ < j < ¢. Howover, we can
show that:

1. S* is reachable from S,, and

2. Sy is reachable from S*.



Snapshot Properties

Even stronger, we can show that there exists a computation seq’
such that:

1. Forall i<, i> ¢, e =e, and
2. (ejf,L < j < ¢) is a permutation of (ej,. < i < ¢), and
3. there exists some ¢ < k < ¢ such that $* = S, .



Stable Properties

Conceptually, a stable property of a distributed system D is a
property that is monotonically true. That is, once it becomes true,
it remains true.



Stable Properties

Conceptually, a stable property of a distributed system D is a
property that is monotonically true. That is, once it becomes true,
it remains true.

For example, the following are stable properties:

» Our one-token system has one token

v

Our two-token system has two tokens

» Computation has terminated

v

Computation is deadlocked



Stable Properties

Conceptually, a stable property of a distributed system D is a
property that is monotonically true. That is, once it becomes true,
it remains true.

For example, the following are stable properties:

» Our one-token system has one token

v

Our two-token system has two tokens

» Computation has terminated

v

Computation is deadlocked

Formally, a stable property y is a predicate on the global states S
of a distributed system D. with the property that if y(S) is true
then y(S’) is true for all states S’ reachable from S.






Stable Property Detection

We want to construct an algorithm that takes as input a
distributed system D and a stable property y, and outputs a
boolean b such that

y(S) = b, b = y(Ss)

Intuitively, if b is true, then y(S,) is true. If b is false, then y(S,)
is false.



Stable Property Detection

We want to construct an algorithm that takes as input a
distributed system D and a stable property y, and outputs a
boolean b such that

y(S) = b, b = y(Ss)

Intuitively, if b is true, then y(S,) is true. If b is false, then y(S,)
is false.

The algorithm itself is trivial:
1. Record a global state S*
2. Output y(S5%)



< — o=n
i XQ-:-D
]



Discussion



Discussion

» Lamport clocks map a set of partially ordered events to a
totally ordered set. Does this make sense? If not, how could
we improve on Lamport clocks?

» How adequate are the system models presented in the papers?

> Is it reasonable to abandon physical clocks because of their
inaccuracy, or is that an overreaction? Can physical clocks
and logical clocks be combined?



https://github.com/mwhittaker/clock_snapshot_slides


https://github.com/mwhittaker/clock_snapshot_slides

