
Clocks and Snapshots

Michael Whittaker

September 30, 2015

http://bit.ly/1PCy5ye

http://bit.ly/1PCy5ye

Mathematical Preliminaries: Relations

A relation R on sets A and B is a subset of A× B. Alternatively, a
relation R on a set A is a subset of A× A.

R ⊆ A× B, R ⊆ A× A

For example, the following sets are relations on A = {1, 2} and
B = {x , y , z}.

I {(1, x), (2, x)}
I {(1, x), (1, y), (2, z)}
I A× B

I {}
We denote (a, b) ∈ R as aRb. For example 1 = 1 denotes
(1, 1) ∈=, and 1 ≤ 42 denotes (1, 42) ∈≤.

Mathematical Preliminaries: Relations

A relation R on sets A and B is a subset of A× B. Alternatively, a
relation R on a set A is a subset of A× A.

R ⊆ A× B, R ⊆ A× A

For example, the following sets are relations on A = {1, 2} and
B = {x , y , z}.

I {(1, x), (2, x)}
I {(1, x), (1, y), (2, z)}
I A× B

I {}

We denote (a, b) ∈ R as aRb. For example 1 = 1 denotes
(1, 1) ∈=, and 1 ≤ 42 denotes (1, 42) ∈≤.

Mathematical Preliminaries: Relations

A relation R on sets A and B is a subset of A× B. Alternatively, a
relation R on a set A is a subset of A× A.

R ⊆ A× B, R ⊆ A× A

For example, the following sets are relations on A = {1, 2} and
B = {x , y , z}.

I {(1, x), (2, x)}
I {(1, x), (1, y), (2, z)}
I A× B

I {}
We denote (a, b) ∈ R as aRb. For example 1 = 1 denotes
(1, 1) ∈=, and 1 ≤ 42 denotes (1, 42) ∈≤.

Mathematical Preliminaries: Partial Orderings

An irreflexive partial ordering < on a set A is a relation on A that
satisfies three properties:

1. irreflexivity a 6< a.

2. antisymmetry If a < b then b 6< a.

3. transitivity If a < b and b < c , then a < c .

Mathematical Preliminaries: Partial Orderings

For example, the strict subset relation ⊂ is an irreflexive partial
order on the powerset 2A of some a set A.

1. irreflexivity {1, 2, 3} 6⊂ {1, 2, 3}.
2. antisymmetry {1, 2} ⊂ {1, 2, 3}, so {1, 2, 3} 6⊂ {1, 2}.
3. transitivity {1} ⊂ {1, 2} and {1, 2} ⊂ {1, 2, 3}, so
{1} ⊂ {1, 2, 3}.

Note it’s not always true that a < b or b < a. For example,
{1, 2} 6⊂ {2, 3} and {2, 3} 6⊂ {1, 2}.

Mathematical Preliminaries: Partial Orderings

For example, the strict subset relation ⊂ is an irreflexive partial
order on the powerset 2A of some a set A.

1. irreflexivity {1, 2, 3} 6⊂ {1, 2, 3}.
2. antisymmetry {1, 2} ⊂ {1, 2, 3}, so {1, 2, 3} 6⊂ {1, 2}.
3. transitivity {1} ⊂ {1, 2} and {1, 2} ⊂ {1, 2, 3}, so
{1} ⊂ {1, 2, 3}.

Note it’s not always true that a < b or b < a. For example,
{1, 2} 6⊂ {2, 3} and {2, 3} 6⊂ {1, 2}.

Mathematical Preliminaries: Total Orderings

A irreflexive total ordering < on a set A is an irreflexive partial
ordering on A that satisfies the additional property:

1. totality If a 6= b then a < b or b < a.

http://bit.ly/1WnG32c

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

a3

b0

b1

b2

b3

b4

b5

b6

b7

c0

c1

c2

c3

Constructing a Partial Order

We want to define an irreflexive partial ordering → on the set of
events in a distributed system. Define → to be the smallest
relation satisfying the following rules:

1. If ai comes before aj is a process a, then ai → aj .

2. If a is the sending of a message and b is the receipt of the
message, then a→ b.

3. If a→ b and b → c , then a→ c .

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

a3

b0

b1

b2

b3

b4

b5

b6

b7

c0

c1

c2

c3

Logical Clocks

Define a clock C as a function from events to natural numbers
where we denote C 〈a〉 as the number assigned to a by C . A clock
is correct if it satisfies the Clock Condition:

∀a, b. a→ b =⇒ C 〈a〉 < C 〈b〉

Note that the converse does not need to be satisfied!

Implementing Logical Clocks

Each process i maintains a register Ci . For an event a that occurs
on process i , let C 〈a〉 be Ci at the time of a. Each process
updates Ci as follows:

1. Ci is incremented between any two events.

2. If a is the sending of a message m from process i to process j ,
then m includes C 〈a〉 and j updates Cj to be larger than the
old value of Cj and C 〈a〉.

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

a3

b0

b1

b2

b3

b4

b5

b6

b7

c0

c1

c2

c3

Constructing a Total Ordering

Consider an arbitrary total ordering < on processes. Let’s define a
⇒ be a total ordering of events where ai ⇒ bj if and only if

1. C 〈ai 〉 < C 〈bj〉, or

2. C 〈ai 〉 = C 〈bj〉 and a < b.

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

a3

b0

b1

b2

b3

b4

b5

b6

b7

c0

c1

c2

c3

Distributed Mutual Exclusion

A set of processes share a single resource that should be held by at
most one processor at a time. We want an algorithm to enforce
mutual exclusion such that:

1. safety: At most one process holds the resource.

2. ordering: Resource requests should be granted according to
the happens before relation →.

3. progress: If the resource is held for a finite amount of time,
all requests will eventually be granted.

Assume processes form a clique and never fail and that the
network guarantees reliable FIFO communication. Also assume one
process has the resource initially.

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

b0

b1

c0

c1

Lamport’s Mutual Exclusion Algorithm

Each process maintains a request queue which initially contains
0 : p. Each process follows five rules.

1. To request the resource, process a sends i : a to all processes.

2. When a process receives i : a, it inserts it in the queue and
acknowledges.

3. To release the resource, sends a release message to all
processes.

4. When a process receives a release message from a it removes
all i : a from its queue.

5. Process a is granted the resource when the head of the queue
is [i : a] and it has seen acknowledgements from all processes
later than i .

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

b0 c0

[] [0 :a] [0 :a]

[] []

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

b0

b1

b2

b3

c0

c1

c2

[] [0 :a] [0 :a]

[] []

[2 :b]

[2 :b]

[2 :b,4 :c]

[4 :c]

[2 :b]

[2 :b,4 :c]

[2 :b,4 :c]

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

b0

b1

b2

b3

b4

c0

c1

c2

c3

[] [0 :a] [0 :a]

[] []

[2 :b]

[2 :b]

[2 :b,4 :c]

[4 :c]

[2 :b]

[2 :b,4 :c]

[2 :b,4 :c] [2 :b,4 :c]

[2 :b,4 :c]

p
ro

ce
ss

 a

p
ro

ce
ss

 b

p
ro

ce
ss

 c

a0

a1

a2

a3

a4

b0

b1

b2

b3

b4

b5

b6

b7

c0

c1

c2

c3

c4

c5

c6

[] [0 :a] [0 :a]

[] []

[2 :b]

[2 :b]

[2 :b,4 :c]

[4 :c]

[2 :b]

[2 :b,4 :c]

[2 :b,4 :c] [2 :b,4 :c]

[2 :b,4 :c]

[2 :b,4 :c]

[4 :c]

[4 :c] [4 :c]

[4 :c]

[]

[] []

http://bit.ly/1LIDXXG

p q

r

C1

C2

C3C4

•
•

•
•

Distributed System Model

A process p is a set of states S , an initial state s, and a set of
events E .

p , (S , s,E)

An event e ∈ E is defined by a process p, the state s and s ′ of p
before and after e, the channel (c |⊥) modified by e, and the
message (M|⊥) sent or received on c .

e , (p, s, s ′, (M|⊥), (c |⊥))

A global state is a set of process and channel states. The initial
global state has all processes in their initial states and all channels
empty. A computation of the system is a sequence of events.

Distributed System Model

A process p is a set of states S , an initial state s, and a set of
events E .

p , (S , s,E)

An event e ∈ E is defined by a process p, the state s and s ′ of p
before and after e, the channel (c |⊥) modified by e, and the
message (M|⊥) sent or received on c .

e , (p, s, s ′, (M|⊥), (c |⊥))

A global state is a set of process and channel states. The initial
global state has all processes in their initial states and all channels
empty. A computation of the system is a sequence of events.

Distributed System Model

A process p is a set of states S , an initial state s, and a set of
events E .

p , (S , s,E)

An event e ∈ E is defined by a process p, the state s and s ′ of p
before and after e, the channel (c |⊥) modified by e, and the
message (M|⊥) sent or received on c .

e , (p, s, s ′, (M|⊥), (c |⊥))

A global state is a set of process and channel states. The initial
global state has all processes in their initial states and all channels
empty. A computation of the system is a sequence of events.

• •

•
•

•
•

••

•

•

••

•
•

•
•

••

••

•
•

•
•

Snapshot Algorithm

Marker-Sending Rule. For each process p and for each channel c
away from p, p records its state and immediately sends a token
along c .
Marker-Receiving Rule. For each process q and for each channel
c into q, when q receives a token from c ,

I If q has not yet recorded its state, it records its state and
records the state of c as the empty sequence.

I If q has recorded its state, it records the state of c as the
sequence of messages since it recorded its state.

a

b

c

d

• • •

•

•
•

•

a

b

c

d

• • •

•

•

•

• •

a

b

c

d

• • •

•

•
•

• • •

a

b

c

d

• •

• •

•

•

• • •

a

b

c

d

• •

• •

•
•

• •

• • •

a

b

c

d

• • •

•

•
•

•

• • •

a

b

c

d

• • •
•

•
•

•

• •

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

Snapshot Properties

Consider a computation seq = S0e0S1e1 . . . Sιeι . . . Sφeφ . . . Snen
where we initiate the snapshot algorithm in Sι and the algorithm
termiantes in Sφ. Denote the snapshot state S∗. We’ve seen that
S∗ might not be equal to any Sj for ι ≤ j ≤ φ. Howover, we can
show that:

1. S∗ is reachable from Sι, and

2. Sφ is reachable from S∗.

Snapshot Properties

Even stronger, we can show that there exists a computation seq′

such that:

1. For all i < ι, i ≥ φ, e ′i = ei , and

2. (e ′j , ι ≤ j < φ) is a permutation of (ej , ι ≤ i < φ), and

3. there exists some ι ≤ k ≤ φ such that S∗ = S ′k .

Stable Properties

Conceptually, a stable property of a distributed system D is a
property that is monotonically true. That is, once it becomes true,
it remains true.

For example, the following are stable properties:

I Our one-token system has one token

I Our two-token system has two tokens

I Computation has terminated

I Computation is deadlocked

Formally, a stable property y is a predicate on the global states S
of a distributed system D. with the property that if y(S) is true
then y(S ′) is true for all states S ′ reachable from S .

Stable Properties

Conceptually, a stable property of a distributed system D is a
property that is monotonically true. That is, once it becomes true,
it remains true.
For example, the following are stable properties:

I Our one-token system has one token

I Our two-token system has two tokens

I Computation has terminated

I Computation is deadlocked

Formally, a stable property y is a predicate on the global states S
of a distributed system D. with the property that if y(S) is true
then y(S ′) is true for all states S ′ reachable from S .

Stable Properties

Conceptually, a stable property of a distributed system D is a
property that is monotonically true. That is, once it becomes true,
it remains true.
For example, the following are stable properties:

I Our one-token system has one token

I Our two-token system has two tokens

I Computation has terminated

I Computation is deadlocked

Formally, a stable property y is a predicate on the global states S
of a distributed system D. with the property that if y(S) is true
then y(S ′) is true for all states S ′ reachable from S .

• •

•
•

•
•

••

•

•

••

•
•

•
•

••

••

Stable Property Detection

We want to construct an algorithm that takes as input a
distributed system D and a stable property y , and outputs a
boolean b such that

y(Sι) =⇒ b, b =⇒ y(Sφ)

Intuitively, if b is true, then y(Sφ) is true. If b is false, then y(Sι)
is false.

The algorithm itself is trivial:

1. Record a global state S∗

2. Output y(S∗)

Stable Property Detection

We want to construct an algorithm that takes as input a
distributed system D and a stable property y , and outputs a
boolean b such that

y(Sι) =⇒ b, b =⇒ y(Sφ)

Intuitively, if b is true, then y(Sφ) is true. If b is false, then y(Sι)
is false.
The algorithm itself is trivial:

1. Record a global state S∗

2. Output y(S∗)

• •
•

•
•

•
••

••

••

•

••

•
•

•

•
•

••

••

Discussion

I Lamport clocks map a set of partially ordered events to a
totally ordered set. Does this make sense? If not, how could
we improve on Lamport clocks?

I How adequate are the system models presented in the papers?

I Is it reasonable to abandon physical clocks because of their
inaccuracy, or is that an overreaction? Can physical clocks
and logical clocks be combined?

Discussion

I Lamport clocks map a set of partially ordered events to a
totally ordered set. Does this make sense? If not, how could
we improve on Lamport clocks?

I How adequate are the system models presented in the papers?

I Is it reasonable to abandon physical clocks because of their
inaccuracy, or is that an overreaction? Can physical clocks
and logical clocks be combined?

https://github.com/mwhittaker/clock_snapshot_slides

https://github.com/mwhittaker/clock_snapshot_slides

