
CLASSIC OPERATING SYSTEMS:
UNIX AND MACH
Ken BirmanCS6410

1

Unifying question for today

 What should be the central design principle of a modern operating
system?
 Unix (now called Linux): Elegant, powerful API.

 Mach: Refocus the whole system on memory segments and sharing, message
passing, componentation.

 Windows (not included): End user will program against .NET framework.
Role of OS is to make .NET fast

Simple process, file and stream abstractions. Often used
directly by application developer or end-user.

Mach hosts standard operating systems over these abstractions. The
core system layer aims at a developer who works mostly on
componentized CORBA-style applications.

… so OS should use the hardware as efficiently as possible – end
user will rarely if ever “see” the Win32/Win64 API! Offer powerful
complete functionality to reduce frequency of “domain crossings”

2

Implicit claims?

 Unix: Operating systems were inelegant, batch-oriented, expensive to
use. New personal computing systems demand a new style of OS.

 Mach: Everything has become componentized, distributed. Mach
reimagines the OS for new needs.

 Windows: What matters more are end-users who work with IDEs and
need to create applications integrated with powerful packages. Unix
and Mach? Too low level. Focus on making OS fast, powerful.

3

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

 Background of authors at Bell Labs
 Both won Turing Awards in 1983

 Dennis Ritchie
 Key developer of The C Programming Lanuage, Unix, and Multics

 Ken Thompson
 Key developer of the B programming lanuage,

Unix, Multics, and Plan 9
 Also QED, ed, UTF-8

Unix slides based on Hakim’s Fall 2011 materials
Mach slides based on materials on the CMU website

4

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

5

The UNIX Time-Sharing System
Dennis Ritchie and Ken Thompson

 Classic system and paper
 described almost entirely in 10 pages

 Key idea
 elegant combination: a few concepts

that fit together well
 Instead of a perfect specialized API for each kind of device or abstraction,

the API is deliberately small

6

System features

 Time-sharing system
 Hierarchical file system
 Device-independent I/O
 Shell-based, tty user interface
 Filter-based, record-less processing paradigm

 Major early innovations: “fork” system call for process creation, file
I/O via a single subsystem, pipes, I/O redirection to support chains

7

Version 3 Unix

 1969: Version 1 ran PDP-7
 1971: Version 3 Ran on PDP-11’s

 Costing as little as $40k!

 < 50 KB
 2 man-years

to write
 Written in C

PDP-7 PDP-11

8

File System

 Ordinary files (uninterpreted)
 Directories (protected ordinary files)
 Special files (I/O)

9

Uniform I/O Model

 open, close, read, write, seek
 Uniform calls eliminates differences between devices
 Two categories of files: character (or byte) stream and block I/O, typically

512 bytes per block

 other system calls
 close, status, chmod, mkdir, ln

 One way to “talk to the device” more directly
 ioctl, a grab-bag of special functionality

 lowest level data type is raw bytes, not “records”

10

Directories

 root directory
 path names
 rooted tree
 current working directory
 back link to parent
 multiple links to ordinary files

11

Special Files

 Uniform I/O model
 Each device associated with at least one file
 But read or write of file results in activation of device

 Advantage: Uniform naming and protection model
 File and device I/O are as similar as possible
 File and device names have the same syntax and meaning, can pass as

arguments to programs
 Same protection mechanism as regular files

12

Removable File System

 Tree-structured
 Mount’ed on an ordinary file

 Mount replaces a leaf of the hierarchy tree (the ordinary file) by a whole
new subtree (the hierarchy stored on the removable volume)

 After mount, virtually no distinction between files on permanent media or
removable media

13

Protection

 User-world, RWX bits
 set-user-id bit
 super user is just special user id

14

File System Implementation

 System table of i-numbers (i-list)
 i-nodes
 path names

(directory is just
a special file!)

 mount table
 buffered data
 write-behind

15

I-node Table

 short, unique name that points at file info.
 allows simple & efficient fsck
 cannot handle accounting issues

File name Inode# Inode

16

Many devices fit the block model

 Disks
 Drums
 Tape drives
 USB storage

 Early version of the ethernet interface was presented as a kind of
block device (seek disabled)

 But many devices used IOCTL operations heavily

17

Processes and images

 text, data & stack segments
 process swapping
 pid = fork()
 pipes
 exec(file, arg1, ..., argn)
 pid = wait()
 exit(status)

18

Easy to create pipelines

 A “pipe” is a process-to-process data stream, could be implemented
via bounded buffers, TCP, etc

 One process can write on a connection that another reads, allowing
chains of commands

% cat *.txt | grep foo | wc

 In combination with an easily programmable shell scripting model,
very powerful!

19

The Shell

 cmd arg1 ... argn
 stdio & I/O redirection
 filters & pipes
 multi-tasking from a single shell
 shell is just a program

 Trivial to implement in shell
 Redirection, background processes, cmd files, etc

20

Traps

 Hardware interrupts
 Software signals
 Trap to system routine

21

Perspective

 Not designed to meet predefined objective
 Goal: create a comfortable environment to explore machine and

operating system
 Other goals

 Programmer convenience
 Elegance of design
 Self-maintaining

22

Perspective

 But had many problems too. Here are a few:
 Weak, rather permissive security model
 File names too short and file system damaged on crash
 Didn’t plan for threads and never supported them well
 “Select” system call and handling of “signals” was ugly and out of character w.r.t.

other features
 Hard to add dynamic libraries (poor handling of processes with lots of “segments”)
 Shared memory and mapped files fit model poorly

 ...in effect, the initial simplicity was at least partly because of some serious
limitations!

23

Even so, Unix has staying power!

 Today’s Linux systems are far more comprehensive yet the core
simplicity of Unix API remains a very powerful force

 Struggle to keep things simple has helped keep O/S developers from
making the system specialized in every way, hard to understand

 Even with modern extensions, Unix has a simplicity that contrasts with
Windows .NET API... Win32 is really designed as an internal layer
that libraries invoke, but that normal users never encounter.

24

Linux gave rise to a (brief) µ-Kernel trend

 Even at outset we wanted to support many versions of Unix in one
“box” and later, Windows and IBM operating systems too
 A question of cost, but also of developer preference
 Each platform has its merits

 Led to a research push: build a micro-kernel, then host the desired
O/S as a customization layer on it
 NOT the same as a virtual machine architecture!
 In a µ-Kernel, the hosted O/S is an “application”, whereas a VM mimics

hardware and runs the real O/S

25

Microkernel vs. Monolithic Systems

Source: http://en.wikipedia.org/wiki/File:OS-structure.svg

26

Mach: Intended as a grown-up µ-Kernel

 CMU Accent operating system
 No ability to execute UNIX applications
 Single Hardware architecture

 BSD Unix system + Accent concepts
 Mach

Darwin
XNU OSF/1

Mac OS X

OpenStep GNU Hurd Professor at Rochester,
then CMU. Now

Microsoft VP Research

27

Design Principles

Maintain BSD Compatibility
 Simple programmer interface
 Easy portability
 Extensive library of

utilities/applications
 Combine utilities via pipes

PLUS
 Diverse architectures.
 Varying network speed
 Simple kernel
 Distributed operation
 Integrated memory

management and IPC
 Heterogeneous systems

28

System Components

task

text region

threads port

port set

message

 Task
 Thread
 Port
 Port set
 Message
 Memory object data region

memory
object

secondary
storage

29

Memory Management and IPC

 Memory Management using IPC:
 Memory object represented by port(s)
 IPC messages are sent to those ports to request operation on the object
 Memory objects can be remote kernel caches the contents

 IPC using memory-management techniques:
 Pass message by moving pointers to shared memory objects
 Virtual-memory remapping to transfer large contents

(virtual copy or copy-on-write)

30

Mach innovations

 Extremely sophisticated use of VM hardware
 Extensive sharing of pages with various read/write mode settings

depending on situation
 Unlike a Unix process, Mach “task” had an assemblage of segments and

pages constructed very dynamically
 Most abstractions were mapped to these basic VM ideas, which also support

all forms of Mach IPC

31

Process Management
Basic Structure

 Tasks/Threads
 Synchronization primitives:

 Mach IPC:
 Processes exchanging messages at rendezvous points
 Wait/signal associated with semaphores can be implemented using IPC
 High priority event-notification used to deliver exceptions, signals

 Thread-level synchronization using thread start/stop calls

32

Process Management
C Thread package

 User-level thread library built on top of Mach primitives
 Influenced POSIX P Threads standard
 Thread-control:

 Create/Destroy a thread
 Wait for a specific thread to terminate then continue the calling

thread
 Yield

 Mutual exclusion using spinlocks
 Condition Variables (wait, signal)

33

Process Management
CPU Scheduler

 Only threads are scheduled
 Dynamic thread priority number (0 – 127)

 based on the exponential average of its CPU usage.
 32 global run queues + per processor local queues (ex. driver thread)
 No Central dispatcher

 Processors consult run queues to select next thread
 List of idle processors

 Thread time quantum varies inversely with total number of threads, but
constant over the entire system

34

Process Management
Exception Handling

 Implemented via RPC messages
 Exception handling granularities:

 Per thread (for error handling)
 Per task (for debuggers)

 Emulate BSD style signals
 Supports execution of BSD programs
 Not suitable for multi-threaded environment

35

Interprocess Communication
Ports + messages

 Allow location independence + communication security
 Sender/Receiver must have rights (port name + send or receive capability)
 Ports:

 Protected bounded queue in the kernel
 System Calls:

 Allocate new port in task, give the task all access rights
 Deallocate task’s access rights to a port
 Get port status
 Create backup port

 Port sets: Solves a problem with Unix “select”

36

Interprocess Communication
Ports + messages

 Messages:
 Header + typed data objects
 Header: destination port name, reply port name, message length
 In-line data: simple types, port rights
 Out-of-line data: pointers
 Via virtual-memory management
 Copy-on-write

 Sparse virtual memory

37

Interprocess Communication
Ports + messages

 NetMsgServer:
 user-level capability-based networking daemon
 used when receiver port is not on the kernel’s computer
 Forward messages between hosts
 Provides primitive network-wide name service

 Mach 3.0 NORMA IPC
 Syncronization using IPC:

 Used in threads in the same task
 Port used as synchronization variable
 Receive message wait
 Send message signal

38

Memory Management

 Memory Object
 Used to manage secondary storage (files, pipes, …), or data mapped into virtual memory
 Backed by user-level memory managers

 Standard system calls for virtual memory functionality
 User-level Memory Managers:

 Memory can be paged by user-written memory managers
 No assumption are made by Mach about memory objects contents
 Kernel calls to support external memory manager

 Mach default memory manager

39

Memory Management
Shared memory

 Shared memory provides reduced complexity and enhanced performance
 Fast IPC
 Reduced overhead in file management

 Mach provides facilities to maintain memory consistency on different
machines

40

Programmer Interface

 System-call level
 Emulation libraries and servers
 Upcalls made to libraries in task address space, or server

 C Threads package
 C language interface to Mach threads primitives
 Not suitable for NORMA systems

 Interface/Stub generator (MIG) for RPC calls

41

Mach versus Unix

 Imagine a threaded program with multiple input sources (I/O streams)
and also events like timeouts, mouse-clicks, asynchronous I/O
completions, etc.

 In Unix, need a messy select-based central loop.
 With Mach, a port-group can handle this in a very elegant and

general way. But forces you to code directly against the Mach API if
the rest of your program would use the Unix API

42

Mach Microkernel
summary

 Simple kernel abstractions
 Hard work is that they use them in such varied ways
 Optimizing to exploit hardware to the max while also matching patterns of use took

simple things and made them remarkably complex
 Even the simple Mach “task” (process) model is very sophisticated compared to Unix

 Bottom line: an O/S focused on communication facilities
 System Calls:

 IPC, Task/Thread/Port, Virtual memory, Mach 3 NORMA IPC

43

Mach Microkernel
summary

 User level
 Most use was actually Unix on Mach, not pure Mach
 Mach team build several major servers

 Memory Managers
 NetMsgServer
 NetMemServer
 FileServer

 OS Servers/Emulation libraries
 C Threads user-level thread management package

44

Big picture questions to ask

 Unix focuses on a very simple process + I/O model
 Mach focused on a very basic / general VM model, then uses it to support Unix,

Windows, and “native” services

 If Mach mostly is a VM infrastructure, was this the best way to do that? If Linux
needed to extend Unix, was Unix simplicity as much of a win as people say?

 Did Mach exhbit a mismatch of goals: a solution (fancy paging) in search of a
platform using those features?

 Fate of Mach: The system lived on and became Apple OS/X, and some ideas
are still present in Windows, notably treating files as VM segments

45

	Classic Operating Systems:�Unix and Mach
	Unifying question for today
	Implicit claims?
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	The UNIX Time-Sharing System�Dennis Ritchie and Ken Thompson
	System features
	Version 3 Unix
	File System
	Uniform I/O Model
	Directories
	Special Files
	Removable File System
	Protection
	File System Implementation
	I-node Table
	Many devices fit the block model
	Processes and images
	Easy to create pipelines
	The Shell
	Traps
	Perspective
	Perspective
	Even so, Unix has staying power!
	Linux gave rise to a (brief) -Kernel trend
	Microkernel vs. Monolithic Systems
	Mach: Intended as a grown-up -Kernel
	Design Principles
	System Components
	Memory Management and IPC
	Mach innovations
	Process Management� Basic Structure
	Process Management�C Thread package
	Process Management�CPU Scheduler
	Process Management�Exception Handling
	Interprocess Communication� Ports + messages
	Interprocess Communication� Ports + messages
	Interprocess Communication� Ports + messages
	Memory Management
	Memory Management�Shared memory
	Programmer Interface
	Mach versus Unix
	Mach Microkernel�summary
	Mach Microkernel�summary
	Big picture questions to ask

