
THE ROLE OF BROAD
ARCHITECTURAL PRINCIPLES
IN SYSTEMS

Ken Birman CS6410

What makes something a “principle”?

 SOSP: Symposium on Operating Systems Principles

 The field actually was pretty unprincipled at first

 Any ideas?
 Theoretically rigorous
 Awesome rule of thumb that always seems to work
 Timeless… Spaceless….

Creation of a large system

 A complex undertaking
 Researchers often get to define the goals and

assumptions at the same time as they architect the
solution:
 Many areas completely lack standards or prior systems
 Many standards are completely ignored
 Many widely adopted systems depart from the

relevant standards

 Are there overarching goals that all systems share?

Candidate goals

 All systems should strive for the best possible
performance given what they are trying to do
 But of course the aspects of performance one measures

will depend on the use case(s) envisioned
 Aiming for performance in a way that ignores use cases

can yield a misleading conclusion

 A system should be an “elegant” expression of the
desired solutions and mechanisms
 Puzzle: What metrics capture the notion of elegance?

First steps in the design process

 Developers often work in an iterative way
 Identify and, if possible, separate major considerations
 Pin down the nature of the opportunity they see, and

from this refine their goals and assumptions
 Eventually, begin to conceive of system in terms of an

architectural block diagram with (more or less) well-
defined components and roles for each

 Walking through the main code paths may lead to
redesigns that aim at optimizing for main use cases

Critical-path driven process

 If we can identify common patterns or use cases a-
priori (or perhaps by analysis of workloads from other
similar systems for which data exists)...
 Permits us to recognize in advance that particular code

paths will arise often and will really determine performance
for the metrics of primary interest

 In effect we can “distort” our design to support very short
critical paths at the expense of shifting functionality
elsewhere, off the critical path

 This sometimes permits us to use less optimized logic off
the critical path without fear of huge performance hits

Example: Van Renesse (Horus)

 Robbert was developing a fast multicast system
 Core functionality: Reliable multicast from some sender

to some set of receivers
 The particular system, Horus, implements the same

virtual synchrony model we discussed last week

 Virtual synchrony platforms inevitably require a lot
of logic to deal with complexities of the real-world

 But how much of that logic needs to be on the
critical path for common operations?

Robbert adopted a layered approach

 User sees some primitive like g.SafeSend(...)

 SafeSend uses an internal infrastructure,
perhaps to obtain a snapshot of the group
view, with a list of current members, locking
the group against membership changes until
SafeSend completes

 Below this is a layer doing reliable sending,
flow control and retransmission within a set of
members

 Below this is a layer establishing connections

 Below this one that discovers IP addresses...

Horus Layer

Idea: Standard layers

Like Legotm blocks
Each supports the
identical interface

g.Send(m)
Add/Del members

Deliver(m)
NewView(v)

Horus protocol: Stack of microprotocols

 Not every layer has work to
do with respect to every event

 Basic model: “events” that
flow up, or down

 By standardizing he ended up
with a kind of mix-and-match
protocol architecture

Physical
Multicast

View Snapshot

Total Ordering

Reliable Send

SafeSend

Elegant... but what about efficiency?

 Robbert’s stacks often had 15 or 20 microprotocols
 By rearranging and changing selection he could build

many kinds of higher level protocols in a standard way
 But many microprotocols just passed certain kinds of

event through, taking no action of their own

 Performance reflected very high overheads when he
“microbenchmarked” his solution
 Isolate a component, then run billions of events through

Critical path analysis

 Robbert realized that his architecture would be
evaluated heavily in terms of throughput and delay
 Delay measured from when g.SafeSend was invoked

until when delivery occurs
 Throughput: g.SafeSend completions per second

 All of that “pass-through untouched” logic on the
critical path slows Horus down

Drilling down

 What does the code inside a Horus layer do?

 Robbert had the idea of classifying the instructions
into three categories

 Logic that “could” run before ever seeing the message
 Logic that needs to see the actual message (cares about

the bytes inside, or a sequence number, etc)
 Logic that “could” run after the message is send

Horus layers and “sub-layers”

 Steps in running a layer

 Do they need to happen in this order?

“Prepare”

“Touch Message”

“PostProcessing”

Send”

1

2

3

4

5

6

Horus layers and “sub-layers”

 Send before post-processing, then prepare for next

 (Scheme makes an “optimistic” guess” that next event will
be a multicast, runs “unprepare” if guess was wrong)

“Touch Message”

“PostProcessing”

Send”

1

2

3

4

5

“Prepare” 0 “Prepare” 6

Success!

 Horus broke all records for multicast performance
and Robbert got a great SIGCOMM publication

 Links nicely to today’s theme: to what extent can we
abstract the kind of reasoning we just saw into a set
of general design principles that “anyone” could
benefit from?
 We’ll look first at the Internet level, then the O/S

Masking the Overhead of Layering. Robbert van Renesse. Proc. of
the 1996 ACM SIGCOMM Conf. Stanford University. August 1996.

http://www.cs.cornell.edu/projects/spinglass/public_pdfs/Masking%20the%20Overhead.pdf

Hints for Computer System Design -
Butler Lampson

 Tackles the basic question: principles as guidance
for developer

 The paper offers a collection of experience and
wisdom aimed at (operating) systems designers
 Suggests that they be viewed as hints, not religion
 Rules of thumb that can guide towards better solutions

Butler Lampson - Background

 Founding member of Xerox PARC (1970), DEC (1980s), MSR
(current)

 ACM Turing Award (1992)

 Laser printer design
 PC (Alto is considered first actual personal computer)
 Two-phase commit protocols

 Bravo, the first WYSIWYG text formatting program
 Ethernet, the first high-speed local area network (LAN)

Some Projects & Collaborators

 Charles Simonyi - Bravo: WYSIWYG editor (MS Office)

 Bob Sproull - Alto operating system, Dover: laser printer,
Interpress: page description language (VP Sun/Oracle)

 Mel Pirtle - 940 project, Berkeley Computer Corp.

 Peter Deutsch - 940 operating system, QSPL: system
programming language (founder of Ghostscript)

 Chuck Geschke, Jim Mitchell, Ed Satterthwaite - Mesa: system
programming language

Some Projects & Collaborators (cont.)

 Roy Levin - Wildflower: Star workstation prototype, Vesta:
software configuration

 Andrew Birrell, Roger Needham, Mike Schroeder - Global
name service and authentication

 Eric Schmidt - System models: software configuration
 (CEO/Chairman of Google)

 Rod Burstall - Pebble: polymorphic typed language

Butler’s “big” Principle

 Identify basic building blocks
 They should be useful, flexible
 But minimal: Pare down until nothing can be removed

 Then find the critical path
 … and optimize the heck out of it!

Hints for Computer System Design -
Butler Lampson

Functionality

 Interface – Contract
 separates implementation from client using abstraction
 Eg: File (open, read, write, close)

 Desirable properties
 Simple
 Complete
 Admit small and fast impl.

Simplicity

 Interfaces
 Avoid generalizations
 too much = large, slow and complicated impl.
 Can penalize normal operations

 PL/1 generic operations across data types

 Should have predictable (reasonable) cost.
 eg: FindIthField [O(n)], FindNamedfield [O(n^2)]

 Avoid features needed by only a few clients

Functionality Vs Assurance

 As a system performs more (complex interface)
assurance decreases.

Example

 Tenex System
 reference to an unassigned page -> trap to user program
 arguments to sys calls passed by reference
 CONNECT(string passwd) -> if passwd wrong, fails after a 3

second delay

 CONNECT
for i := 0 to Length(directoryPassword) do
 if directoryPassword[i] != passwordArgument[i] then
 Wait three seconds; return BadPassword
 end if
end loop;
connect to directory; return Success

Breaking CONNECT(string passwd)

Unassigned
Page

Assigned Page

A

Bad Passwd

B

Invalid page

Breaking CONNECT(string passwd)

Unassigned
Page

Assigned Page

B A

Bad Passwd

Z

Invalid page

Worst case

128*n tries as
opposed to
128^n tries

n = passwd
length (bytes)

Functionality (cont.)

 basic (fast) operations rather than generic/powerful (slow)
ones
 Pay for what you want
 RISC Vs CISC
 Unix Pipe
 grep –i 'spock' * | awk -F: '{print $1}' | sort | uniq | wc –l

 Use timing tools (80% of the time in 20% of code)
 Avoid premature optimization
 May be useless and/or expensive

 analyze usage and optimize heavily used I/Fs

Abstractions

 Avoid abstracting-out desirable properties
 “don't hide power”
 Eg: Feedback for page replacement
 How easy is it to identify desirable properties?

 Procedure arguments

 filter procedure instead of a complex language with patterns.
 static analysis for optimization - DB query lang

 failure handlers
 trust?

Continuity

 Interfaces
 Changes should be infrequent
 Compatibility issues

 Backward compatibility on change

 Implementation
 Refactor to achieve “satisfactory” (small, fast,

maintainable) results
 Use prototyping

Implementation

 Keep secrets
 Impl. can change without changing contract
 Client could break if it uses Impl. details
 But secrets can be used to improve performance
 finding the balance an art?

 Divide and conquer
 Reuse a good idea in different settings

 global replication using a transactional model
 local replication for reliably storing transactional logs.

Completeness - handling all cases

 Handle normal and worst case separately
 normal case – speed, worst case – progress
 Examples
 caches
 incremental GC

 trace-and-sweep (unreachable circular structures)
 piece-table in the Bravo editor

 Compaction either at fixed intervals or on heavy fragmentation

 “emergency supply” helps in worst-case scenarios

Speed

 Split resources in a fixed way
 rather than share and multiplex
 faster access, predictable allocation
 Safety instead of optimality
 over-provisioning ok, due to cheap hardware

 Use static analysis where possible
 dynamic analysis as a fallback option
 Eg: sequential storage and pre-fetching based on prior

knowledge of how data is accessed

Speed (cont.)

 Cache answers to expensive computations
 x, f => f(x)
 f is functional.

 Use hints!
 may not reflect the "truth" and so should have a quick

correctness check.
 Routing tables
 Ethernet (CSMA/CD)

Speed (cont.)

 Brute force when in doubt
 Prototype and test performance
 Eg: linear search over a small search space
 Beware of scalability!

 Background processing (interactive settings)
 GC
 writing out dirty pages, preparing pages for replacement.

 Shed load
 Random Early Detection
 Bob Morris' red button

Fault Tolerance

 End-to-end argument
 Error recovery at the app level essential
 Eg: File transfer

 Log updates
 Replay logs to recover from a crash
 form 1: log <name of update proc, arguments>
 update proc must be functional
 arguments must be values

 form 2: log state changes.
 idempotent (x = 10, instead of x++)

 Make actions atomic
 Aries algorithm - Atomicity and Durability

End-to-End arguments in System Design – Jerry H.
Saltzer, David P. Reed, David D. Clark

 Authors were early MIT Internet researchers who
played key roles in understanding and solving Internet
challenges

 Jerry H. Saltzer
 A leader of Multics, key developer of the Internet, and a LAN

(local area network) ring topology, project Athena
 David P. Reed
 Early development of TCP/IP, designer of UDP

 David D. Clark
 I/O of Multics, Protocol architect of Internet

 “We reject: kings, presidents and voting.
 We believe in: rough consensus and running code.”

End-to-End arguments in System Design – Jerry H.
Saltzer, David P. Reed, David D. Clark

 Question posed: suppose we want a functionality such as
“reliability” in the Internet. Where should we place the
implementation of the required logic?

 Argue for “end-to-end” solutions, if certain conditions hold
 Can the higher layer implement the functionality it needs?
 if yes - implement it there, the app knows its needs best

 Implement the functionality in the lower layer only if
 A) a large number of higher layers / applications use this

functionality and implementing it at the lower layer improves the
performance of many of them AND

 B) does not hurt the remaining applications

Example : File Transfer (A to B)

A B

1. Read File Data blocks
2. App buffers File Data
3. Pass (copy) data to the
network subsystem

4. Pass msg/packet down the
protocol stack

5. Send the packet over the
network

6. Route packet

Example : File Transfer

A B
7. Receive packet and buffer

msg.
8. Send data to the application

9. Store file data blocks

Possible failures

 Reading and writing to disk
 Transient errors in the memory chip while buffering

and copying
 network might drop packets, modify bits, deliver

duplicates
 OS buffer overflow at the sender or the receiver
 Either of the hosts may crash

Would a reliable network help?

 Suppose we make the network reliable
 Packet checksums, sequence numbers, retry, duplicate

elimination
 Solves only the network problem.
 What about the other problems listed?
 War story: Byte swapping problem while routing @

MIT

 Not sufficient and not necessary

Solutions?

 Introduce file checksums and verify once transfer
completes – an end-to-end check.
 On failure – retransmit file.

Solutions? (cont.)

 network level reliability would improve
performance.
 But this may not benefit all applications
 Huge overhead for say Real-Time speech transmission
 Need for optional layers

 Checksum parts of the file.

Formally stated

"The function in question can completely and correctly
be implemented only with the knowledge and help
of the application standing at the end points of the
communication system. Therefore, providing that
questioned function as a feature of the
communication system itself is not possible.
(Sometimes an incomplete version of the function
provided by the communication system may be
useful as a performance enhancement.)"

Other end-to-end requirements

 Delivery guarantees
 Application level ACKs
 Deliver only if action guaranteed
 2 phase commit
 NACKs

 End-to-end authentication

 Duplicate msg suppression
 Application level retry results in new n/w level packet

TCP/IP

 Internet Protocol
 IP is a simple ("dumb"), stateless protocol that moves

datagrams across the network, and
 Transmission Control Protocol

 TCP is end-to-end.
 It is a smart transport protocol providing error detection,

retransmission, congestion control, and flow control end-to-
end.

 The network
 The network itself (the routers) needs only to support the

simple, lightweight IP; the endpoints run the heavier TCP on
top of it when needed.

End-to-End became a religion!

 The principle is applied throughout the Internet in a
very “aggressive” way
 Every TCP session does its own failure detection
 Any kind of strong consistency guarantee (like the things Isis

or Horus are doing) is viewed as “not part of the Internet”.
Routing daemons don’t synchronize actions.

 Accounts for one of those “forks in the road” we discussed:
SIGCOMM and SOSP/NSDI have very different styles.

 Contemporary puzzle: RDMA offers reliability in
hardware. Not E2E… yet RDMA is the big new thing…

Conclusions

 Every field develops a community intuition into the
principles that lead towards “our kind of work”
 Solutions that are esthetically pleasing and reflect sound

reasoning
 But how can one communicate esthetics? And what sorts of

reasoning should be viewed as “sound”?

 For the systems area, the tensions between the
hardware we work with, the problems to be solved and
the fact that we create “platforms” that others will use
weigh heavily into this analysis

“Second System Syndrome”

 In 2012 we are rarely the first people to build a
given kind of system

 It can be hard to resist including all the usual
functionality and then adding in new amazing stuff

 Lampson believes that elegance centers on leaving
things out not including every imaginable feature!
 Perhaps the most debated aspect of his approach
 Think about Windows “versus” Linux (versus early Unix)

Concrete conclusions?

 Think back to the way Robbert approached Horus
 Pose your problem in a clean way
 Next decompose into large-scale components
 Think about the common case that will determine

performance: the critical path or the bottleneck points
 Look for elegant ways to simultaneously offer structural

clarity (like the Horus “Legotm” building blocks) and yet
still offer fantastic performance

 This can guide you towards very high-impact success

Next Time

 Read and write review:
 The UNIX time-sharing system, Dennis M. Ritchie and Ken

Thompson. Communications of the ACM Volume 17,
Issue 7, July 1974, pages 365 -- 375

 The Duality of Memory and Communication in the
Implementation of a Multiprocessor Operating System.
M. Young, A Tavanian, R. Rashid, D. Golub, and J.
Eppinger. Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles (Austin, Texas, United
States), ACM, 1987, pages 63--76.

	The Role of Broad Architectural Principles in Systems
	What makes something a “principle”?
	Creation of a large system
	Candidate goals
	First steps in the design process
	Critical-path driven process
	Example: Van Renesse (Horus)
	Robbert adopted a layered approach
	Horus protocol: Stack of microprotocols
	Elegant... but what about efficiency?
	Critical path analysis
	Drilling down
	Horus layers and “sub-layers”
	Horus layers and “sub-layers”
	Success!
	Hints for Computer System Design - Butler Lampson
	Butler Lampson - Background
	Some Projects & Collaborators
	Some Projects & Collaborators (cont.)
	Butler’s “big” Principle
	Hints for Computer System Design - Butler Lampson
	Functionality
	Simplicity
	Functionality Vs Assurance
	Example
	Breaking CONNECT(string passwd)
	Breaking CONNECT(string passwd)
	Functionality (cont.)
	Abstractions
	Continuity
	Implementation
	Completeness - handling all cases
	Speed
	Speed (cont.)
	Speed (cont.)
	Fault Tolerance
	End-to-End arguments in System Design – Jerry H. Saltzer, David P. Reed, David D. Clark
	End-to-End arguments in System Design – Jerry H. Saltzer, David P. Reed, David D. Clark
	Example : File Transfer (A to B)
	Example : File Transfer
	Possible failures
	Would a reliable network help?
	Solutions?
	Solutions? (cont.)
	Formally stated
	Other end-to-end requirements
	TCP/IP
	End-to-End became a religion!
	Conclusions
	“Second System Syndrome”
	Concrete conclusions?
	Next Time

