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What makes something a “principle”? 

 SOSP: Symposium on Operating Systems Principles 
 

 The field actually was pretty unprincipled at first 
 

 Any ideas? 
 Theoretically rigorous 
 Awesome rule of thumb that always seems to work 
 Timeless… Spaceless…. 



Creation of a large system 

 A complex undertaking 
 Researchers often get to define the goals and 

assumptions at the same time as they architect the 
solution:   
 Many areas completely lack standards or prior systems 
 Many standards are completely ignored 
 Many widely adopted systems depart from the 

relevant standards 

 Are there overarching goals that all systems share? 



Candidate goals 

 All systems should strive for the best possible 
performance given what they are trying to do 
 But of course the aspects of performance one measures 

will depend on the use case(s) envisioned 
 Aiming for performance in a way that ignores use cases 

can yield a misleading conclusion 
 

 A system should be an “elegant” expression of the 
desired solutions and mechanisms 
 Puzzle: What metrics capture the notion of elegance? 



First steps in the design process 

 Developers often work in an iterative way 
 Identify and, if possible, separate major considerations 
 Pin down the nature of the opportunity they see, and 

from this refine their goals and assumptions 
 Eventually, begin to conceive of system in terms of an 

architectural block diagram with (more or less) well-
defined components and roles for each 

 Walking through the main code paths may lead to 
redesigns that aim at optimizing for main use cases 



Critical-path driven process 

 If we can identify common patterns or use cases a-
priori (or perhaps by analysis of workloads from other 
similar systems for which data exists)... 
 Permits us to recognize in advance that particular code 

paths will arise often and will really determine performance 
for the metrics of primary interest 

 In effect we can “distort” our design to support very short 
critical paths at the expense of shifting functionality 
elsewhere, off the critical path 

 This sometimes permits us to use less optimized logic off 
the critical path without fear of huge performance hits 



Example: Van Renesse (Horus) 

 Robbert was developing a fast multicast system 
 Core functionality: Reliable multicast from some sender 

to some set of receivers  
 The particular system, Horus, implements the same 

virtual synchrony model we discussed last week 

 Virtual synchrony platforms inevitably require a lot 
of logic to deal with complexities of the real-world  

 But how much of that logic needs to be on the 
critical path for common operations? 



Robbert adopted a layered approach 

 User sees some primitive like g.SafeSend(...) 

 SafeSend uses an internal infrastructure, 
perhaps to obtain a snapshot of the group 
view, with a list of current members, locking 
the group against membership changes until 
SafeSend completes 

 Below this is a layer doing reliable sending, 
flow control and retransmission within a set of 
members 

 Below this is a layer establishing connections 

 Below this one that discovers IP addresses... 

Horus Layer 

Idea: Standard layers 

Like Legotm blocks 
Each supports the 
identical interface 

g.Send(m) 
Add/Del members 

Deliver(m) 
NewView(v) 



Horus protocol: Stack of microprotocols 

 Not every layer has work to 
do with respect to every event 

 Basic model: “events” that 
flow up, or down 

 By standardizing he ended up 
with a kind of mix-and-match 
protocol architecture 

Physical 
Multicast 

View Snapshot 

Total Ordering 

Reliable Send 

SafeSend 



Elegant... but what about efficiency? 

 Robbert’s stacks often had 15 or 20 microprotocols 
 By rearranging and changing selection he could build 

many kinds of higher level protocols in a standard way 
 But many microprotocols just passed certain kinds of 

event through, taking no action of their own 
 

 Performance reflected very high overheads when he 
“microbenchmarked” his solution 
 Isolate a component, then run billions of events through 



Critical path analysis 

 Robbert realized that his architecture would be 
evaluated heavily in terms of throughput and delay 
 Delay measured from when g.SafeSend was invoked 

until when delivery occurs 
 Throughput: g.SafeSend completions per second 

 All of that “pass-through untouched” logic on the 
critical path slows Horus down 



Drilling down 

 What does the code inside a Horus layer do? 
 

 Robbert had the idea of classifying the instructions 
into three categories 
 
 Logic that “could” run before ever seeing the message 
 Logic that needs to see the actual message (cares about 

the bytes inside, or a sequence number, etc) 
 Logic that “could” run after the message is send 



Horus layers and “sub-layers” 

 Steps in running a layer 
 
 
 
 
 
 
 

 Do they need to happen in this order? 

“Prepare” 

“Touch Message” 

“PostProcessing” 

Send” 

1 

2 

3 

4 

5 

6 



Horus layers and “sub-layers” 

 Send before post-processing, then prepare for next 
 
 
 
 
 
 
 
 

 (Scheme makes an “optimistic” guess” that next event will 
be a multicast, runs “unprepare” if guess was wrong) 

“Touch Message” 

“PostProcessing” 

Send” 

1 

2 

3 

4 

5 

“Prepare” 0 “Prepare” 6 



Success! 

 Horus broke all records for multicast performance 
and Robbert got a great SIGCOMM publication 
 
 

 Links nicely to today’s theme: to what extent can we 
abstract the kind of reasoning we just saw into a set 
of general design principles that “anyone” could 
benefit from? 
 We’ll look first at the Internet level, then the O/S 

Masking the Overhead of Layering. Robbert van Renesse. Proc. of 
the 1996 ACM SIGCOMM Conf. Stanford University. August 1996. 

http://www.cs.cornell.edu/projects/spinglass/public_pdfs/Masking%20the%20Overhead.pdf


Hints for Computer System Design - 
Butler Lampson 

 Tackles the basic question: principles as guidance 
for developer 
 

 The paper offers a collection of experience and 
wisdom aimed at (operating) systems designers 
 Suggests that they be viewed as hints, not religion 
 Rules of thumb that can guide towards better solutions 



Butler Lampson - Background 

 Founding member of Xerox PARC (1970), DEC (1980s), MSR 
(current) 

 ACM Turing Award (1992) 
 

 Laser printer design 
 PC (Alto is considered first actual personal computer) 
 Two-phase commit protocols 

 Bravo, the first WYSIWYG text formatting program 
 Ethernet, the first high-speed local area network (LAN) 



Some Projects & Collaborators 

 Charles Simonyi - Bravo: WYSIWYG editor (MS Office) 
 

 Bob Sproull - Alto operating system, Dover: laser printer, 
Interpress: page description language (VP Sun/Oracle) 
 

 Mel Pirtle - 940 project, Berkeley Computer Corp. 
 

 Peter Deutsch - 940 operating system, QSPL: system 
programming language (founder of Ghostscript) 
 

 Chuck Geschke, Jim Mitchell, Ed Satterthwaite - Mesa: system 
programming language 



Some Projects & Collaborators (cont.) 

 Roy Levin - Wildflower: Star workstation prototype, Vesta: 
software configuration 
 

 Andrew Birrell, Roger Needham, Mike Schroeder -  Global 
name service and authentication 

 
 Eric Schmidt - System models: software configuration 
 (CEO/Chairman of Google) 

 
 Rod Burstall - Pebble: polymorphic typed language 



Butler’s “big” Principle 

 Identify basic building blocks 
 They should be useful, flexible 
 But minimal: Pare down until nothing can be removed 

 

 Then find the critical path 
 … and optimize the heck out of it! 



Hints for Computer System Design - 
Butler Lampson 



Functionality 

 Interface – Contract 
 separates implementation from client using abstraction 
 Eg: File (open, read, write, close) 

 Desirable properties 
 Simple 
 Complete 
 Admit small and fast impl. 

 



Simplicity 

 Interfaces 
 Avoid generalizations 
 too much = large, slow and complicated impl. 
 Can penalize normal operations 

 PL/1 generic operations across data types 

 Should have predictable (reasonable) cost. 
 eg: FindIthField [O(n)], FindNamedfield [O(n^2)] 

 Avoid features needed by only a few clients 
 

 



Functionality Vs Assurance 

 As a system performs more (complex interface) 
assurance decreases. 



Example 

 Tenex System 
 reference to an unassigned page -> trap to user program 
 arguments to sys calls passed by reference 
 CONNECT(string passwd) -> if passwd wrong, fails after a 3 

second delay 
 

 CONNECT  
for i := 0 to Length(directoryPassword) do 
 if directoryPassword[i] != passwordArgument[i] then 
  Wait three seconds; return BadPassword 
 end if 
end loop; 
connect to directory; return Success 
 



Breaking CONNECT(string passwd) 

Unassigned 
Page 

Assigned Page 

A 

Bad Passwd 

B 

Invalid page 



Breaking CONNECT(string passwd) 

Unassigned 
Page 

Assigned Page 

B A 

Bad Passwd 

Z 

Invalid page 

Worst case 

128*n tries as 
opposed to 
128^n tries 

n = passwd 
length (bytes) 



Functionality (cont.) 

 basic (fast) operations rather than generic/powerful (slow) 
ones 
 Pay for what you want 
 RISC Vs CISC 
 Unix Pipe 
 grep –i 'spock' * | awk -F: '{print $1}' | sort | uniq | wc –l 
 

 Use timing tools (80% of the time in 20% of code) 
 Avoid premature optimization 
 May be useless and/or expensive 

 analyze usage and optimize heavily used I/Fs 



Abstractions 

 Avoid abstracting-out desirable properties 
 “don't hide power” 
 Eg: Feedback for page replacement 
 How easy is it to identify desirable properties? 

 
 Procedure arguments 

 filter procedure instead of a complex language with patterns. 
 static analysis for optimization - DB query lang 

 failure handlers 
 trust? 



Continuity 

 Interfaces 
 Changes should be infrequent 
 Compatibility issues 

 Backward compatibility on change 
 

 Implementation 
 Refactor to achieve “satisfactory” (small, fast, 

maintainable) results 
 Use prototyping 



Implementation 

 Keep secrets 
 Impl. can change without changing contract 
 Client could break if it uses Impl. details 
 But secrets can be used to improve performance 
 finding the balance an art? 

 Divide and conquer 
 Reuse a good idea in different settings 

 global replication using a transactional model 
 local replication for reliably storing transactional  logs. 



Completeness - handling all cases 

 Handle normal and worst case separately 
 normal case – speed, worst case – progress 
 Examples 
 caches 
 incremental GC 

 trace-and-sweep (unreachable circular structures) 
 piece-table in the Bravo editor 

 Compaction either at fixed intervals or on heavy fragmentation 

 “emergency supply” helps in worst-case scenarios 



Speed 

 Split resources in a fixed way 
 rather than share and multiplex 
 faster access, predictable allocation 
 Safety instead of optimality 
 over-provisioning ok, due to cheap hardware 

 Use static analysis where possible 
 dynamic analysis as a fallback option 
 Eg: sequential storage and pre-fetching based on prior 

knowledge of how data is accessed 



Speed (cont.) 

 Cache answers to expensive computations 
 x, f => f(x) 
 f is functional. 

 Use hints! 
 may not reflect the "truth" and so should have a quick 

correctness check. 
 Routing tables 
 Ethernet (CSMA/CD) 



Speed (cont.) 

 Brute force when in doubt 
 Prototype and test performance 
 Eg: linear search over a small search space 
 Beware of scalability! 

 Background processing (interactive settings) 
 GC 
 writing out dirty pages, preparing pages for replacement. 

 Shed load 
 Random Early Detection 
 Bob Morris' red button 



Fault Tolerance 

 End-to-end argument 
 Error recovery at the app level essential 
 Eg: File transfer 

 Log updates 
 Replay logs to recover from a crash 
 form 1: log <name of update proc, arguments> 
 update proc must be functional 
 arguments must be values 

 form 2: log state changes. 
 idempotent (x = 10, instead of x++) 

 Make actions atomic 
 Aries algorithm - Atomicity and Durability 



End-to-End arguments in System Design – Jerry H. 
Saltzer, David P. Reed, David D. Clark 

 Authors were early MIT Internet researchers who 
played key roles in understanding and solving Internet 
challenges 
 
 Jerry H. Saltzer 
 A leader of Multics, key developer of the Internet, and a LAN 

(local area network) ring topology, project Athena 
 David P. Reed 
 Early development of TCP/IP, designer of UDP 

 David D. Clark 
 I/O of Multics, Protocol architect of Internet 

 “We reject: kings, presidents and voting. 
 We believe in: rough consensus and running code.” 

 
 



End-to-End arguments in System Design – Jerry H. 
Saltzer, David P. Reed, David D. Clark 

 Question posed: suppose we want a functionality such as 
“reliability” in the Internet.  Where should we place the 
implementation of the required logic? 
 

 Argue for “end-to-end” solutions, if certain conditions hold 
 Can the higher layer implement the functionality it needs? 
 if yes - implement it there, the app knows its needs best 

 
 Implement the functionality in the lower layer only if 
 A) a large number of higher layers / applications use this 

functionality and implementing it at the lower layer improves the 
performance of many of them AND 

 B) does not hurt the remaining applications 



Example : File Transfer (A to B) 

A B 

1. Read File Data blocks 
2. App buffers File Data 
3. Pass (copy) data to the  
network subsystem 

4. Pass msg/packet down the 
protocol stack 

5. Send the packet over the 
network 

6. Route packet 



Example : File Transfer 

A B 
7. Receive packet and buffer 

msg. 
8. Send data to the application 

9. Store file data blocks 



Possible failures 

 Reading and writing to disk 
 Transient errors in the memory chip while buffering 

and copying 
 network might drop packets, modify bits, deliver 

duplicates 
 OS buffer overflow at the sender or the receiver 
 Either of the hosts may crash 



Would a reliable network help? 

 Suppose we make the network reliable  
 Packet checksums, sequence numbers, retry, duplicate 

elimination 
 Solves only the network problem. 
 What about the other problems listed? 
 War story: Byte swapping problem while routing @ 

MIT 
 

 Not sufficient and not necessary 



Solutions? 

 Introduce file checksums and verify once transfer 
completes – an end-to-end check. 
 On failure – retransmit file. 



Solutions? (cont.) 

 network level reliability would improve 
performance. 
 But this may not benefit all applications 
 Huge overhead for say Real-Time speech transmission 
 Need for optional layers 

 

 Checksum parts of the file. 
 



Formally stated 

"The function in question can completely and correctly 
be implemented only with the knowledge and help 
of the application standing at the end points of the 
communication system. Therefore, providing that 
questioned function as a feature of the 
communication system itself is not possible. 
(Sometimes an incomplete version of the function 
provided by the communication system may be 
useful as a performance enhancement.)" 



Other end-to-end requirements 

 Delivery guarantees 
 Application level ACKs 
 Deliver only if action guaranteed 
 2 phase commit 
 NACKs 

 

 End-to-end authentication 
 

 Duplicate msg suppression 
 Application level retry results in new n/w level packet 

 



TCP/IP 

 Internet Protocol 
 IP is a simple ("dumb"), stateless protocol that moves 

datagrams across the network, and  
 Transmission Control Protocol 

 TCP is end-to-end.   
 It is a smart transport protocol providing error detection, 

retransmission, congestion control, and flow control end-to-
end.  

 The network 
 The network itself (the routers) needs only to support the 

simple, lightweight IP; the endpoints run the heavier TCP on 
top of it when needed. 



End-to-End became a religion! 

 The principle is applied throughout the Internet in a 
very “aggressive” way 
 Every TCP session does its own failure detection 
 Any kind of strong consistency guarantee (like the things Isis 

or Horus are doing) is viewed as “not part of the Internet”.  
Routing daemons don’t synchronize actions. 

 Accounts for one of those “forks in the road” we discussed: 
SIGCOMM and SOSP/NSDI have very different styles. 

 Contemporary puzzle: RDMA offers reliability in 
hardware.  Not E2E… yet RDMA is the big new thing… 

 



Conclusions 

 Every field develops a community intuition into the 
principles that lead towards “our kind of work” 
 Solutions that are esthetically pleasing and reflect sound 

reasoning 
 But how can one communicate esthetics?  And what sorts of 

reasoning should be viewed as “sound”? 
 

 For the systems area, the tensions between the 
hardware we work with, the problems to be solved and 
the fact that we create “platforms” that others will use 
weigh heavily into this analysis 



“Second System Syndrome” 

 In 2012 we are rarely the first people to build a 
given kind of system 
 

 It can be hard to resist including all the usual 
functionality and then adding in new amazing stuff 
 

 Lampson believes that elegance centers on leaving 
things out not including every imaginable feature! 
 Perhaps the most debated aspect of his approach 
 Think about Windows “versus” Linux (versus early Unix) 



Concrete conclusions? 

 Think back to the way Robbert approached Horus 
 Pose your problem in a clean way 
 Next decompose into large-scale components 
 Think about the common case that will determine 

performance: the critical path or the bottleneck points 
 Look for elegant ways to simultaneously offer structural 

clarity (like the Horus “Legotm” building blocks) and yet 
still offer fantastic performance 

 This can guide you towards very high-impact success 



Next Time 

 Read and write review: 
 The UNIX time-sharing system, Dennis M. Ritchie and Ken 

Thompson. Communications of the ACM Volume 17, 
Issue 7, July 1974, pages 365 -- 375 

 The Duality of Memory and Communication in the 
Implementation of a Multiprocessor Operating System. 
M. Young, A Tavanian, R. Rashid, D. Golub, and J. 
Eppinger. Proceedings of the Eleventh ACM Symposium 
on Operating Systems Principles (Austin, Texas, United 
States), ACM, 1987, pages 63--76. 
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