
CS 6410: ADVANCED
SYSTEMS
KEN BIRMAN

A PhD-oriented course about research in systems Fall 2015

About me...

 My research is focused on “high assurance”
 In fact as a graduate student I was torn between machine

learning in medicine and distributed systems
 I’ve ended up working mostly in systems, on topics involving

fault-tolerance, consistency, coordination, security and other
kinds of high-assurance

 My current hot topics?
 Cloud-scale high assurance via platform and language

support (often using some form of machine learning)
 Using the cloud to monitor/control the smart power grid

 ... but CS6410 is much broader than just “Ken stuff”

Goals for Today

 What is CS6410 “about”?
 What will be covered, and what background is

assumed?
 Why take this course?
 How does this class operate?
 Class details

 Non-goal: We won’t have a real lecture today

 This is because our lectures are always tied to readings

Coverage

 The course is about the cutting edge in computer
systems – the topics that people at conferences like
ACM Symposium on Operating Systems Principles
(SOSP) and the Usenix Conference on Operating
Systems Design and Implementation (OSDI) love

 We look at a mix of topics:
 Classic insights and classic systems that taught us a great

deal or that distilled key findings into useable platform
technologies

 Fundamental (applied theory) side of these questions
 New topics that have people excited right now

Lots of work required

 First and foremost: Attend every class, participate
 You’ll need to do a lot of reading.
 You’ll write a short (1-2 page) summary of the papers each time
 Whoever presents the paper that day grades these (√-, √, √+)
 You can skip up to 5 of them, whenever you like. Hand in “I’m skipping this one”

and the grader will record that. But not more than 5.
 You’ll have two “homework assignments” during first six weeks

 Build (from scratch) a parallel version of the game of life designed to extract
maximum speed from a multicore processor (2 is fine, 12 would be awesome)

 Distributed coordination service running on EC2 (use a preexisting version of
Paxos, and access it via Elastic Beanstalk). Study to identify bottlenecks, but no
need to change the version of Paxos we provide

 Then will do a more substantial semester-long independent project
 Most students volunteer to present a paper. Not required but useful

Takeway?

 You could probably take one other class too

 But if you have any desire to have any kind of life
at all, plus to begin to explore a research area, you
can’t take more than two classes like this!

 Not so much that it is “hard” (by and large, systems
isn’t about hard ideas so much as challenging
engineering), but it definitely takes time

Systems: Three “arcs” over 40 years

 In the early days it was all one area

 Today, these lines are more and more separated
 Some people get emotional over which is best!

Build/evaluate a
research prototype

Prove stuff about
something

Report on amazing
industry successes

SOSP
PODC

SOCC

Advantage: Think with your hands.
Elegant abstractions emerge as you go

Risk: Works well, but can’t explain
exactly when or exactly how

Advantage: Really clear, rigorous
statements and proofs

Risk: Cool theory but impractical result
that can’t be deployed . Sometimes

even the model is unrealistic!
Advantage: At massive scale your
intuition breaks down. Just doing

it is a major undertaking!
Risk: Totally unprincipled spaghetti

I’m obsessed with reliable, super-fast data
replication and applications that use that model.
But I try not to let it show…

Background: Ken’s stuff

My work blends theory and building

 This isn’t unusual, many projects overlap lines

 But it also moves me out of the mainstream SOSP
community: I’m more of a “distributed systems”
researcher than a “core systems” researcher

 My main interest: How should theories of consistency
and fault-tolerance inform the design of high-
assurance applications and platforms?

Questions this poses

 Which theory to use? We have more than one
theoretical network model (synchronous, asynchronous,
stochastic) and they differ in their “power”

 How to translate this to a provably sound systems
construct and to embed that into a platform (we use a
model shared with Lamport’s Paxos system)

 Having done all that, how to make the resulting system
scale to run on the cloud, perform absolutely as fast as
possible, exhibit stability... how to make it “natural” to
use and easy to work with...

Current passion: my new Isis2 System

 Elasticity (sudden scale changes)
 Potentially heavily loads
 High node failure rates
 Concurrent (multithreaded) apps

 Long scheduling delays, resource contention
 Bursts of message loss
 Need for very rapid response times
 Community skeptical of “assurance properties”

 C# library (but callable from any .NET language)
offering replication techniques for cloud computing
developers

 Based on a model that fuses virtual synchrony and
state machine replication models

 Research challenges center on creating protocols
that function well despite cloud “events”

Isis2 makes developer’s life easier

 Formal model permits us to
achieve correctness

 Isis2 is too complex to use
formal methods as a
development too, but does
facilitate debugging (model
checking)

 Think of Isis2 as a collection
of modules, each with
rigorously stated properties

 Isis2 implementation needs
to be fast, lean, easy to use

 Developer must see it as
easier to use Isis2 than to
build from scratch

 Seek great performance
under “cloudy conditions”

 Forced to anticipate many
styles of use

Benefits of Using Formal model Importance of Sound Engineering

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering aseen for event upcalls
and the assumptions user can
make

13

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

14

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a
member. State transfer isn’t
shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

15

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

16

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query.
Runtime callbacks to the
“delegates” as events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

17

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query. Runtime
callbacks to the “delegates” as
events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can
make

18

Isis2 makes developer’s life easier

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {

Console.Title = “myGroup members: “+v.members;

};
g.Handlers[UPDATE] += delegate(string s, double v) {
 Values[s] = v;
};
g.Handlers[LOOKUP] += delegate(string s) {
 Reply(Values[s]);
};
g.SetSecure();

g.Join();

g.Send(UPDATE, “Harry”, 20.75);

List<double> resultlist = new List<double>;
nr = g.Query(LOOKUP, ALL, “Harry”, EOL, resultlist);

 First sets up group

 Join makes this entity a member.
State transfer isn’t shown

 Then can multicast, query. Runtime
callbacks to the “delegates” as
events arrive

 Easy to request security
(g.SetSecure), persistence

 “Consistency” model dictates the
ordering seen for event upcalls
and the assumptions user can make

19

Consitency model: Virtual synchrony meets Paxos
(and they live happily ever after…)

20

 Virtual synchrony is a “consistency” model:
 Membership epochs: begin when a new configuration is installed and

reported by delivery of a new “view” and associated state

 Protocols run “during” a single epoch: rather than overcome failure, we
reconfigure when a failure occurs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-

A
A=A+1

How would we replicate mySQL?

Group g = new Group(“myGroup”);
g.ViewHandlers += delegate(View v) {
 IMPORT “db-replica:”+v.GetMyRank();
};
g.Handlers[UPDATE] += delegate(string s, double v)
{
 START TRANSACTION;
 UPDATE salary = v WHERE SET name=s;
 COMMIT;
};
...

g.SafeSend(UPDATE, “Harry”, “85,000”);

1. Modify the view handler to
bind to the appropriate
replicate (db-replica:0, ...)

2. Apply updates in the order
received

3. Use the Isis2 implementation
of Paxos: SafeSend

Paxos guarantees agreement on message set, the order
in which to perform actions and durability: if any

member learns an action, every member will learn it.
This code requires that mySQL is deterministic and
that the serialization order won’t be changed by
QUERY operations (read-only, but they might get

locks). As it happens, those assumptions are valid.

We build the group as the system runs. Each participant
just adds itself.

The leader monitors membership. This particular version

doesn’t handle failures but the “full” version is easy.

We can trust the membership. Even failure notifications
reflect a system-wide consensus.

Cornell (Birman): No distribution restrictions.

21

Example Application: Smart Power Grid

 Today’s electric power grid is aging, inefficient
 Some studies suggest that as much as 65% is wasted
 Poor job of integrating renewable energy (wind, solar)

 Two distinct forms of smart grid (both matter):

 Deploy sensors in the power grid itself (PMUs), plus
switchable lines and other new technologies
 Some like to think of this as a new power grid “network“
 But keep in mind that power doesn’t flow in packets

 Smart meters in the home: controlled demand/response

22

No time for all of it today…

 Focus will be on the “bulk” power network
 And within this, on capturing and computing on PMU

data in real-time

 Assumptions
 Human operators will be part of the equation for a

long time into the future
 Later could extend into the power distribution network

and explore ways of automating certain control tasks

23

Cloud Computing for the Smart Grid
24

 Real-time collection of data from widely deployed
PMU and other SCADA data sources
 PMU = Synchronized Phasor Measurement Unit
 Each PMU device captures 44 byte records at 30Hz
One per “bus”: Data rates within large regions high

 Robust real-time tracking enables shared, consistent
situational awareness and coordination

Cloud Computing for the Smart Grid
25

 Core premise: Use the cloud!

 By reusing today’s scalable cloud infrastructure, we:

 Benefit from a low-cost solution
 Leverage a proven, universally accessible technology
 The cloud is hosted at geographically diverse places

 But our need is for stronger assurance than the cloud
can normally offer

Killer Applications?
26

 Over the horizon “grid radar” helps
operators understand wide-area
grid stress, disturbances

 Tools (“apps for the smart grid”) help operators
cooperate to solve problems, search knowledge
 base for past situations with similar
 fingerprint, explore what-if scenarios

Does the Cloud Have an
Achilles Heel?

27

 Today’s cloud is optimized for applications with weak
security needs. It offers scalable snappy response, but
lacks robust guarantees. Lacks:
 Hardened network protocols aimed at consistent but tightly

controlled sharing for collaboration
 A new distributed security model supporting total control by

regional operator, controlled data flows

 To leverage the cloud, we need a new smart-grid
technology built within today’s cloud technology!

From the sensor to the shard
28

1

1

1

The shard members
keep logs of values
received indexed by
time.

Due to network delay,
not all have the same
data at the same time.

Transport could be via
GridStat, IP multicast,
Isis2 multicast (which
runs on IP multicast)
or even TCP
connections

Private network
portion

Internet
portion

GridCloud: Mile high perspective
29

Deployed for Collaboration
30

Main Components: GC-FS
31

 GridCloud File System: A file system for secure,
strongly consistent real-time mirrored data sharing
 It spreads data over multiple servers keeping data in

memory for fast performance and scalability.
 The data mirrored can be updated in real-time.

(For example files of PMU data).
 Really cool feature: it can pull up snapshots of past file

states – huge numbers of them at very low cost. We
plan to use this with Hadoop (MapReduce) applications

Leader developer: Weijia Song. Using .NET FileSystem class + Isis2 (Birman)

Main Components: GC-Collab
32

 GridCloud Collaboration Tool: A tool for creating
a kind of sharable virtual iPad
 It graphs the current power network and can show you

the status of any line at a click
 Various “apps” can be dragged onto the network and

this triggers actions, like a transient stability analysis or
listing “similar network states seen in the past” (we’re
the framework. Other people build these apps)

 Shared with real-time consistency as needed

Based on: Live Distributed Objects + Isis2 (Ostrowski, Birman)

Main Components: IronStack
33

 IronStack: A software defined network manager
 You run normal TCP/IP and UDP protocols over it
 Guarantees secure, real-time fault-tolerance
 Only allows data flow according to security policies
 It encrypts data, sends it redundantly for robustness. Can

tolerate multiple failures
 Operator console optimally schedules repairs after major

damage, warns if failures threaten connectivity

Elegant…

Rock Solid
Lead developer: Z Teo

Main Components: DMake
34

 DMake: Manages your GridCloud applications
 Based on the popular Unix “makefile” concept
 But generalized to support distributed programs where

their operating parameters can be modified at runtime
 It handles system repair after failures, load balancing,

mapping of your computation to the cloud computing
nodes, etc

 Incredibly easy to use.

Lead developer: Theo Gkountouvas, uses Isis2

35

Demonstration Application
36

 GridStat State Estimator:
 Linear hierarchical state estimator
 Based on work by Anjan Bose and his team at WSU
 Runs today on GridCloud prototype, we’ve scaled it to

handle 1900 PMUs distributed nationally
 Can operate on a private cloud or Amazon EC2
 Designed to “conceal” failures

Lead developers: Dave Anderson, Carl Hauser (WSU)

Under the Covers: Powered by Isis2
37

 Used internally by these other tools
 Provides secure, fault-tolerant data replication,

coordination and self-repair. Lead: Birman
 Employs cutting edge “virtual synchrony” programming

model (basis of CORBA FT standard)
 Open source, more than

4000 downloads to date
from isis2.codeplex.com

Egyptian myth: After her brother Osiris was
torn apart by Seth, Isis restored him to life

Why not just UDP multicast?
38

Isis2 user
object

Isis2 user
object

Isis2 user
object

Isis2
library

Group instances and multicast protocols
Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay) Dr. Multicast Platform Security

Reliable Sending Fragmentation Group Security

Sense Runtime Environment
Self-stabilizing

Bootstrap Protocol Socket Mgt/Send/Rcv

Send
CausalSend

OrderedSend
SafeSend
Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group
members

 These systems are complex, especially if you want to run on platforms like EC2

Why not just UDP multicast?
39

Isis2 user
object

Isis2 user
object

Isis2 user
object

Isis2
library

Group instances and multicast protocols
Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay) Dr. Multicast Platform Security

Reliable Sending Fragmentation Group Security

Sense Runtime Environment
Self-stabilizing

Bootstrap Protocol Socket Mgt/Send/Rcv

Send
CausalSend

OrderedSend
SafeSend
Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group
members

SafeSend and Send are two of the protocol components hosted
over what we call the large-scale properties sandbox. The sandbox

addresses issues like flow control, security, etc. All protocols share
and benefit from those properties

 These systems are complex, especially if you want to run on platforms like EC2

Why not just UDP multicast?
40

Isis2 user
object

Isis2 user
object

Isis2 user
object

Isis2
library

Group instances and multicast protocols
Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay) Dr. Multicast Platform Security

Reliable Sending Fragmentation Group Security

Sense Runtime Environment
Self-stabilizing

Bootstrap Protocol Socket Mgt/Send/Rcv

Send
CausalSend

OrderedSend
SafeSend
Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group
members

The SandBox itself is mostly composed of “convergent”
protocols that use probabilistic methods

SafeSend and Send are two of the protocol components hosted
over what we call the large-scale properties sandbox. The sandbox

addresses issues like flow control, security, etc. All protocols share
and benefit from those properties

 These systems are complex, especially if you want to run on platforms like EC2

Other work:
Differential Privacy for the Smart Grid

 We are also working on a new approach to achieve
differential privacy for smart meters in the home (joint
with Edward Tremel, Mark Jelasity, Bobby Kleinberg)

 In our scheme the meters run a cooperative protocol

to jointly build the optimization models needed by the
system operator to match supply and demand
 Utility operates the solution, yet only learns the model!
 But we don’t have time to discuss this today

41

Pinning down the plan

Back to CS6410 stuff

Why take this course

 Learn about systems abstractions, principles, and
artifacts that have had lasting value,

 Understand attributes of systems research that is likely
to have impact,

 Become comfortable navigating the literature in this
field,

 Learn to present papers in a classroom setting
 Gain experience in thinking critically and analytically

about systems research, and
 Acquire the background needed to work on research

problems currently under study at Cornell and
elsewhere.

Who is the course “for”?

 Most of our CS6410 students are either
 PhD students (but many are from non-CS fields, such as

ECE, CAM, IS, etc)
 Two year MS students who might switch into PhD
 Undergraduates seriously considering a PhD

 Fall 2015: Too big to allow MEng students.
 MEng program offers lots of other options;
 CS6410 has a unique role for the core CS PhD group

CS6410 versus just-read-papers

 A paper on Isis2 might just brag about how great it
is, how well it scales, etc

 Reality is often complex and reflects complex
tensions and decisions that force compromises

 In CS6410 our goal is to be honest about systems:
see what the authors had to say, but think outside of
the box they were in when they wrote the papers

Details

 Instructor: Ken Birman
 ken@cs.cornell.edu
 Office Location: 114 Gates

 TA: Theo Gkountouvas
 Lectures:

 CS 6410: Tu, Th: 10:10 – 11:25 PM, 114 Gates

Course Help

 Course staff, office hours, announcements, etc:
 http://www.cs.cornell.edu/courses/cs6410/2015fa

 Please look at the course syllabus: the list of papers
is central to the whole concept of this class

 Research project ideas are also listed there

CS 6410: Overview

 Prerequisite:
 Mastery of CS3410, CS 4410 material
 Fundamentals of computer architecture and OS design
 How parts of the OS are structured
What algorithms are commonly used
What are the mechanisms and policies used

 Some insights into storage systems, database systems
“helpful”

 Some exposure to networks, web, basic security ideas
like public keys

CS 6410: Topics:

 Operating Systems
 Core concepts, multicore, virtualization, uses of VMs, other

kinds of “containment”, fighting worms/viruses.
 Cloud-scale stuff

 Storage systems for big data, Internet trends, OpenFlow
 Foundational theory

 Models of distributed computing, state machine replication
and atomicity, Byzantine Agreement.

 Impact of social networks, P2P models, Self-Stabilization
 A few lectures will focus on new trends: RDMA, BitCoin

(a distributed protocol!), etc

CS 6410: Readings

 Required reading for each lecture: 2 or 3 papers
 Reflecting contrasting approaches, competition, criticism,…
 Papers pulled from, best journals and conferences

 TOCS, SOSP, OSDI, …
 26 lectures, 54 (required) papers + 50 or so “recommended”!

 Read papers before each class and bring notes
 takes ~1 to 2 hrs per paper, write notes and questions
 At the most, one or two papers may take 4 hours to understand

 Write a review and turn in at least one hour before class

 Turn on online via Course Management System (CMS)
 No late reviews will be accepted, but you can skip 5 of them
 Graded by the person doing that lecture on a simple √-,√,√+ basis plus written

comments.

Mini-Projects

 New, early part of semester

 Two of them
 Hands on experience with multicore parallelism in C or

C++

 Hands on experience with cloud computing on EC2

CS 6410: Two small projects

 Goal: Get the rust off your systems skills!

 Mini-project one: Build a multi-threaded, multicore
version of the game of life, in C or C++ unless you
absolutely cannot use those languages. Make it
really, really fast.

 Mini-project two: Take a standard Paxos and run it
on Amazon’s EC2 using Elastic Beanstalk. Identify
bottlenecks (we aren’t asking you to fix them)

CS 6410: Writing Reviews

 Each student is required to prepare notes on each paper before
class and to bring them to class for use in discussion.

 Your notes should list assumptions, innovative contributions and
criticisms.
 Every paper in the reading list has at least one major weakness.
 Don’t channel the authors: your job is to see the bigger questions!

 Turn paper reviews in online before class via CMS
 Be succinct—One paragraph per paper

 Short summary of paper (two or three sentences)
 Two to three strengths/contributions
 and at least one weaknesses

 One paragraph to compare/contrast papers
 In all, turn in two to three paragraphs

CS 6410: Paper Presentations

 Ideally, each person will present a paper, depending on the
stable class size
 Read and understand both required and suggested papers
 Learning to present a paper is a big part of the job!
 The presenting person also grades the essays for that topic

 Two and a half weeks ahead of time
 Meet with professor to agree on ideas to focus on

 One and a half weeks ahead of time
 Have presentation prepared and show slides or “chalk talk” to

professor
 One week ahead of time

 Final review / do a number of dry-runs

CS 6410: Class Format

 45-50 minutes presentation,
 30 minutes discussion/brainstorming.

 In that order, or mixed.

 All students are required to participate!
 Counts in final grading.

CS 6410: Research Project

 One major project per person
 Or two persons for a very major project

 Initial proposal of project topic – due mid-September
 Survey of area (related works)–due begin of October

 Midterm draft paper – due begin of November
 Peer reviews—due a week later

 Final demo/presentation–due begin of December
 Final project report – due a week later

CS 6410: Project Suggestions

 Operating system features to better leverage RDMA
 New cloud-scale computing services, perhaps focused on

applications such as the smart power grid, smart self-driving cars,
internet of things, smart homes

 Study the security and distributed systems properties of BitCoin
 New systems concepts aimed at better supporting “self aware”

applications in cloud computing settings (or even in other settings)
 Building better memory-mapped file systems: current model has

become outmoded and awkward
 Tools for improving development of super fast multicore applications

like the one in mini-project one.
 Software defined network infrastructure on the systems or network

side (as distinct from Nate’s focus on the PL side)
 … and you can invent more of your own!

Important Project Deadlines

9/11 Submit your topic of interest proposal
9/25 Submit 2-3 pages survey on topic
(Oct) Discuss project topic with Matt/me
11/4 Midterm draft paper of project
12/4 Final demo/presentation of project

Final paper on project

CS 6410: Grading

 Class Participation ~ 40%
 lead presentation, reading papers, write reviews, participation in class

discussion

 Projects ~ 50%
 Probably 20% will be the two mini-projects, 30% the big term one
 Proposal, survey, draft, peer review, final demo/paper

 Subjective ~ 10%

 This is a rough guide

Academic Integrity

 Submitted work should be your own

 Acceptable collaboration:
 Clarify problem, C syntax doubts, debugging strategy
 You may use any idea from any other person or group in the class or out, provided you

clearly state what you have borrowed and from whom.
 If you do not provide a citation (i.e. you turn other people's work in as your own) that is

cheating.

 Dishonesty has no place in any community
 May NOT be in possession of someone else’s homework/project
 May NOT copy code from another group
 May NOT copy, collaborate or share homework/assignments
 University Academic Integrity rules are the general guidelines

 Penalty can be as severe as an ‘F’ in CS 6410

Stress, Health and Wellness

 Need to pace yourself to manage stress
 Need regular sleep, eating, and exercising

 Don’t miss class... but....

 Do not come to class sick (with the flu)!

 Email me ahead of time that you are not feeling well
 People not usually sick more than once in a semester

Before Next time

 Rank-order 2 papers to present (first and second half)
 Read first papers below and write review

 End-to-end arguments in system design, J.H. Saltzer, D.P.
Reed, D.D. Clark. ACM Transactions on Computer Systems
Volume 2, Issue 4 (November 1984), pages 277--288.

 http://portal.acm.org/citation.cfm?id=357402
 Hints for computer system design, B. Lampson. Proceedings

of the Ninth ACM Symposium on Operating Systems
Principles (Bretton Woods, New Hampshire, United States)
1983, pages 33--48.

 http://portal.acm.org/citation.cfm?id=806614
 Check website for updated schedule

	CS 6410: Advanced Systems�Ken Birman
	About me...
	Goals for Today
	Coverage
	Lots of work required
	Takeway?
	Systems: Three “arcs” over 40 years
	Background: Ken’s stuff
	My work blends theory and building
	Questions this poses
	Current passion: my new Isis2 System
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Isis2 makes developer’s life easier
	Consitency model: Virtual synchrony meets Paxos (and they live happily ever after…)
	How would we replicate mySQL?
	Example Application: Smart Power Grid
	No time for all of it today…
	Cloud Computing for the Smart Grid
	Cloud Computing for the Smart Grid
	Killer Applications?
	Does the Cloud Have an Achilles Heel?
	From the sensor to the shard
	GridCloud: Mile high perspective
	Deployed for Collaboration
	Main Components: GC-FS
	Main Components: GC-Collab
	Main Components: IronStack
	Main Components: DMake
	Slide Number 35
	Demonstration Application
	Under the Covers: Powered by Isis2
	Why not just UDP multicast?
	Why not just UDP multicast?
	Why not just UDP multicast?
	Other work: �Differential Privacy for the Smart Grid
	Back to CS6410 stuff
	Why take this course
	Who is the course “for”?
	CS6410 versus just-read-papers
	Details
	Course Help
	CS 6410: Overview
	CS 6410: Topics:
	CS 6410: Readings
	Mini-Projects
	CS 6410: Two small projects
	CS 6410: Writing Reviews
	CS 6410: Paper Presentations
	CS 6410: Class Format
	CS 6410: Research Project
	CS 6410: Project Suggestions
	Important Project Deadlines
	CS 6410: Grading
	Academic Integrity
	Stress, Health and Wellness
	Before Next time

