
IMPOSSIBILITY OF

CONSENSUS

Ken Birman Fall 2012

Consensus… a classic problem

 Consensus abstraction underlies many distributed

systems and protocols

 N processes

 They start execution with inputs {0,1}

 Asynchronous, reliable network

 At most 1 process fails by halting (crash)

 Goal: protocol whereby all “decide” same value v, and

v was an input

Distributed Consensus

Jenkins, if I want another yes-man, I’ll build one!

Lee Lorenz, Brent Sheppard

Asynchronous networks

 No common clocks or shared notion of time (local

ideas of time are fine, but different processes may

have very different “clocks”)

 No way to know how long a message will take to

get from A to B

 Messages are never lost in the network

Quick comparison…

Asynchronous model Real world

Reliable message passing,
unbounded delays

Just resend until acknowledged;
often have a delay model

No partitioning faults (“wait until
over”)

May have to operate “during”
partitioning

No clocks of any kinds Clocks but limited sync

Crash failures, can’t detect
reliably

Usually detect failures with
timeout

Fault-tolerant protocol

 Collect votes from all N processes

 At most one is faulty, so if one doesn’t respond, count

that vote as 0

 Compute majority

 Tell everyone the outcome

 They “decide” (they accept outcome)

 … but this has a problem! Why?

What makes consensus hard?

 Fundamentally, the issue revolves around

membership

 In an asynchronous environment, we can’t detect failures

reliably

 A faulty process stops sending messages but a “slow”

message might confuse us

 Yet when the vote is nearly a tie, this confusing

situation really matters

Fischer, Lynch and Patterson

 A surprising result

 Impossibility of Asynchronous Distributed Consensus with a

Single Faulty Process

 They prove that no asynchronous algorithm for

agreeing on a one-bit value can guarantee that it will

terminate in the presence of crash faults

 And this is true even if no crash actually occurs!

 Proof constructs infinite non-terminating runs

Core of FLP result

 They start by looking at a system with inputs that

are all the same

 All 0’s must decide 0, all 1’s decides 1

 Now they explore mixtures of inputs and find some

initial set of inputs with an uncertain (“bivalent”)

outcome

 They focus on this bivalent state

Self-Quiz questions

 When is a state “univalent” as opposed to

“bivalent”?

 Can the system be in a univalent state if no process

has actually decided?

 What “causes” a system to enter a univalent state?

Self-Quiz questions

 Suppose that event e moves us into a univalent
state, and e happens at p.

 Might p decide “immediately?

 Now sever communications from p to the rest of the
system. Both event e and p’s decision are “hidden”

 Does this matter in the FLP model?

 Might it matter in real life?

Bivalent state

System

starts in S*

Events

can take it

to state S1

Events

can take it

to state S0

S* denotes bivalent state

S0 denotes a decision 0 state

S1 denotes a decision 1 state

Sooner or later all executions

decide 0

Sooner or later all executions

decide 1

Bivalent state

System

starts in S*

Events

can take it

to state S1

Events

can take it

to state S0

e

e is a critical event that

takes us from a bivalent to
a univalent state:

eventually we’ll “decide” 0

Bivalent state

System

starts in S*

Events

can take it

to state S1

Events

can take it

to state S0

They delay e and show

that there is a situation in
which the system will

return to a bivalent state

S’
*

Bivalent state

System

starts in S*

Events

can take it

to state S1

Events

can take it

to state S0
S’

*

In this new state they

show that we can deliver e
and that now, the new

state will still be bivalent!

S’’
*

e

Bivalent state

System

starts in S*

Events

can take it

to state S1

Events

can take it

to state S0
S’

*

Notice that we made the

system do some work and
yet it ended up back in an
“uncertain” state. We can

do this again and again

S’’
*

e

Core of FLP result in words

 In an initially bivalent state, they look at some

execution that would lead to a decision state, say “0”

 At some step this run switches from bivalent to univalent,

when some process receives some message m

 They now explore executions in which m is delayed

Core of FLP result

 Initially in a bivalent state

 Delivery of m would cause a decision, but we delay m

 They show that if the protocol is fault-tolerant there

must be a run that leads to the other univalent state

 And they show that you can deliver m in this run without

a decision being made

Core of FLP result

 This proves the result: a bivalent system can be

forced to do some work and yet remain in a bivalent

state.

 We can “pump” this to generate indefinite runs that

never decide

 Interesting insight: no failures actually occur (just

delays). FLP attacks a fault-tolerant protocol using

fault-free runs!

Intuition behind this result?

 Think of a real system trying to agree on something in

which process p plays a key role

 But the system is fault-tolerant: if p crashes it adapts

and moves on

 Their proof “tricks” the system into treating p as if it

had failed, but then lets p resume execution and

“rejoin”

 This takes time… and no real progress occurs

Constable’s version of the FLP result

 He reworks the FLP proof, but using the NuPRL logic

 A completely constructive (“intuitionist”) logic

 A proof takes the form of code that computes the

property that was proved to hold

 In this constructive FLP proof, we actually see the

system reconfigure to disseminate a kind of

configuration: “Colin is faulty, don’t count his vote”

Constable’s version of the FLP result

 Now Colin resumes communication but Theo goes

silent… we need to tolerate 1 failure (Theo) and

are required to count Colin’s vote

 Constable shows that FLP must reconfigure for this

new state before it can decide

 These steps take time… and this proves the result!

But what did “impossibility” mean?

 So… consensus is impossible!

 In formal proofs, an algorithm is totally correct if

 It computes the right thing

 And it always terminates

 When we say something is possible, we mean “there

is a totally correct algorithm” solving the problem

But what did “impossibility” mean?

 FLP proves that any fault-tolerant algorithm solving
consensus has runs that never terminate

 These runs are extremely unlikely (“probability zero”)

 … but imply that we can’t find a totally correct solution

 “consensus is impossible” thus means “consensus is
not always possible”

Solving consensus

 Systems that “solve” consensus often use a group

membership service: a “GMS”

 This GMS functions as an oracle, a trusted status

reporting function

 GMS service implements a protocol such as Paxos.

 In the resulting virtual world, failure is a notification

event reliably delivered by the GMS to the system

members

 FLP still applies to the combined system

Chandra and Toueg

 This work formalizes the notion of a failure
detection service

 We have a failure detection component that reports on
“suspected” failures. Implementation is a black box

 Consensus protocol that consumes these events and
seeks to achieve a consensus decision, fault-tolerantly

 Can we design a protocol that makes progress
“whenever possible”?

 What is the weakest failure detector for which
consensus is always achieved?

Motivation
27

Unreliable
Failure

Detector

Unreliable
Failure

Detector

Process

Consensus

Process

Consensus

asynchronous network

part. synchronous network

Introduction and system model
28

 Unreliable Failure Detector: distributed oracle that
provides (possibly incorrect) hints about the
operational status of other processes

 Abstractly characterized in terms of two properties:
completeness and accuracy

 Completeness characterizes the degree to which failed
processes are suspected by correct processes

 Accuracy characterizes the degree to which correct
processes are not suspected, i.e., restricts the false
suspicions that a failure detector can make

Introduction and system model
29

Introduction and system model
30

 System model:

 partially synchronous distributed system

 finite set of processes  = {p1, p2, ..., pn}

 crash failure model (no recovery). A process is correct if

it never crashes

 communication only by message-passing (no shared

memory)

 reliable channel connecting every pair of processes

(fully connected system)

Introduction and system model
31

 Chandra-Toueg’s implementation of P:

 each process periodically sends an I-AM-ALIVE message to
all the processes

 upon timeout, suspect. If, later on, a message from a
suspected process is received, then stop suspecting it and
increase its timeout period

 Performance analysis (n processes, C correct):

 Number of messages sent in a period: n*(n-1)

 Size of messages: (log n) bits to represent id’s

 Information exchanged in a period: (n2 log n) bits

Weaker detectors

 Core of result: Consensus can be solved with W:

 Form a ring of processes

 Rotate role of being the leader (coordinator). Leader
proposes a value, circulates token around the ring

 If the token makes it around the ring twice, system
becomes univalent. The leader is first to learn; others
learn the outcome the next time they see a token

 Termination guaranteed if “eventually the leader is
never suspected” but in fact the constraint on
suspicions ends as soon as the decision is reached.

But can we implement W?

 Not in an asynchronous network!

 The network can always trigger false suspicions

 What about real networks?

 In real networks we can talk about the probability of

events, such as false suspicions, typical delays, etc

 With this, if it is sufficiently unlikely that a false

suspicion will occur, and sufficiently likely that messages

are promptly delivered, W is feasible w.h.p.

Real systems, like Paxos or Isis2

 They use timeouts in various ways

 Paxos: Waits until it has a majority of responses

 FLP attack: disrupts leader until a timeout causes a new
one to take over

 We end up with a mix of 2-phase and 3-phase rounds

 Isis2: Runs a protocol called Gbcast in the GMS

 Basically a strong leader selection and then a 2-phase
commit, with a 3-phase commit if leader fails

 FLP attack: causes repeated changes in leader role; old
leader forced to rejoin

Summary

 Consensus is “impossible”

 But this doesn’t turn out to be a big obstacle

 Can achieve consensus with probability 1.0 in practice

 Paxos and Isis2 both support powerful consensus

protocols that are very practical and useful

 Neither really evades FLP… but FLP isn’t a real issue

 These systems are more worried about overcoming

short-term failures. FLP is about eternity…

