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Consensus… a classic problem 

 Consensus abstraction underlies many distributed 

systems and protocols 

 N processes 

 They start execution with inputs {0,1} 

 Asynchronous, reliable network 

 At most 1 process fails by halting (crash) 

 Goal: protocol whereby all “decide” same value v, and 

v was an input  



Distributed Consensus 

Jenkins, if I want another yes-man, I’ll build one! 

Lee Lorenz, Brent Sheppard 



Asynchronous networks 

 No common clocks or shared notion of time (local 

ideas of time are fine, but different processes may 

have very different “clocks”) 

 No way to know how long a message will take to 

get from A to B 

 Messages are never lost in the network 



Quick comparison… 

Asynchronous model Real world 

Reliable message passing, 
unbounded delays 

Just resend until acknowledged; 
often have a delay model 

No partitioning faults (“wait until 
over”) 

May have to operate “during” 
partitioning 

No clocks of any kinds Clocks but limited sync 

Crash failures, can’t detect 
reliably 

Usually detect failures with 
timeout 



Fault-tolerant protocol 

 Collect votes from all N processes 

 At most one is faulty, so if one doesn’t respond, count 

that vote as 0 

 Compute majority 

 Tell everyone the outcome 

 They “decide” (they accept outcome) 

 … but this has a problem!  Why? 



What makes consensus hard? 

 Fundamentally, the issue revolves around 

membership 

 In an asynchronous environment, we can’t detect failures 

reliably 

 A faulty process stops sending messages but a “slow” 

message might confuse us 

 Yet when the vote is nearly a tie, this confusing 

situation really matters 



Fischer, Lynch and Patterson  

 A surprising result 

 Impossibility of  Asynchronous Distributed Consensus with a 

Single Faulty Process 

 They prove that no asynchronous algorithm for 

agreeing on a one-bit value can guarantee that it will 

terminate in the presence of crash faults 

 And this is true even if no crash actually occurs! 

 Proof constructs infinite non-terminating runs 



Core of FLP result 

 They start by looking at a system with inputs that 

are all the same 

 All 0’s must decide 0, all 1’s decides 1 

 Now they explore mixtures of inputs and find some 

initial set of inputs with an uncertain (“bivalent”) 

outcome 

 They focus on this bivalent state 

 



Self-Quiz questions 

 When is a state “univalent” as opposed to 

“bivalent”? 

 Can the system be in a univalent state if no process 

has actually decided?   

 What “causes” a system to enter a univalent state? 



Self-Quiz questions 

 Suppose that event e moves us into a univalent 
state, and e happens at p.   

 Might p decide “immediately? 

 Now sever communications from p to the rest of the 
system.  Both event e and p’s decision are “hidden” 

 Does this matter in the FLP model?  

 Might it matter in real life? 



Bivalent state 

System 

starts in S* 

Events 

can take it 

to state S1 

Events 

can take it 

to state S0 

S* denotes bivalent state 

S0 denotes a decision 0 state 

S1 denotes a decision 1 state 

Sooner or later all executions 

decide 0 

Sooner or later all executions 

decide 1 



Bivalent state 

System 

starts in S* 

Events 

can take it 

to state S1 

Events 

can take it 

to state S0 

e 

e is a critical event that 

takes us from a bivalent to 
a univalent state: 

eventually we’ll “decide” 0 



Bivalent state 

System 

starts in S* 

Events 

can take it 

to state S1 

Events 

can take it 

to state S0 

They delay e and show 

that there is a situation in 
which the system will 

return to a bivalent state 

S’
* 



Bivalent state 

System 

starts in S* 

Events 

can take it 

to state S1 

Events 

can take it 

to state S0 
S’

* 

In this new state they 

show that we can deliver e 
and that now, the new 

state will still be bivalent! 

S’’
* 

e 



Bivalent state 

System 

starts in S* 

Events 

can take it 

to state S1 

Events 

can take it 

to state S0 
S’

* 

Notice that we made the 

system do some work and 
yet it ended up back in an 
“uncertain” state.  We can 

do this again and again 

S’’
* 

e 



Core of FLP result in words 

 In an initially bivalent state, they look at some 

execution that would lead to a decision state, say “0” 

 At some step this run switches from bivalent to univalent, 

when some process receives some message m 

 They now explore executions in which m is delayed 



Core of FLP result 

 Initially in a bivalent state 

 Delivery of m would cause a decision, but we delay m 

 They show that if the protocol is fault-tolerant there 

must be a run that leads to the other univalent state 

 And they show that you can deliver m in this run without 

a decision being made 



Core of FLP result 

 This proves the result: a bivalent system can be 

forced to do some work and yet remain in a bivalent 

state. 

 We can “pump” this to generate indefinite runs that 

never decide 

 Interesting insight: no failures actually occur (just 

delays).  FLP attacks a fault-tolerant protocol using 

fault-free runs! 



Intuition behind this result? 

 Think of a real system trying to agree on something in 

which process p plays a key role 

 But the system is fault-tolerant: if p crashes it adapts 

and moves on 

 Their proof “tricks” the system into treating p as if it 

had failed, but then lets p resume execution and 

“rejoin” 

 This takes time… and no real progress occurs 



Constable’s version of the FLP result 

 He reworks the FLP proof, but using the NuPRL logic 

 A completely constructive (“intuitionist”) logic 

 A proof takes the form of code that computes the 

property that was proved to hold 

 

 In this constructive FLP proof, we actually see the 

system reconfigure to disseminate a kind of 

configuration: “Colin is faulty, don’t count his vote” 



Constable’s version of the FLP result 

 Now Colin resumes communication but Theo goes 

silent… we need to tolerate 1 failure (Theo) and 

are required to count Colin’s vote 

 

 Constable shows that FLP must reconfigure for this 

new state before it can decide 

 

 These steps take time… and this proves the result! 



But what did “impossibility” mean? 

 So… consensus is impossible! 

 

 In formal proofs, an algorithm is totally correct if 

 It computes the right thing 

 And it always terminates 

 

 When we say something is possible, we mean “there 

is a totally correct algorithm” solving the problem 

 



But what did “impossibility” mean? 

 FLP proves that any fault-tolerant algorithm solving 
consensus has runs that never terminate 

 These runs are extremely unlikely (“probability zero”) 

 … but imply that we can’t find a totally correct solution 

 “consensus is impossible” thus means “consensus is 
not always possible” 



Solving consensus 

 Systems that “solve” consensus often use a group 

membership service: a “GMS” 

 This GMS functions as an oracle, a trusted status 

reporting function 

 GMS service implements a protocol such as Paxos. 

 In the resulting virtual world, failure is a notification 

event reliably delivered by the GMS to the system 

members 

 FLP still applies to the combined system 



Chandra and Toueg 

 This work formalizes the notion of a failure 
detection service 

 We have a failure detection component that reports on 
“suspected” failures.  Implementation is a black box 

 Consensus protocol that consumes these events and 
seeks to achieve a consensus decision, fault-tolerantly 

 Can we design a protocol that makes progress 
“whenever possible”?   

 What is the weakest failure detector for which 
consensus is always achieved? 



Motivation 
27 
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Introduction and system model 
28 

 Unreliable Failure Detector: distributed oracle that 
provides (possibly incorrect) hints about the 
operational status of other processes 

 

 Abstractly characterized in terms of two properties: 
completeness and accuracy 

 Completeness characterizes the degree to which failed 
processes are suspected by correct processes 

 Accuracy characterizes the degree to which correct 
processes are not suspected, i.e., restricts the false 
suspicions that a failure detector can make 

 



Introduction and system model 
29 



Introduction and system model 
30 

 System model: 

 partially synchronous distributed system 

 finite set of processes  = {p1, p2, ..., pn} 

 crash failure model (no recovery). A process is correct if 

it never crashes 

 communication only by message-passing (no shared 

memory) 

 reliable channel connecting every pair of processes 

(fully connected system) 

 

 



Introduction and system model 
31 

 Chandra-Toueg’s implementation of P: 

 each process periodically sends an I-AM-ALIVE message to 
all  the processes 

 upon timeout, suspect. If, later on, a message from a 
suspected process is received, then stop suspecting it and 
increase its timeout period 

 

 Performance analysis (n processes, C correct): 

 Number of messages sent in a period: n*(n-1) 

 Size of messages: (log n) bits to represent id’s 

 Information exchanged in a period: (n2 log n) bits 



Weaker detectors 

 Core of result: Consensus can be solved with W: 

 Form a ring of processes 

 Rotate role of being the leader (coordinator).  Leader 
proposes a value, circulates token around the ring 

 If the token makes it around the ring twice, system 
becomes univalent.  The leader is first to learn; others 
learn the outcome the next time they see a token 

 Termination guaranteed if “eventually the leader is 
never suspected” but in fact the constraint on 
suspicions ends as soon as the decision is reached. 



But can we implement W? 

 Not in an asynchronous network! 

 The network can always trigger false suspicions 

 

 What about real networks? 

 In real networks we can talk about the probability of 

events, such as false suspicions, typical delays, etc 

 With this, if it is sufficiently unlikely that a false 

suspicion will occur, and sufficiently likely that messages 

are promptly delivered, W is feasible w.h.p. 



Real systems, like Paxos or Isis2 

 They use timeouts in various ways 

 Paxos: Waits until it has a majority of responses 

 FLP attack: disrupts leader until a timeout causes a new 
one to take over 

 We end up with a mix of 2-phase and 3-phase rounds 

 Isis2: Runs a protocol called Gbcast in the GMS 

 Basically a strong leader selection and then a 2-phase 
commit, with a 3-phase commit if leader fails 

 FLP attack: causes repeated changes in leader role; old 
leader forced to rejoin 



Summary 

 Consensus is “impossible” 

 But this doesn’t turn out to be a big obstacle 

 Can achieve consensus with probability 1.0 in practice 

 Paxos and Isis2 both support powerful consensus 

protocols that are very practical and useful 

 Neither really evades FLP… but FLP isn’t a real issue 

 These systems are more worried about overcoming 

short-term failures.  FLP is about eternity… 


