Atomicity
Bailu Ding
Oct 18, 2012
Atomicity Oct 18, 2012 1/38

e —
Outline

© Introduction
© State Machine
© Sinfonia

@ Dangers of Replication

Atomicity Oct18,2012 238

Introduction

@ Implementing Fault-Tolerance Services Using State Machine Approach
@ Sinfonia: A New Paradim for Building Scalable Distributed Systems

@ The Dangers of Replication and a Solution

Bailu Ding Atomicity Oct 18, 2012 3/38

Outline

© State Machine

Atomicity Oct18,2012 438

State Machine

@ Server

o State variables
e Commands
e Example: memory, reads, writes.
e Outputs of a state machine are completely determined by the sequence
of requests it processes
o Client

o Output

Bailu Ding Atomicity Oct 18, 2012 5 /38

Causality

@ Requests issued by a single client to a given state machine are
processed by the order they were issued

o If request r was made to a state machine sm caused a request r’ to
sm, then sm processes r before r’

Bailu Ding Atomicity Oct 18, 2012 6 /38

Fault Tolerance

@ Byzantine failures
o Fail-stop failures

@ t fault tolerant

Bailu Ding Atomicity

Oct 18, 2012

7/38

Fault-Tolerant State Machine

@ Replicate state machine
@ t fault tolerant

e Byzantine: 2t+1
o Fail-stop: t+1

Bailu Ding Atomicity

Oct 18, 2012

8 /38

Replica Coordination

Requriements
@ Agreement: receive the same sequence of requests

@ Order: process the requests in the same relative order

Bailu Ding Atomicity

Oct 18, 2012

9/ 38

State Machine

Agreement

@ Transmitter: disseminate a value to other processors
@ All nonfaulty processors agree on the same value

o If the transmitter is nonfaulty, then all nonfaulty processors use its
value as the one on which they agree

Bailu Ding Atomicity Oct 18, 2012 10 / 38

Order

@ Each request has a unique identifier
@ State machine processes requests ordered by unique identifiers

@ Stable: no request with a lower unique identifier can arrive

Challenge
@ Unique identifier assignment that satisfies causality
@ Stability test

Bailu Ding Atomicity Oct 18, 2012

11/ 38

Order Implementation

Logical Clocks
@ Each event e has a timestamp T (e)
Each processor p has a counter T(p)
Each message sent by p is associated with a timestamp T(p)

Satisfy causality
Stability test for fail-stop failures

o Send a request r to processor p ensures T(p) > T(r)
o A request r is stable if T(p) > T(r) for all processors

o
o
e T(p) is updated when sending or receiving a message
o
o

Bailu Ding Atomicity Oct 18, 2012 12 /38

Order Implmentation

Synchronized Real-Time Clocks
@ Approximately synchronized clocks
@ Use real time as timestamps

@ Satisfy causality

o No client makes two or more requests between successive clock ticks
o Degree of clock synchronization is better than the minimum message
delivery time

Stability test I: wait after delta time

Stability test Il: receive larger identifier from all clients

Bailu Ding Atomicity Oct 18, 2012 13 /38

Order Implementation

Replica-Generated Identifiers

@ Two phase
e State machine replicas propose candidate unique identifiers
o One of the candidates is selected

@ Communication between all processors are not necessary

o Stability test:

o Selected candidate is the maximum of all the candidates
e Candidate proposed by a replica is larger than the unique identifier of
any accepted request

o Causality: a client waits until all replicas accept its previous request

v

Bailu Ding Atomicity Oct 18, 2012 14 / 38

Faulty Clients

@ Replicate the client
@ Challenges

o Requests with different unique identifiers
e Requests with different content

Bailu Ding Atomicity

Oct 18, 2012

15 / 38

Reconfiguration

@ Remove faulty state machine

@ Add new state machine

Bailu Ding Atomicity

Oct 18, 2012

16 / 38

Outline

© Sinfonia

Atomicity Oct1s, 2012 17/ 38

Sinfonia

@ Two Phase Commit

@ Sinfonia

Bailu Ding Atomicity

Oct 18, 2012

18 / 38

Two Phase Commit

Problem

All participate in a distributed atomic transaction commit or abort a
transaction

Atomicity Oct18, 2012 19/ 38

Two Phase Commit

Problem
All participate in a distributed atomic transaction commit or abort a
transaction)

Challenge

A transaction can commit its updates on one participate, but a second
participate can fail before the transaction commits there. When the failed
participant recovers, it must be able to commit the transaction.

Atomicity Oct18, 2012 19/ 38

Two Phase Commit

Idea
Each participant must durably store its portion of updates before the
transaction commits anywhere.
@ Prepare (Voting) Phase: a coordinator sends updates to all
participants

@ Commit Phase: a coordinator sends commit requests to all
participants

Bailu Ding Atomicity Oct 18, 2012

20 / 38

Motivation

Problem
o Data centers are growing quickly
@ Need distributed applications scale well

@ Current protocols are often too complex

Idea
New building block

Atomicity Oct18, 2012 21/ 38

Scope

@ System within a data center
o Network latency is low
o Nodes can fail
e Stable storage can fail
@ Infrastructure applications
o Fault-tolerant and consistent
o Cluster file systems, distributed lock managers, group communication
services, distributed name services

Bailu Ding Atomicity Oct 18, 2012 22 /38

Approach

Idea
What can we sgeeuze out of 2PC?

Bailu Ding Atomicity

Oct 18, 2012

23/ 38

Approach

Idea

What can we sgeeuze out of 2PC? J
Observation

For pre-defined read set, an entire transaction can be piggybacked in 2PC.J

Atomicity Oct18, 2012 23/ 38

Approach

Idea
What can we sqeeuze out of 2PC?

Observation
For pre-defined read set, an entire transaction can be piggybacked in 2PC.

Solution
Minitransaction: compare-read-write

Atomicity Oct18, 2012 23/ 38

Minitransaction

Minitransaction
o Compare items, read items, write items
@ Prepare phase: compare items

@ Commit phase: if all comparison succeed, return read items and
update write items; otherwise, abort.

Atomicity Oct18, 2012 24/ 38

Minitransaction

Minitransaction
o Compare items, read items, write items
@ Prepare phase: compare items

@ Commit phase: if all comparison succeed, return read items and
update write items; otherwise, abort.

Applications

@ Compare and swap

@ Atomic read of multiple data
@ Acquire multiple leases
°

Sinfonia File System

Atomicity Oct18, 2012 24/ 38

Architecture

application application application application
node node node node
(user - .
g ibrary & jmlmtransactlonszx j
Oy
G
= I
memory memory memory
| node node node
Atomicity Oct 18, 2012

25 / 38

Fault Tolerance

@ App crash, memory crash, storage crash

@ Disk images, logging, replication, backup

Bailu Ding Atomicity

Oct 18, 2012

26 / 38

Outline

@ Dangers of Replication

Atomicity Oct18, 2012 27/ 38

Dangers of Replication

Contribution

Dangers of Replication
A ten-fold increase in nodes and traffic gives a thousand fold increase in
deadlocks or reconciliations.)

Solution
@ Two-tier replication algorithm

@ Commutative transactions)

Atomicity Oct1s, 2012 28/ 38

Existing Replication Algorithms

Replication Propagation
@ Eager replication: replication as part of a transaction

@ Lazy replication: replication as multiple transactions

Replication Regulation
@ Group: update anywhere

@ Master: update the primary copy

Atomicity Oct18, 2012 29/ 38

Analytic Model

Parameters
@ Number of nodes (Nodes)
Number of transactions per second (TPS)

Number of items updated per transaction (Actions)

Database size (DB_Size)

Serial replication

°
°
e Duration of a transaction (Action_Time)
°
°

Atomicity Oct18, 2012 30/ 38

Analysis of Eager Replication

Single Node

Concurrent Transactions:
Transactions = TPS x Actions x Action_Time

Resource: Transactions x Actions /2
Locked Resource: Transactions x Actions/2/DB_Size

Probability of Waits Per Transaction:
PW = (1 — Transactions x Actions/2/DB_Size)Atons ~
Transactions x Actions®/2/DB_Size

Probability of Deadlocks Per Transaction: PD =

PW?] Transactions = TPS x Action_Time x Actions®/4/DB_Size?
Deadlock Rate Per Trasction:

DR = PD/(Actions x Action_Time) ~ TPS x Actions*/4/DB_Size?

Deadlock Rate Per Node:
DT = TPS? x Actions® x Action_Time/4/DB_Size?

v

Bailu Ding Atomicity Oct 18, 2012 31/ 38

Analysis of Eager Replication

Multiple Nodes
@ Transaction Duration: Actions x Nodes x Action_Time

@ Concurrent Transactions:
Transactions = TPS x Actions x Action_Time x Nodes?

@ Probability of Waits Per Transaction: PW,, ~ PW x Nodes?

@ Probability of Deadlocks Per Transaction:
PD,, ~ PW?/ Transactions = PD x Nodes?

@ Deadlock Rate Per Transaction: DR,, =~ DR x Nodes
@ Deadlock Rate Total: DT, ~ DT x Nodes3
e DB Grows Linearly (unlikely): DT x Nodes

Bailu Ding Atomicity Oct 18, 2012 32 /38

Analysis of Eager Replication

Master
o Serialized at the master
@ No deadlocks if each transaction updates a single replica

@ Deadlocks for mutiple masters

Atomicity Oct 18, 2012

33 /38

Dangers of Replication

Lazy Replication

Lazy Group Replication
@ No waits or deadlocks, but reconciliation.

@ Reconciliation rate:
TPS? x Action_Time x (Actions x Nodes)3/2/DB_Size

Lazy Master Replication

Reconciliation rate is quadratic to Nodes.

Atomicity Oct18, 2012 34/ 38

Sinfonia Revisit

Analysis of Scalability
@ The number of application nodes: App_Nodes
@ The number of memory nodes: Mem_Nodes
o Total TPS: TPS’ = TPS x App_Nodes
o Total DB size: DB_Size’ = DB_Size x Mem_Nodes

e Single App/Mem node:
Rate = TPS?xAction_TimexActions® /4/DB_Size?
e Multiple App/Mem nodes:

Rate’ = TPS"?xAction_TimexActions® /4/ DB_Size'? =
(App_Nodes/ Mem_Nodes)?xRate

Bailu Ding Atomicity Oct 18, 2012 35 /38

Sinfonia Revisit

Analysis

g 8

nrinitrans/s (x1000)
S

o
=

infonia-NVRAM-REPL PERFECTLY SCALABLE SYSTEM

E gmfon ia-NVRAM

glnxoma tgg REPL

scalability efficiency

24 4~>8 8~>16 16—32 32~>64 64%128 128246

change in system size

1 systemsize 100

Oct 18, 2012

36 / 38

Sinfonia Revisit

Analysis
* Sonal0G
: EE
10000 u SRR
Fﬁg‘: SinfoniaLOG-REPL inc
% 1000 e
kS 10 \\j’&\t ,,,,,,,
b0t o0 01
callision prrl)bablllty

Bailu Ding Atomicity Oct 18, 2012

37 /38

Dangers of Replication

Discussion

Parallel Eager Replication

Transaction Duration: Actions x Action_Time

Concurrent Transactions:
Transactions = TPS x Actions x Action_Time x Nodes

Probability of Waits Per Transaction: PW, ~ PW x Nodes

Probability of Deadlocks Per Transaction:
PD, ~ PW?/ Transactions = PD x Nodes

Deadlock Rate Per Transaction: DR, ~ DR
Deadlock Rate Total: DT, ~ DT x Nodes
DB Grows Linearly: DT /Nodes

Any problem?

Bailu Ding Atomicity Oct 18, 2012

38 /38

Dangers of Replication

Discussion

Fault Tolerance
Logging v.s. Replication? J

Ordering J

Timestamping in recent system, i.e. Percolator?

Atomicity Oct1s, 2012 39/ 38

	Introduction
	State Machine
	Sinfonia
	Dangers of Replication

