
Atomicity

Bailu Ding

Oct 18, 2012

Bailu Ding Atomicity Oct 18, 2012 1 / 38



Outline

1 Introduction

2 State Machine

3 Sinfonia

4 Dangers of Replication

Bailu Ding Atomicity Oct 18, 2012 2 / 38



Introduction

Introduction

Implementing Fault-Tolerance Services Using State Machine Approach

Sinfonia: A New Paradim for Building Scalable Distributed Systems

The Dangers of Replication and a Solution

Bailu Ding Atomicity Oct 18, 2012 3 / 38



State Machine

Outline

1 Introduction

2 State Machine

3 Sinfonia

4 Dangers of Replication

Bailu Ding Atomicity Oct 18, 2012 4 / 38



State Machine

State Machine

Server

State variables
Commands
Example: memory, reads, writes.
Outputs of a state machine are completely determined by the sequence
of requests it processes

Client

Output

Bailu Ding Atomicity Oct 18, 2012 5 / 38



State Machine

Causality

Requests issued by a single client to a given state machine are
processed by the order they were issued

If request r was made to a state machine sm caused a request r ′ to
sm, then sm processes r before r ′

Bailu Ding Atomicity Oct 18, 2012 6 / 38



State Machine

Fault Tolerance

Byzantine failures

Fail-stop failures

t fault tolerant

Bailu Ding Atomicity Oct 18, 2012 7 / 38



State Machine

Fault-Tolerant State Machine

Replicate state machine

t fault tolerant

Byzantine: 2t+1
Fail-stop: t+1

Bailu Ding Atomicity Oct 18, 2012 8 / 38



State Machine

Replica Coordination

Requriements

Agreement: receive the same sequence of requests

Order: process the requests in the same relative order

Bailu Ding Atomicity Oct 18, 2012 9 / 38



State Machine

Agreement

Transmitter: disseminate a value to other processors

All nonfaulty processors agree on the same value

If the transmitter is nonfaulty, then all nonfaulty processors use its
value as the one on which they agree

Bailu Ding Atomicity Oct 18, 2012 10 / 38



State Machine

Order

Each request has a unique identifier

State machine processes requests ordered by unique identifiers

Stable: no request with a lower unique identifier can arrive

Challenge

Unique identifier assignment that satisfies causality

Stability test

Bailu Ding Atomicity Oct 18, 2012 11 / 38



State Machine

Order Implementation

Logical Clocks

Each event e has a timestamp T (e)

Each processor p has a counter T (p)

Each message sent by p is associated with a timestamp T (p)

T (p) is updated when sending or receiving a message

Satisfy causality

Stability test for fail-stop failures

Send a request r to processor p ensures T (p) > T (r)
A request r is stable if T (p) > T (r) for all processors

Bailu Ding Atomicity Oct 18, 2012 12 / 38



State Machine

Order Implmentation

Synchronized Real-Time Clocks

Approximately synchronized clocks

Use real time as timestamps

Satisfy causality

No client makes two or more requests between successive clock ticks
Degree of clock synchronization is better than the minimum message
delivery time

Stability test I: wait after delta time

Stability test II: receive larger identifier from all clients

Bailu Ding Atomicity Oct 18, 2012 13 / 38



State Machine

Order Implementation

Replica-Generated Identifiers

Two phase

State machine replicas propose candidate unique identifiers
One of the candidates is selected

Communication between all processors are not necessary

Stability test:

Selected candidate is the maximum of all the candidates
Candidate proposed by a replica is larger than the unique identifier of
any accepted request

Causality: a client waits until all replicas accept its previous request

Bailu Ding Atomicity Oct 18, 2012 14 / 38



State Machine

Faulty Clients

Replicate the client

Challenges

Requests with different unique identifiers
Requests with different content

Bailu Ding Atomicity Oct 18, 2012 15 / 38



State Machine

Reconfiguration

Remove faulty state machine

Add new state machine

Bailu Ding Atomicity Oct 18, 2012 16 / 38



Sinfonia

Outline

1 Introduction

2 State Machine

3 Sinfonia

4 Dangers of Replication

Bailu Ding Atomicity Oct 18, 2012 17 / 38



Sinfonia

Sinfonia

Two Phase Commit

Sinfonia

Bailu Ding Atomicity Oct 18, 2012 18 / 38



Sinfonia

Two Phase Commit

Problem

All participate in a distributed atomic transaction commit or abort a
transaction

Challenge

A transaction can commit its updates on one participate, but a second
participate can fail before the transaction commits there. When the failed
participant recovers, it must be able to commit the transaction.

Bailu Ding Atomicity Oct 18, 2012 19 / 38



Sinfonia

Two Phase Commit

Problem

All participate in a distributed atomic transaction commit or abort a
transaction

Challenge

A transaction can commit its updates on one participate, but a second
participate can fail before the transaction commits there. When the failed
participant recovers, it must be able to commit the transaction.

Bailu Ding Atomicity Oct 18, 2012 19 / 38



Sinfonia

Two Phase Commit

Idea

Each participant must durably store its portion of updates before the
transaction commits anywhere.

Prepare (Voting) Phase: a coordinator sends updates to all
participants

Commit Phase: a coordinator sends commit requests to all
participants

Bailu Ding Atomicity Oct 18, 2012 20 / 38



Sinfonia

Motivation

Problem

Data centers are growing quickly

Need distributed applications scale well

Current protocols are often too complex

Idea

New building block

Bailu Ding Atomicity Oct 18, 2012 21 / 38



Sinfonia

Scope

System within a data center

Network latency is low
Nodes can fail
Stable storage can fail

Infrastructure applications

Fault-tolerant and consistent
Cluster file systems, distributed lock managers, group communication
services, distributed name services

Bailu Ding Atomicity Oct 18, 2012 22 / 38



Sinfonia

Approach

Idea

What can we sqeeuze out of 2PC?

Observation

For pre-defined read set, an entire transaction can be piggybacked in 2PC.

Solution

Minitransaction: compare-read-write

Bailu Ding Atomicity Oct 18, 2012 23 / 38



Sinfonia

Approach

Idea

What can we sqeeuze out of 2PC?

Observation

For pre-defined read set, an entire transaction can be piggybacked in 2PC.

Solution

Minitransaction: compare-read-write

Bailu Ding Atomicity Oct 18, 2012 23 / 38



Sinfonia

Approach

Idea

What can we sqeeuze out of 2PC?

Observation

For pre-defined read set, an entire transaction can be piggybacked in 2PC.

Solution

Minitransaction: compare-read-write

Bailu Ding Atomicity Oct 18, 2012 23 / 38



Sinfonia

Minitransaction

Minitransaction

Compare items, read items, write items

Prepare phase: compare items

Commit phase: if all comparison succeed, return read items and
update write items; otherwise, abort.

Applications

Compare and swap

Atomic read of multiple data

Acquire multiple leases

Sinfonia File System

Bailu Ding Atomicity Oct 18, 2012 24 / 38



Sinfonia

Minitransaction

Minitransaction

Compare items, read items, write items

Prepare phase: compare items

Commit phase: if all comparison succeed, return read items and
update write items; otherwise, abort.

Applications

Compare and swap

Atomic read of multiple data

Acquire multiple leases

Sinfonia File System

Bailu Ding Atomicity Oct 18, 2012 24 / 38



Sinfonia

Architecture

Bailu Ding Atomicity Oct 18, 2012 25 / 38



Sinfonia

Fault Tolerance

App crash, memory crash, storage crash

Disk images, logging, replication, backup

Bailu Ding Atomicity Oct 18, 2012 26 / 38



Dangers of Replication

Outline

1 Introduction

2 State Machine

3 Sinfonia

4 Dangers of Replication

Bailu Ding Atomicity Oct 18, 2012 27 / 38



Dangers of Replication

Contribution

Dangers of Replication

A ten-fold increase in nodes and traffic gives a thousand fold increase in
deadlocks or reconciliations.

Solution

Two-tier replication algorithm

Commutative transactions

Bailu Ding Atomicity Oct 18, 2012 28 / 38



Dangers of Replication

Existing Replication Algorithms

Replication Propagation

Eager replication: replication as part of a transaction

Lazy replication: replication as multiple transactions

Replication Regulation

Group: update anywhere

Master: update the primary copy

Bailu Ding Atomicity Oct 18, 2012 29 / 38



Dangers of Replication

Analytic Model

Parameters

Number of nodes (Nodes)

Number of transactions per second (TPS)

Number of items updated per transaction (Actions )

Duration of a transaction (Action Time)

Database size (DB Size)

Serial replication

Bailu Ding Atomicity Oct 18, 2012 30 / 38



Dangers of Replication

Analysis of Eager Replication

Single Node

Concurrent Transactions:
Transactions = TPS × Actions × Action Time

Resource: Transactions × Actions/2

Locked Resource: Transactions × Actions/2/DB Size

Probability of Waits Per Transaction:
PW = (1 − Transactions × Actions/2/DB Size)Actions ≈
Transactions × Actions2/2/DB Size

Probability of Deadlocks Per Transaction: PD ≈
PW 2/Transactions = TPS × Action Time × Actions5/4/DB Size2

Deadlock Rate Per Trasction:
DR = PD/(Actions × Action Time) ≈ TPS × Actions4/4/DB Size2

Deadlock Rate Per Node:
DT = TPS2 × Actions5 × Action Time/4/DB Size2

Bailu Ding Atomicity Oct 18, 2012 31 / 38



Dangers of Replication

Analysis of Eager Replication

Multiple Nodes

Transaction Duration: Actions × Nodes × Action Time

Concurrent Transactions:
Transactions = TPS × Actions × Action Time × Nodes2

Probability of Waits Per Transaction: PWm ≈ PW × Nodes2

Probability of Deadlocks Per Transaction:
PDm ≈ PW 2/Transactions = PD × Nodes2

Deadlock Rate Per Transaction: DRm ≈ DR × Nodes

Deadlock Rate Total: DTm ≈ DT × Nodes3

DB Grows Linearly (unlikely): DT × Nodes

Bailu Ding Atomicity Oct 18, 2012 32 / 38



Dangers of Replication

Analysis of Eager Replication

Master

Serialized at the master

No deadlocks if each transaction updates a single replica

Deadlocks for mutiple masters

Bailu Ding Atomicity Oct 18, 2012 33 / 38



Dangers of Replication

Lazy Replication

Lazy Group Replication

No waits or deadlocks, but reconciliation.

Reconciliation rate:
TPS2 × Action Time × (Actions × Nodes)3/2/DB Size

Lazy Master Replication

Reconciliation rate is quadratic to Nodes.

Bailu Ding Atomicity Oct 18, 2012 34 / 38



Dangers of Replication

Sinfonia Revisit

Analysis of Scalability

The number of application nodes: App Nodes

The number of memory nodes: Mem Nodes

Total TPS: TPS ′ = TPS × App Nodes

Total DB size: DB Size ′ = DB Size ×Mem Nodes

Single App/Mem node:
Rate = TPS2xAction TimexActions5/4/DB Size2

Multiple App/Mem nodes:
Rate ′ = TPS ′2xAction TimexActions5/4/DB Size ′2 =
(App Nodes/Mem Nodes)2xRate

Bailu Ding Atomicity Oct 18, 2012 35 / 38



Dangers of Replication

Sinfonia Revisit

Analysis

Bailu Ding Atomicity Oct 18, 2012 36 / 38



Dangers of Replication

Sinfonia Revisit

Analysis

Bailu Ding Atomicity Oct 18, 2012 37 / 38



Dangers of Replication

Discussion

Parallel Eager Replication

Transaction Duration: Actions × Action Time

Concurrent Transactions:
Transactions = TPS × Actions × Action Time × Nodes

Probability of Waits Per Transaction: PWp ≈ PW × Nodes

Probability of Deadlocks Per Transaction:
PDp ≈ PW 2/Transactions = PD × Nodes

Deadlock Rate Per Transaction: DRp ≈ DR

Deadlock Rate Total: DTp ≈ DT × Nodes

DB Grows Linearly: DT/Nodes

Any problem?

Bailu Ding Atomicity Oct 18, 2012 38 / 38



Dangers of Replication

Discussion

Fault Tolerance

Logging v.s. Replication?

Ordering

Timestamping in recent system, i.e. Percolator?

Bailu Ding Atomicity Oct 18, 2012 39 / 38


	Introduction
	State Machine
	Sinfonia
	Dangers of Replication

