
Lecture 5:
CS 6306 / INFO 6306:

Advanced Human Computation

Database Perspective

• Class time will remain Tu/Th 11:40-12:55

• Mutual introductions
• Name

• What you do

• What interests you in HC

• Assignment 1: Due Thursday, 15 September 2016
• Do at least 25 HITs

• Create at least one HIT that is done by at least 5 workers

• Selecting presenter for next two Thursdays, 15 and 22 September 2016
• Game theoretical approaches to human computation

• The human experience in human computation

Week of Sept 20

• Required readings:
• Martin, D., Hanrahan, B.V., O'Neill, J. and Gupta, N., 2014. “Being a turker.” In Proceedings of the 17th ACM conference on

Computer supported cooperative work & social computing(pp. 224-235). ACM.
• Irani, L.C. and Silberman, M., 2013. “Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk.” In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (pp. 611-620). ACM.

• Additional readings:
• Brawley, A.M. and Pury, C.L., 2016. “Work experiences on MTurk: Job satisfaction, turnover, and information

sharing.” Computers in Human Behavior, 54, pp.531-546.
• Gray, M.L., Suri, S., Ali, S.S. and Kulkarni, D., 2016. “The crowd is a collaborative network.” In Proceedings of the 19th ACM

Conference on Computer-Supported Cooperative Work & Social Computing (pp. 134-147). ACM.
• Gupta, N., Martin, D., Hanrahan, B.V. and O'Neill, J., 2014. “Turk-life in India.” In Proceedings of the 18th International

Conference on Supporting Group Work (pp. 1-11). ACM.
• Lee, M.K., Kusbit, D., Metsky, E. and Dabbish, L., 2015. “Working with machines: The impact of algorithmic and data-driven

management on human workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (pp. 1603-1612). ACM.

• McInnis, B., Cosley, D., Nam, C. and Leshed, G., 2016. “Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers’
Experiences in Amazon Mechanical Turk.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (pp. 2271-2282). ACM.

• Salehi, N., Irani, L.C., Bernstein, M.S., Alkhatib, A., Ogbe, E. and Milland, K., 2015. “We are dynamo: Overcoming stalling and
friction in collective action for crowd workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (pp. 1621-1630). ACM.

http://wtf.tw/ref/martin.pdf
http://wtf.tw/text/turkopticon.pdf
http://crowdsourcing-class.org/readings/downloads/ethics/mturk-job-satisfaction.pdf
http://sidsuri.com/Publications_files/collab_paper21.pdf
http://wtf.tw/ref/gupta.pdf
http://www.cs.cmu.edu/~mklee/materials/Publication/2015-CHI_algorithmic_management.pdf
http://infosci.cornell.edu/sites/infosci/files/p2271-mcinnis.pdf
http://hci.stanford.edu/publications/2015/dynamo/DynamoCHI2015.pdf

Today: Database Perspective

• Required Readings:
• Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S. and Xin, R., 2011. “CrowdDB: answering queries with

crowdsourcing.” In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data(pp.
61-72). ACM.

• Marcus, A., Wu, E., Karger, D.R., Madden, S. and Miller, R.C., 2011. “Crowdsourced databases: Query processing
with people.” In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR 2011).

• Additional Readings:
• Davidson, S.B., Khanna, S., Milo, T. and Roy, S., 2013. “Using the crowd for top-k and group-by queries.”

In Proceedings of the 16th International Conference on Database Theory (pp. 225-236). ACM.
• Guo, S., Parameswaran, A. and Garcia-Molina, H., 2012. “So who won?: dynamic max discovery with the crowd.”

In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (pp. 385-396). ACM.
• Marcus, A., Wu, E., Karger, D., Madden, S. and Miller, R., 2011. “Human-powered sorts and joins.” Proceedings of

VLDB, 5(1), pp.13-24.
• Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N. and Widom, J., 2012. “Deco: declarative

crowdsourcing.” In Proceedings of the 21st ACM international conference on Information and knowledge
management (pp. 1203-1212). ACM.

• Wang, J., Kraska, T., Franklin, M.J. and Feng, J., 2012. “Crowder: Crowdsourcing entity resolution.” Proceedings of
VLDB,5(11), pp.1483-1494.5

http://i.stanford.edu/~adityagp/courses/cs598/papers/crowddb.pdf
http://dspace.mit.edu/handle/1721.1/62827
http://openproceedings.org/2013/conf/icdt/DavidsonKMR13.pdf
http://ilpubs.stanford.edu:8090/1032/2/winner-long.pdf
http://www.vldb.org/pvldb/vol5/p013_adammarcus_vldb2012.pdf
http://i.stanford.edu/~adityagp/courses/cs598/papers/deco.pdf
https://www.cs.sfu.ca/~jnwang/papers/vldb2012-crowder.pdf

CrowdDB

• Use a crowd to overcome limitations of relational databases

• Example:
• Closed-world assumption:

• SELECT market_capitalization FROM company WHERE name = "I.B.M.“;
• Crowd can find items not currently in DB

(normally would give empty result if I.B.M. is not in the DB)

• Entity resolution:
• I.B.M. vs IBM vs International Business Machines

• Questions that rely on human judgment:
• SELECT image FROM picture WHERE topic = "Business Success" ORDER BY relevance LIMIT 1;
• Relevance can be assessed by crowd

• Provides a “clean” way to think about crowds, by relating it to known data
operations

CrowdDB: CrowdSQL

CREATE TABLE Department (
university STRING,
name STRING,
url CROWD STRING,
phone STRING
PRIMARY KEY (university, name));

CrowdDB: CrowdSQL

CREATE TABLE Department (
university STRING,
name STRING,
url CROWD STRING,
phone STRING,
PRIMARY KEY (university, name));

CrowdDB: CrowdSQL

CREATE CROWD TABLE Professor (
name STRING PRIMARY KEY,
email STRING UNIQUE,
university STRING,
department STRING,
FOREIGN KEY (university, department) REF Department(university, name));

CrowdDB: CrowdSQL

CREATE CROWD TABLE Professor (
name STRING PRIMARY KEY,
email STRING UNIQUE,
university STRING,
department STRING,
FOREIGN KEY (university, department) REF Department(university, name));

CrowdDB: CrowdSQL

SELECT profile FROM department
WHERE name ~= "CS";

CREATE TABLE picture
(p IMAGE, subject STRING);

SELECT p FROM picture
WHERE subject = "Golden Gate Bridge“

ORDER BY CROWDORDER(p, "Which picture visualizes better %subject");

CrowdDB: CrowdSQL

SELECT profile FROM department
WHERE name ~= "CS";

CREATE TABLE picture
(p IMAGE, subject STRING);

SELECT p FROM picture
WHERE subject = "Golden Gate Bridge“

ORDER BY CROWDORDER(p, "Which picture visualizes better %subject");

CrowdDB: CrowdSQL

• Other operators
• LIMIT: max amount of money

• CrowdProbe: ask workers for answers until a majority is reached

• CrowdJoin: Computes the join over two tables one of which is crowdsourced

• CrowdCompare: implements CROWDEQUAL and CROWDORDER

CrowdDB: Assessment

• “Micro Benchmarks” – simple tasks involving filling in missing data

• Time to completion
• Tradeoff between time to completion and completion percent

• Payment levels
• Completion rate

• Answer quality

CrowdDB: Issues

• When do crowds get called?

CrowdDB: Interfaces

• Known field values are copied over, null values prompt asking user

• Uses javascript to check that responses are of the correct datatype

CrowdDB: Issues

• “If a query involves a CROWD table, then it is unclear how many
tuples need to be crowdsourced in order to fully process the query.”

• “In order to be practical, CrowdSQL should provide a way to define a
budget for a query”

• Built-in quality testing

CrowdDB: Issues

• Architecture:

Qurk
(“Crowdsourced Databases: Query Processing with People”)

• Crowds as user-defined functions

• Motivations:
• HITs take a (relatively) long time

• Query optimization should include financial cost and accuracy

• Can’t know ahead of time characteristics of operators necessary for optimization

• Example tasks:
• Return CEO and contact number for each company in a table

• “Join” a table of disaster victim photos with submitted photos from family members

• Return the sentiment of each tweet in a table of Twitter tweets

• Rank the items in a table of products using Amazon reviews

Qurk: Architecture

Qurk: Filter Example

SELECT * FROM images WHERE isFlower(img)

TASK isFlower(Image img) RETURN Bool:
TaskType: Question
Text: ‘‘Does this image:

contain a flower?’’, URLify(img)
Response: Choice(‘‘YES’’,‘‘NO’’)

Qurk: Filter Example

SELECT * FROM images WHERE isFlower(img)

TASK isFlower(Image img) RETURN Bool:
TaskType: Question
Text: ‘‘Does this image:

contain a flower?’’, URLify(img)
Response: Choice(‘‘YES’’,‘‘NO’’)

Qurk: Get Values Example

SELECT companyName, findCEO(companyName).CEO,
findCEO(companyName).Phone

FROM companies

TASK findCEO(String companyName)
RETURNS (String CEO,String Phone):

TaskType: Question
Text: ‘‘Find the CEO and the CEO’s phone

number for the company %s’’, companyName
Response: Form((‘‘CEO’’,String), (‘‘Phone’’,String))

Qurk: Get Values Example

SELECT companyName, findCEO(companyName).CEO,
findCEO(companyName).Phone

FROM companies

TASK findCEO(String companyName)
RETURNS (String CEO,String Phone):

TaskType: Question
Text: ‘‘Find the CEO and the CEO’s phone

number for the company %s’’, companyName
Response: Form((‘‘CEO’’,String), (‘‘Phone’’,String))

Qurk: Ranking Example

SELECT productID, productName FROM products
ORDER BY rankProducts(productName)

TASK rankProducts(String[] prodNames) RETURNS String[]:
TaskType: Rank
Text: ‘‘Sort the following list of products

by their user reviews on Amazon.com’’
List: prodNames

Qurk: Ranking Example

SELECT productID, productName FROM products
ORDER BY rankProducts(productName)

TASK rankProducts(String[] prodNames) RETURNS String[]:
TaskType: Rank
Text: ‘‘Sort the following list of products

by their user reviews on Amazon.com’’
List: prodNames

Qurk: Join Example

SELECT survivors.location, survivors.name
FROM survivors, missing
WHERE imgContains(survivors.image, missing.image)

TASK imgContains(Image[] survivors, Image[] missing)
RETURNS Bool:

TaskType: JoinPredicate
Text: ‘‘Drag a picture of any Survivors

in the left column to their matching
picture in the Missing People
column to the right.’’

Response: DragColumns("Survivors", survivors,
"Missing People", missing)

Qurk: Join Example

SELECT survivors.location, survivors.name
FROM survivors, missing
WHERE imgContains(survivors.image, missing.image)

TASK imgContains(Image[] survivors, Image[] missing)
RETURNS Bool:

TaskType: JoinPredicate
Text: ‘‘Drag a picture of any Survivors

in the left column to their matching
picture in the Missing People
column to the right.’’

Response: DragColumns("Survivors", survivors,
"Missing People", missing)

Qurk: Features

• Results are multi-valued to reflect that different workers might give
different answers

• “convenience functions” (example: majorityVote) to collapse values to
a single value

Qurk: Query Optimization

• Use Qurk query annotations:
• maxCost: maximum $ willing to pay
• minConfidence: minimum number of workers who must agree
• maxLatency: how long willing to wait on a HIT
• NecessaryConditions statement (example: photos must have same race and gender)

• Optimizations that can be made:
• Adjust pricing at runtime
• Uniformly sample input table
• Combine multiple Tasks into single HITs
• Operator implementaions (example: rank by comparison vs scores)
• TurkIt-like caching
• Replace large set of HITs with fewer HITS and apply machine learning

Qurk: Issues

Qurk: Issues

Qurk
(“Human-powered Sorts and Joins”)

• Describes (some of the) implementation

• Additional syntax element: POSSIBLY

• Evaluated performance on simple joins and sorts and their combination
• Sort: Tried different human computation algorithms, different UIs

• SELECT name, scene.img
FROM actors JOIN scenes

ON inScene(actors.img, scenes.img)
AND POSSIBLY numInScene(scenes.img) > 1

ORDER BY name, quality(scenes.img)

Qurk
(“Human-powered Sorts and Joins”)

• Describes (some of the) implementation

• Additional syntax element: POSSIBLY

• Evaluated performance on simple joins and sorts and their combination
• Sort: Tried different human computation algorithms, different UIs

• SELECT name, scene.img
FROM actors JOIN scenes

ON inScene(actors.img, scenes.img)
AND POSSIBLY numInScene(scenes.img) > 1

ORDER BY name, quality(scenes.img)

Qurk
(“Human-powered Sorts and Joins”)

Deco
(“Deco: Declarative Crowdsourcing”)

• Motivation:
• Handle worker disagreement

• What is the right data model and query language (= how to extend SQL)

• How to handle crowdsourced data in a database:
• Do you store all answers, or just cleaned answers?

(And if all answers, how is it stored?)

• How does it get updated with new answers?

• When does data go stale?

• How do queries get executed?

Deco
(“Deco: Declarative Crowdsourcing”)

• Provides a relational data model with well-defined semantics
SELECT name,address,rating,cuisine
FROM Restaurant WHERE rating > 4 ATLEAST 5

• Provides a query language that stays close to SQL

• Describes push-pull execution model
• Ask for one or more restaurant name-address pairs

• Ask for a rating given a restaurant name and an address
Ask for a cuisine given a restaurant name

• Ask for a restaurant name given a cuisine

Deco
(“Deco: Declarative Crowdsourcing”)

Deco
(“Deco: Declarative Crowdsourcing”)

Deco
(“Deco: Declarative Crowdsourcing”)

• Assessment
• Experiments

• Compared expressiveness to CrowdDB

CrowdER

• Entity resolution: I.B.M. vs IBM vs International Business Machines
SELECT p.id, q.id FROM product p, product q
WHERE p.product_name ~= q.product_name;

• Pure crowdsourcing infeasible given number of possible matches

• Approach:
• Machine does initial crude pass
• People verify most likely matches

CrowdER

CrowdER

CrowdER

CrowdER

CrowdER

• Theoretical analysis
• Hardness

• “Back of the envelope” algorithmic analysis

• Experiments with AMT

• Compared human-powered algorithm with no-human algorithm

Using the Crowd for Top-k and Group-by Queries

• Motivating example

SELECT most-recent(photo)
FROM photoDB
WHERE singlePerson(photo)
GROUP BY Person(photo)

Using the Crowd for Top-k and Group-by Queries

• Motivating example

SELECT most-recent(photo)
FROM photoDB
WHERE singlePerson(photo)
GROUP BY Person(photo)

Using the Crowd for Top-k and Group-by Queries

• Motivating example

SELECT most-recent(photo)
FROM photoDB
WHERE singlePerson(photo)
GROUP BY Person(photo)

• Goal: Use the “crowd” to answer type and value questions
• Both take two items as input
• type: are they of the same type
• value: which comes first

Using the Crowd for Top-k and Group-by Queries

• Algorithms for and mathematical analysis of:
• Max and top-k

• Cluster on type

• Cluster on type and values

• Error models:
• Questions answered correctly with probability ½ + for constant 0 < ½

• If xi > xj Pr[xj is returned as the larger element] ≤
1

𝑓(𝑗−𝑖)
− where

• f is monotone

• f(1) 2

• > 0 is a constant

Using the Crowd for Top-k and Group-by Queries

Using the Crowd for Top-k and Group-by Queries

Using the Crowd for Top-k and Group-by Queries

Using the Crowd for Top-k and Group-by Queries

Using the Crowd for Top-k and Group-by Queries

Using the Crowd for Top-k and Group-by Queries

Using the Crowd for Top-k and Group-by Queries

• Assessment:
• Theorems

So Who Won? Dynamic Max Discovery with the Crowd

• Algorithms for and mathematical analysis of computing Max without
pre-set (“structured”) algorithm:
• Judgment Problem: “What’s the best estimate so far?”

• Next Votes Problem: “If I spend a little more money, what do I spend it on?”

So Who Won? Dynamic Max Discovery with the Crowd

(where W is the matrix of votes, -1 is a permutation over the items)

So Who Won? Dynamic Max Discovery with the Crowd

So Who Won? Dynamic Max Discovery with the Crowd

• Iterative is the best when the number of votes sampled is n(n-1)/2

• PageRank is the best when there are few votes and worker accuracy is
high

• PageRank is poor when worker accuracy is low

So Who Won? Dynamic Max Discovery with the Crowd

• Assessment:
• Theorems about hardness of exact solution

• Experiments about approximation methods

So Who Won? Dynamic Max Discovery with the Crowd

• Assessment:
• Theorems about hardness of exact solution

• Experiments about approximation methods

• Nothing with humans

Week of Sept 20

• Required readings:
• Martin, D., Hanrahan, B.V., O'Neill, J. and Gupta, N., 2014. “Being a turker.” In Proceedings of the 17th ACM conference on

Computer supported cooperative work & social computing(pp. 224-235). ACM.
• Irani, L.C. and Silberman, M., 2013. “Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk.” In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (pp. 611-620). ACM.

• Additional readings:
• Brawley, A.M. and Pury, C.L., 2016. “Work experiences on MTurk: Job satisfaction, turnover, and information

sharing.” Computers in Human Behavior, 54, pp.531-546.
• Gray, M.L., Suri, S., Ali, S.S. and Kulkarni, D., 2016. “The crowd is a collaborative network.” In Proceedings of the 19th ACM

Conference on Computer-Supported Cooperative Work & Social Computing (pp. 134-147). ACM.
• Gupta, N., Martin, D., Hanrahan, B.V. and O'Neill, J., 2014. “Turk-life in India.” In Proceedings of the 18th International

Conference on Supporting Group Work (pp. 1-11). ACM.
• Lee, M.K., Kusbit, D., Metsky, E. and Dabbish, L., 2015. “Working with machines: The impact of algorithmic and data-driven

management on human workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (pp. 1603-1612). ACM.

• McInnis, B., Cosley, D., Nam, C. and Leshed, G., 2016. “Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers’
Experiences in Amazon Mechanical Turk.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (pp. 2271-2282). ACM.

• Salehi, N., Irani, L.C., Bernstein, M.S., Alkhatib, A., Ogbe, E. and Milland, K., 2015. “We are dynamo: Overcoming stalling and
friction in collective action for crowd workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (pp. 1621-1630). ACM.

http://wtf.tw/ref/martin.pdf
http://wtf.tw/text/turkopticon.pdf
http://crowdsourcing-class.org/readings/downloads/ethics/mturk-job-satisfaction.pdf
http://sidsuri.com/Publications_files/collab_paper21.pdf
http://wtf.tw/ref/gupta.pdf
http://www.cs.cmu.edu/~mklee/materials/Publication/2015-CHI_algorithmic_management.pdf
http://infosci.cornell.edu/sites/infosci/files/p2271-mcinnis.pdf
http://hci.stanford.edu/publications/2015/dynamo/DynamoCHI2015.pdf

