Lecture 5:
CS 6306 / INFO 6306:
Advanced Human Computation

Database Perspective

* Class time will remain Tu/Th 11:40-12:55

* Mutual introductions
* Name
 What you do
* What interests you in HC

e Assignment 1: Due Thursday, 15 September 2016
* Do at least 25 HITs
* Create at least one HIT that is done by at least 5 workers

* Selecting presenter for next two Thursdays, 15 and 22 September 2016
* Game theoretical approaches to human computation
* The human experience in human computation

Week of Sept 20

* Required readings:

Martin, D., Hanrahan, B.V., O'Neill, J. and Gupta, N., 2014. “Being a turker.” In Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing(pp. 224-235). ACM.

Irani, L.C. and Silberman, M., 2013. “Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk.” In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (pp. 611-620). ACM.

* Additional readings:

Brawley, A.M. and Pury, C.L., 2016. “Work experiences on MTurk: Job satisfaction, turnover, and information
sharing.” Computers in Human Behavior, 54, pp.531-546.

Gray, M.L., Suri, S., Ali, S.S. and Kulkarni, D., 2016. “The crowd is a collaborative network.” In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Computing (pp. 134-147). ACM.

Gupta, N., Martin, D., Hanrahan, B.V. and O'Neill, J., 2014. “Turk-life in India.” In Proceedings of the 18th International
Conference on Supporting Group Work (pp. 1-11). ACM.

Lee, M.K., Kusbit, D., Metsky, E. and Dabbish, L., 2015. “Working with machines: The impact of algorithmic and data-driven
management on human workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (pp. 1603-1612). ACM.

Mclnnis, B., Cosley, D., Nam, C. and Leshed, G., 2016. “Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers’
Experiences in Amazon Mechanical Turk.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (pp. 2271-2282). ACM.

Salehi, N., Irani, L.C., Bernstein, M.S., Alkhatib, A., Ogbe, E. and Milland, K., 2015. “We are dynamo: Overcoming stalling and
friction in collective action for crowd workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (pp. 1621-1630). ACM.

http://wtf.tw/ref/martin.pdf
http://wtf.tw/text/turkopticon.pdf
http://crowdsourcing-class.org/readings/downloads/ethics/mturk-job-satisfaction.pdf
http://sidsuri.com/Publications_files/collab_paper21.pdf
http://wtf.tw/ref/gupta.pdf
http://www.cs.cmu.edu/~mklee/materials/Publication/2015-CHI_algorithmic_management.pdf
http://infosci.cornell.edu/sites/infosci/files/p2271-mcinnis.pdf
http://hci.stanford.edu/publications/2015/dynamo/DynamoCHI2015.pdf

Today: Database Perspective

e Required Readings:
* Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S. and Xin, R., 2011. “CrowdDB: answering queries with
grlo%vzd)sc')AU CrIS/II ng.” In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data(pp.

* Marcus, A., Wu, E., Karger, D.R., Madden, S. and Miller, R.C., 2011. “Crowdsourced databases: Query processing
with people.” In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR 2011).

e Additional Readings:
* Davidson, S.B., Khanna, S., Milo, T. and Roy, S., 2013. “Using the crowd for top-k and group-by queries.”
In Proceedings of the 16th International Conference on Database Theory (pp. 225-236). ACM.

* @Guo, S., Parameswaran, A. and Garcia-Molina, H., 2012. “So who won?: dynamic max discovery with the crowd.”
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (pp. 385-396). ACM.

* Marcus, A., Wu, E., Karger, D., Madden, S. and Miller, R., 2011. “Human-powered sorts and joins.” Proceedings of
VLDB, 5(1), pp.13-24.

* Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N. and Widom, J., 2012. “Deco: declarative
crowdsourcing.” In Proceedings of the 21st ACM international conference on Information and knowledge
management (pp. 1203-1212). ACM.

 Wang,)., Kraska, T., Franklin, M.J. and Feng, J., 2012. “Crowder: Crowdsourcing entity resolution.” Proceedings of
VLDB,5(11), pp.1483-1494.5

http://i.stanford.edu/~adityagp/courses/cs598/papers/crowddb.pdf
http://dspace.mit.edu/handle/1721.1/62827
http://openproceedings.org/2013/conf/icdt/DavidsonKMR13.pdf
http://ilpubs.stanford.edu:8090/1032/2/winner-long.pdf
http://www.vldb.org/pvldb/vol5/p013_adammarcus_vldb2012.pdf
http://i.stanford.edu/~adityagp/courses/cs598/papers/deco.pdf
https://www.cs.sfu.ca/~jnwang/papers/vldb2012-crowder.pdf

CrowdDB

e Use a crowd to overcome limitations of relational databases

* Example:

* Closed-world assumption:
e SELECT market_capitalization FROM company WHERE name = "I.B.M.”;

* Crowd can find items not currently in DB
(normally would give empty result if I.B.M. is not in the DB)

* Entity resolution:
* [.B.M. vs IBM vs International Business Machines

e Questions that rely on human judgment:
e SELECT image FROM picture WHERE topic = "Business Success" ORDER BY relevance LIMIT 1;
* Relevance can be assessed by crowd

* Provides a “clean” way to think about crowds, by relating it to known data
operations

CrowdDB: CrowdSQL

CREATE TABLE Department (
university STRING,
name STRING,
url CROWD STRING,
phone STRING
PRIMARY KEY (university, name));

CrowdDB: CrowdSQL

CREATE TABLE Department (
university STRING,
name STRING,
url CROWD STRING,
phone STRING,
PRIMARY KEY (university, name));

CrowdDB: CrowdSQL

CREATE CROWD TABLE Professor (
name STRING PRIMARY KEY,
email STRING UNIQUIE,
university STRING,

department STRING,
FOREIGN KEY (university, department) REF Department(university, name));

CrowdDB: CrowdSQL

CREATE CROWD TABLE Professor (
name STRING PRIMARY KEY,
email STRING UNIQUIE,
university STRING,

department STRING,
FOREIGN KEY (university, department) REF Department(university, name));

CrowdDB: CrowdSQL

SELECT profile FROM department
WHERE name ~="CS";

CREATE TABLE picture
(p IMAGE, subject STRING);

SELECT p FROM picture
WHERE subject = "Golden Gate Bridge“
ORDER BY CROWDORDER(p, "Which picture visualizes better %subject");

CrowdDB: CrowdSQL

SELECT profile FROM department
WHERE name ~="CS";

CREATE TABLE picture
(p IMAGE, subject STRING);

SELECT p FROM picture
WHERE subject = "Golden Gate Bridge“
ORDER BY CROWDORDER(p, "Which picture visualizes better %subject");

CrowdDB: CrowdSQL

* Other operators

LIMIT: max amount of money

CrowdProbe: ask workers for answers until a majority is reached

CrowdJoin: Computes the join over two tables one of which is crowdsourced
CrowdCompare: implements CROWDEQUAL and CROWDORDER

CrowdDB: Assessment

* “Micro Benchmarks” — simple tasks involving filling in missing data

* Time to completion
* Tradeoff between time to completion and completion percent

* Payment levels
* Completion rate
* Answer quality

CrowdDB: Issues

* When do crowds get called?

CrowdDB: Interfaces

* Known field values are copied over, null values prompt asking user
e Uses javascript to check that responses are of the correct datatype

CrowdDB: Issues

e “If a query involves a CROWD table, then it is unclear how many
tuples need to be crowdsourced in order to fully process the query.”

* “In order to be practical, CrowdSQL should provide a way to define a
budget for a query”

* Built-in quality testing

CrowdDB: Issues

1 . CrowdSQL Results
* Architecture: N A

Turker Relationship

o Persen Manager

©

s * * ul F

@ . orm

= Soulilas ™| Creation Editor

@ Executor Ul Template Manager

=

s f \ ‘

& Files Access Methods HIT Manager

Qurk

(“Crowdsourced Databases: Query Processing with People”)

 Crowds as user-defined functions

* Motivations:
* HITs take a (relatively) long time
* Query optimization should include financial cost and accuracy
* Can’t know ahead of time characteristics of operators necessary for optimization

e Example tasks:
e Return CEO and contact number for each company in a table
* “Join” a table of disaster victim photos with submitted photos from family members
* Return the sentiment of each tweet in a table of Twitter tweets
* Rank the items in a table of products using Amazon reviews

Qurk: Architecture

MTurk
f)
i
HI
- Wz
2 U')I : S 1 1 . .
sEil 3 Statistics Manager Query Optimizer
§TIE x .
(& 1, &
b
R
Results Results
HIT Compiler f1--=-=--= 1| Task. | [- D<] a,
? 4 / a, [:] b
' Task. o in o
A B
Tas‘k Model Tasks |
i Internal Tasks
Task Cache - Task DRSS A B
Manager Executor
Results

Storage Engine

Qurk: Filter Example

SELECT * FROM images WHERE isFlower(img)

TASK isFlower(Image img) RETURN Bool:
TaskType: Question
Text: ““Does this image:
contain a flower?”’, URLify(img)
Response: Choice(“YES”,"NO”’)

Qurk: Filter Example

SELECT * FROM images WHERE isFlower(img)

TASK isFlower(Image img) RETURN Bool:
TaskType: Question
Text: ““Does this image:
contain a flower?”’, URLify(img)
Response: Choice(“YES”,"NO”’)

Qurk: Get Values Example

SELECT companyName, findCEO(companyName).CEO,
findCEO(companyName).Phone
FROM companies

TASK findCEO(String companyName)
RETURNS (String CEO,String Phone):
TaskType: Question
Text: “Find the CEO and the CEQ’s phone
number for the company %s”’, companyName
Response: Form((“CEO”,String), (“Phone”,String))

Qurk: Get Values Example

SELECT companyName, findCEO(companyName).CEOQ,
findCEO(companyName).Phone
FROM companies

TASK findCEO(String companyName)
RETURNS (String CEO,String Phone):
TaskType: Question
Text: “Find the CEO and the CEQ’s phone
number for the company %s”’, companyName
Response: Form((“CEO”,String), (“Phone”,String))

Qurk: Ranking Example

SELECT productID, productName FROM products
ORDER BY rankProducts(productName)

TASK rankProducts(String[] prodNames) RETURNS String|[]:
TaskType: Rank
Text: “Sort the following list of products
by their user reviews on Amazon.com”
List: prodNames

Qurk: Ranking Example

SELECT productID, productName FROM products
ORDER BY rankProducts(productName)

TASK rankProducts(String[] prodNames) RETURNS String|[]:
TaskType: Rank
Text: “Sort the following list of products
by their user reviews on Amazon.com”
List: prodNames

Qurk: Join Example

SELECT survivors.location, survivors.name
FROM survivors, missing

WHERE imgContains(survivors.image, missing.image)

TASK imgContains(Image[] survivors, Image[] missing)
RETURNS Bool:
TaskType: JoinPredicate
Text: ‘Draﬁ a picture of any Survivors
in the left column to their matchin
picture in the Missing People
column to the right.”
Response: DragColumns("Survivors", survivors,
"Missing People", missing)

Qurk: Join Example

SELECT survivors.location, survivors.name
FROM survivors, missing

WHERE imgContains(survivors.image, missing.image)

TASK imgContains(Image[] survivors, Image[] missing)
RETURNS Bool:
TaskType: JoinPredicate
Text: ‘Draﬁ a picture of any Survivors
in the left column to their matchin
picture in the Missing People
column to the right.”
Response: DragColumns("Survivors", survivors,
"Missing People", missing)

Qurk: Features

e Results are multi-valued to reflect that different workers might give
different answers

* “convenience functions” (example: majorityVote) to collapse values to
a single value

Qurk: Query Optimization

e Use Qurk query annotations:
* maxCost: maximum S willing to pay
* minConfidence: minimum number of workers who must agree
* maxLatency: how long willing to wait on a HIT
* NecessaryConditions statement (example: photos must have same race and gender)

* Optimizations that can be made:
e Adjust pricing at runtime
Uniformly sample input table
Combine multiple Tasks into single HITs
Operator implementaions (example: rank by comparison vs scores)
Turklt-like caching
Replace large set of HITs with fewer HITS and apply machine learning

Qurk: Issues

Qurk: Issues

a & TEN A W O&S 1

e e —

MIRACL ;. N _:._S-'_ e
n

QLCURS .«

Qurk
(“Human-powered Sorts and Joins”)

* Describes (some of the) implementation
* Additional syntax element: POSSIBLY

* Evaluated performance on simple joins and sorts and their combination

» Sort: Tried different human computation algorithms, different Uls

* SELECT name, scene.img
FROM actors JOIN scenes
ON inScene(actors.img, scenes.img)
AND POSSIBLY numInScene(scenes.img) > 1
ORDER BY name, quality(scenes.img)

Qurk
(“Human-powered Sorts and Joins”)

* Describes (some of the) implementation
* Additional syntax element: POSSIBLY

* Evaluated performance on simple joins and sorts and their combination

» Sort: Tried different human computation algorithms, different Uls

* SELECT name, scene.img
FROM actors JOIN scenes
ON inScene(actors.img, scenes.img)
AND POSSIBLY numInScene(scenes.img) > 1
ORDER BY name, quality(scenes.img)

Qurk
(“Human-powered Sorts and Joins”)

Operator Optimization # HITs
Join Filter 43
Join Filter + Simple 628
Join Filter + Naive 160
Join Filter + Smart 3x3 108
Join Filter + Smart 5x5 66
Join No Filter + Simple 1055
Join No Filter + Naive 211
Join No Filter + Smart 5x5 43
Order By Compare 61
Order By Rate 11
Total (unoptimized) 1055+ 61 =1116
Total (optimized) 66+ 11 =77

Table 5: Number of HITs for each operator optimization.

Deco
(“Deco: Declarative Crowdsourcing™)

* Motivation:
* Handle worker disagreement
 What is the right data model and query language (= how to extend SQL)

e How to handle crowdsourced data in a database:

* Do you store all answers, or just cleaned answers?
(And if all answers, how is it stored?)

* How does it get updated with new answers?
 When does data go stale?
* How do queries get executed?

Deco
(“Deco: Declarative Crowdsourcing™)

* Provides a relational data model with well-defined semantics
SELECT name,address,rating,cuisine
FROM Restaurant WHERE rating > 4 ATLEAST 5

* Provides a query language that stays close to SQL

* Describes push-pull execution model
* Ask for one or more restaurant name-address pairs

* Ask for a rating given a restaurant name and an address
Ask for a cuisine given a restaurant name

* Ask for a restaurant name given a cuisine

Deco
(“Deco: Declarative Crowdsourcing™)

name addr rating cuisine
Subway SF C3.93 Sandwiches
© User Subway NY 3.7 | | Sandwiches

view =
Bouchon LV 3.8 | |~ French
Bouchon LV 3.8 ‘\QontinentZ

cl) resolution resolution
DA~—~——] rule rule
RestA /Restm | T~ Restn2
name addr hame addr | rat|ng name \uisine
Subway SF Subway SF 3.9 Subway Sq@m@%
Subway NY Subway SF 4.1 Bouchon French
Bouchon LV Subway SF 3.7 Bouchon French
| Limon SF | Subway NY 3.6 Bouchon ontinent
; ;' Bouchon LV 4.7 Limon oo
Anchor Limon sF | / o Frelinn
CID'};entsggfllgdl’ fetch rule Dependent fetch rule Dependent fetc-f\; rule
P22 name,addrrating name=>cuisine cuisine»name

oee oo pep

Deco
“Deco: Declarative Crowdsourcing”

1 AtLeast[5]

14 Atleast[5]
2| DLOJoin[name] "—/
I] 15 Filter[rating>4]
3 Filter[rating>4] 11, Resolve[maj3] ‘ !

l L 16, DLOJoin[name] |
|
4| DLOJoin[name,addr] | ,,| Scan Fetch
L I | [RestD2] N> 17 DLOJoin[name,addr]l 24| Resolve[maj3] ‘
A i
‘ [} | [
5| Resolve[dupEli] 8| Resolvelavg3] 18 Resolve[dupEl] 21| Resolvelavgd] | ,5 Scan | | Fetch |
[RestD2] [n=>c]
[1 [
Scan Fetch Scan Fetch s Scan Fetch 2 Scan Fetch
[RestA] | | [@—2>n,a] | [RestD1] | | [n,a=>r] [RestA] [|[@—>n,a] [RestD1] | | [n,a=>r)
Figure 2: (a) Basic Plan (b) Filter Later
1 AtLeast[5]
2| DLOJoin[name]
3 Filter[rating>4] 11, Resolve[maj3] ‘ 16 Filter[rating>4]
r I ! 1T ! 24| Resolve[maj3] I
4 DLOJoin[name,addr] ,, Scan Fetch 1 17 DLOJuin[name,addr]|
[RestD2] [n=>c]
| o
5 Resolve[dupEli] 8| Resolve[avg3] 18‘ Resolve[dupEli] 21‘ Resolve[avg3] ‘
: . . [. |
Scan Fetch Scan Fetch Scan Fetch Scan Scan Fetch
7 10 19 20 22 25 23
[RestA] [r—)n,a]‘ [RestD1] | | [n,a=>r] [RestA] [r>n,a] [RestD1] [RestD2] | | [n,a=>r,c]

Deco
(“Deco: Declarative Crowdsourcing™)

e Assessment
* Experiments

basic ——

basic
|~ basic —¥— 80 " pasic —x— ;
70 | reverse —A— i

|- reverse ——f—
reverse ——#— reverse —&—

= 60

hybrid —e— : _

>0 | K5 |
40 o S ;_,-' i"v " —
20 b . "‘_,; ‘. e -

HITs Submitted
Non-NULL Result Tuples

Non-NULL Result Tuples
o — N W A U O N 0O W

o — N W A U1 O N O W
T

Time [minutes] Time [minutes] Time [minutes]

* Compared expressiveness to CrowdDB

CrowdER

* Entity resolution: I.B.M. vs IBM vs International Business Machines

SELECT p.id, gq.id FROM product p, product q
WHERE p.product_name ~= g.product_name;

e Pure crowdsourcing infeasible given number of possible matches

ID Product Name Price
r1 iPad Two 16GB WiFi White $490
ro iPad 2nd generation 16GB WiFi White $469
r3 iPhone 4th generation White 16GB $545
T4 Apple iPhone 4 16GB White $520
rs Apple iPhone 3rd generation Black 16GB $375
re iPhone 4 32GB White $599
r7 Apple iPad2 16GB WiFi White $499
rs Apple iPod shuffle 2GB Blue $49

rg || Apple iPod shuffle USB Cable $19

e Approach:
* Machine does initial crude pass
* People verify most likely matches

CrowdER

DEFINITION 1 (CLUSTER-BASED HIT GENERATION).
Given a set of pairs of records, P, and a cluster-size
threshold, k, the cluster-based HIT generation problem 1is
to generate the minimum number of cluster-based HITs,
Hi, Ha,--- , Hy, that satisfy two requirements: (1) |H¢| < k
for any £ € [1, h|, where |H;| denotes the number of records
in He; (2) for any (ri,r;) € P, there exists Hy (¢ € [1,h])
s.t. r; € Hp and r; € Hy.

THEOREM 1. The cluster-based HIT generation problem
1s NP-Hard.

CrowdER

Algorithm 1: Two-TIERED(P, k)

(V)

N O Ok W

Input: P : a set of pairs of records
k : a cluster-size threshold
Output: Hi,Hs, - -, Hy: cluster-based HIT's
begin
Let CC denote the connected components of the graph
that is built based on P;
SCC ={cc € CC | |cc| € k}; //Small Connected Components
LCC = {cc € CC | |cc| > k}; //Large Connected Components
SCC U = PARTITIONING(LCC, k); //Top Tier
Hy,H>2,---, H, = PACKING(SCC, k); //Bottom Tier
end

Figure 6: An overview of two-tiered approach.

CrowdER

e 10 T T | T o 7 T T | T
< Random —>— < 6 [Random ——
* 8 F DFS-based —&8— - % DFS-based —8—
e BFS-based —— 5t BFS-based ———
= 6k Approximation —e— _ — Approximation —e—
E Two-tiered =-------- E 4 Two-tiered --------
S 4t 1 B3
o i o
) - o 2
£ 2+ _ e
g 7|) £ 1
st = S — e
Z (Ll = . Z. 0
0.5 0.4 0.3 0.2 0.1 0.5 0.4 0.3 0.2 0.1
Likelihood Threshold Likelihood Threshold
(a) Restaurant (b) Product

Figure 10: Comparison of the number of cluster-
based HITs for wvarious likelihood thresholds
(cluster-size=10).

CrowdER

100 p 100 —T 3

90 90 F \o~.. 3

=~ 80 = 80 :
o o AN E
S 70 S 70 -
= 60 L g 60 3
S 50 R g S 50 ;
.E 40 .ﬂ 40 e e N E
8 20 hybrld —a— 8 30 S1mjoiIn -\\ _é
= hybrid(QT) —e— = SVM -—---- g
Ay 20 A 20 hybrid —&— E
10 10 Ehybrid(QT) —e— T NG

0 i | | | | | | | | | E— 0 k l | | | | | | | | —~

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Recall (%) Recall (%)
(a) Restaurant (b) Product

Figure 12: Comparing hybrid human-machine work-
flow with existing machine-based techniques.

CrowdER

* Theoretical analysis
* Hardness
“Back of the envelope” algorithmic analysis
Experiments with AMT
Compared human-powered algorithm with no-human algorithm

Using the Crowd for Top-k and Group-by Queries

* Motivating example

SELECT most-recent(photo)
FROM photoDB

WHERE singlePerson(photo)
GROUP BY Person(photo)

Using the Crowd for Top-k and Group-by Queries

* Motivating example

SELECT most-recent(photo)
FROM photoDB

WHERE singlePerson(photo)
GROUP BY Person(photo)

Using the Crowd for Top-k and Group-by Queries

* Motivating example

SELECT most-recent(photo)
FROM photoDB

WHERE singlePerson(photo)
GROUP BY Person(photo)

e Goal: Use the “crowd” to answer type and value questions
* Both take two items as input
* type: are they of the same type
* value: which comes first

Using the Crowd for Top-k and Group-by Queries

* Algorithms for and mathematical analysis of:
* Max and top-k
e Cluster on type
* Cluster on type and values

* Error models:
* Questions answered correctly with probability > % + € for constante 0<e <%

— ¢ where

1

e If x.>x. Pr[x.is returned as the larger element] <
X;>X; Pr[x;is retu g] 0D

e fis monotone

* f(1)=2

e ¢>(0is aconstant

Using the Crowd for Top-k and Group-by Queries

Algorithm 1 Algorithm for finding the maximum element.

1: —Choose a random permutation II of the elements z1, - - - , zp.
2: for levels L = 1 to logn in the comparison tree do { leaves
are in level 0, the root is in level log n* }

3: —If L <logX (lower log X levels), do one comparison at
each internal node. Propagate the winners to the level above.
4. —If L > log X (upper log < levels), do N1 comparison

at each internal node. Take majority vote and propagate the
winners to the level above.

5: end for

6: return The element at the root node of the comparison tree.

Using the Crowd for Top-k and Group-by Queries

THEOREM 2. For all strictly growing functions f and constant
€,0 > 0, n+ o5 log %) value questions are sufficient to output
the maximum element x1 with probability > 1 — o in the variable
error modell.

Further, if f(A) = Q(A), then n + O(IOg 08" log 1) questions

are sufficient. If f(A) = 22, then n + O(log? 5) guestions are
sufficient.

Using the Crowd for Top-k and Group-by Queries

Algorithm 2 Algorithm for clustering with only type questions
(given n elements, and the values of ¢, > 0))

1: — List the elements in arbitrary order L.

2: —Initialize a set for clusters P = ().

3: while L is not empty do

4. Let y be the first element in L.

5: Find elements with the same type as y among the remain-
ing elements in L as follows: For each remaining ele-
ment x in L, ask the type question type(z) = type(y)
O(=(log %)) times. If the majority of the answers are
“yes”, z, y are decided to have the same type; otherwise they
are decided to have different types.

6: Collect all elements of the same type, make a cluster C', add
to P, and delete these elements from L.

7: end while

8: return the clusters in P.

Using the Crowd for Top-k and Group-by Queries

THEOREM 3. Forall d > 0, to group n elements into J clusters
with probability > 1 — 9, O(nJ log %) type questions in expecta-
tion are sufficient in the constant error model.

On the other hand, 2(nJ) type questions are necessary (i) even
if the algorithm is randomized, (ii) even when answers to all type
questions are exact, and (iii) even when the value of J is known.

Using the Crowd for Top-k and Group-by Queries

Algorithm 3 Algorithm for clustering in the full correlation case
(given €,6 > 0)

1: —List all elements in L in an arbitrary order.

2: —Initialize 1ink(y) = null for each element y.
3: —Set repeat_loop = true.

4: while repeat_loop is true do

5. —Lets=|L|.

6: —Initially, the entire L forms a single interval.
7. while |L| > s/2 do {/*The total number of elements in L is
not halved*/}
8: if each interval has exactly one element then
9: — repeat_loop =false
10: else
11: /* Divide each interval in half to form two smaller in-
tervals*/
12: for each interval B with two or more elements do
13: — Find the median of the elements in B.
14: — Partition the elements in B in two halves compar-
ing with the median by value questions.
15: — Each of these two halves forms a new interval, say
B] and BQ.
16: for both B, € {1,2} do
17: — Check if B; has at least two types: The first el-
ement y in B; is compared with each of the other
elements z in B; to check if there is a z such that
type(y) # type(z).
18: —If B; has at least two types, B; is called an ac-
tive interval. Do nothing.
19: — If B; is not active (all elements have the
same type), choose an arbitrary element y from
B;. For the other elements z in the interval, set
link(z) = y. Delete all elements in B; from L
except y.
20: end for
21: end for
22: end if

23: end while
24: end while
25: return all elements y with their link 1ink(y).

Using the Crowd for Top-k and Group-by Queries

THEOREM 4. Given any 0 > 0, it is sufficient to ask
O ((n log(aJ) 4+ aJ) log %) type and value questions in expecta-
tion to cluster n elements into J clusters with probability > 1 — o.

Using the Crowd for Top-k and Group-by Queries

e Assessment:
* Theorems

So Who Won? Dynamic Max Discovery with the Crowd

* Algorithms for and mathematical analysis of computing Max without
pre-set (“structured”) algorithm:
e Judgment Problem: “What’s the best estimate so far?”
* Next Votes Problem: “If | spend a little more money, what do | spend it on?”

So Who Won? Dynamic Max Discovery with the Crowd

ML FORMULATION 1 (JUDGMENT). Given W and p,
determine: arg max; P(w ™' (1) = j|W).
(where W is the matrix of votes, n-! is a permutation over the items)

THEOREM 2. (Hardness of the Judgment Problem) Finding the
maximum object given evidence is NP-Hard.

THEOREM 3. (#P-Hardness of Probability Computation) Com-
puting P(w~— (1) = 5, W) is #P-Hard.

So Who Won? Dynamic Max Discovery with the Crowd

Strategy S Iterative

Require: n objects, vote matrix W
Ensure: ans = predicted maximum object
dif[-] < 0 {dif[-] is the scoring metric}
fori:1...ndo
forj:1...n,7 #ido
dif[j] — difl] + wiy; dif[i] — dif[i] — wi;
end for
end for
initialize set () {which stores objects}
for::1...ndo
Q—QU1
end for
while |Q| > 1 do
sort objects in @ by dif]]
forr: (L2 +1)...1Q| do
remove object ¢ (with rank 7) from Q)
for j: 7 € Qdo
if w;; > 0 then
dzf[]] — dzf[]] — Wij; d’Lf[?,] — de[’L] + w;j
end if
if w;j; > 0 then
difli] « dif[i] — wjs; dif[j] «— dif[5] +wyi
end if
end for
end for
end while
ans «— S[1] {S[1] is the final object in S’}

So Who Won? Dynamic Max Discovery with the Crowd

* [terative is the best when the number of votes sampled is n(n-1)/2

* PageRank is the best when there are few votes and worker accuracy is
high

* PageRank is poor when worker accuracy is low

1 T T T T T T T T i 1 T T T T T T T ‘I' i
e L e
09 " : = = 0.95 ",0' — e ¥ R
A N 09 I e g |
08 - ...‘r,,...“,__.. Ve 14 . /, P S 1
- 07f /:7 A 7 x 1 o &
© 06 : . % 08 F Ao .
SR A ML —— 075 | © A ML —e— -
058 A DEG . 0.7 A DEG i
h 4 A LOC R — - 4 A LOC @ -
04 | a PR a4 - 0.65 . PR &
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Edge Coverage Edge Coverage

Figure 2: Comparison of ML and heuristics. Prediction performance ver-
sus Edge Coverage. 5 objects, p=0.75. P@]1 (left), MRR (right).

So Who Won? Dynamic Max Discovery with the Crowd

* Assessment:
e Theorems about hardness of exact solution
* Experiments about approximation methods

So Who Won? Dynamic Max Discovery with the Crowd

* Assessment:
e Theorems about hardness of exact solution
* Experiments about approximation methods

* Nothing with humans

Week of Sept 20

* Required readings:

Martin, D., Hanrahan, B.V., O'Neill, J. and Gupta, N., 2014. “Being a turker.” In Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing(pp. 224-235). ACM.

Irani, L.C. and Silberman, M., 2013. “Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk.” In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (pp. 611-620). ACM.

* Additional readings:

Brawley, A.M. and Pury, C.L., 2016. “Work experiences on MTurk: Job satisfaction, turnover, and information
sharing.” Computers in Human Behavior, 54, pp.531-546.

Gray, M.L., Suri, S., Ali, S.S. and Kulkarni, D., 2016. “The crowd is a collaborative network.” In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Computing (pp. 134-147). ACM.

Gupta, N., Martin, D., Hanrahan, B.V. and O'Neill, J., 2014. “Turk-life in India.” In Proceedings of the 18th International
Conference on Supporting Group Work (pp. 1-11). ACM.

Lee, M.K., Kusbit, D., Metsky, E. and Dabbish, L., 2015. “Working with machines: The impact of algorithmic and data-driven
management on human workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (pp. 1603-1612). ACM.

Mclnnis, B., Cosley, D., Nam, C. and Leshed, G., 2016. “Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers’
Experiences in Amazon Mechanical Turk.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (pp. 2271-2282). ACM.

Salehi, N., Irani, L.C., Bernstein, M.S., Alkhatib, A., Ogbe, E. and Milland, K., 2015. “We are dynamo: Overcoming stalling and
friction in collective action for crowd workers.” In Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (pp. 1621-1630). ACM.

http://wtf.tw/ref/martin.pdf
http://wtf.tw/text/turkopticon.pdf
http://crowdsourcing-class.org/readings/downloads/ethics/mturk-job-satisfaction.pdf
http://sidsuri.com/Publications_files/collab_paper21.pdf
http://wtf.tw/ref/gupta.pdf
http://www.cs.cmu.edu/~mklee/materials/Publication/2015-CHI_algorithmic_management.pdf
http://infosci.cornell.edu/sites/infosci/files/p2271-mcinnis.pdf
http://hci.stanford.edu/publications/2015/dynamo/DynamoCHI2015.pdf

