Lecture 5: CS 6306 / INFO 6306: Advanced Human Computation

Database Perspective

- Class time will remain Tu/Th 11:40-12:55
- Mutual introductions
 - Name
 - What you do
 - What interests you in HC
- Assignment 1: Due Thursday, 15 September 2016
 - Do at least 25 HITs
 - Create at least one HIT that is done by at least 5 workers
- Selecting presenter for next two Thursdays, 15 and 22 September 2016
 - Game theoretical approaches to human computation
 - The human experience in human computation

Week of Sept 20

- Required readings:
 - Martin, D., Hanrahan, B.V., O'Neill, J. and Gupta, N., 2014. "Being a turker." In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing(pp. 224-235). ACM.
 - Irani, L.C. and Silberman, M., 2013. "Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk." In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 611-620). ACM.
- Additional readings:
 - Brawley, A.M. and Pury, C.L., 2016. "Work experiences on MTurk: Job satisfaction, turnover, and information sharing." Computers in Human Behavior, 54, pp.531-546.
 - Gray, M.L., Suri, S., Ali, S.S. and Kulkarni, D., 2016. "<u>The crowd is a collaborative network</u>." In *Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing* (pp. 134-147). ACM.
 - Gupta, N., Martin, D., Hanrahan, B.V. and O'Neill, J., 2014. "<u>Turk-life in India</u>." In *Proceedings of the 18th International Conference on Supporting Group Work* (pp. 1-11). ACM.
 - Lee, M.K., Kusbit, D., Metsky, E. and Dabbish, L., 2015. "<u>Working with machines: The impact of algorithmic and data-driven</u> <u>management on human workers</u>." In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems* (pp. 1603-1612). ACM.
 - McInnis, B., Cosley, D., Nam, C. and Leshed, G., 2016. "<u>Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers'</u> <u>Experiences in Amazon Mechanical Turk</u>." In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems* (pp. 2271-2282). ACM.
 - Salehi, N., Irani, L.C., Bernstein, M.S., Alkhatib, A., Ogbe, E. and Milland, K., 2015. "We are dynamo: Overcoming stalling and friction in collective action for crowd workers." In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1621-1630). ACM.

Today: Database Perspective

- Required Readings:
 - Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S. and Xin, R., 2011. "<u>CrowdDB: answering queries with</u> <u>crowdsourcing</u>." In *Proceedings of the 2011 ACM SIGMOD International Conference on Management of data*(pp. 61-72). ACM.
 - Marcus, A., Wu, E., Karger, D.R., Madden, S. and Miller, R.C., 2011. "<u>Crowdsourced databases: Query processing</u> with people." In Proceedings of the 5th Biennial Conference on Innovative Data Systems Research (CIDR 2011).
- Additional Readings:
 - Davidson, S.B., Khanna, S., Milo, T. and Roy, S., 2013. "Using the crowd for top-k and group-by queries." In Proceedings of the 16th International Conference on Database Theory (pp. 225-236). ACM.
 - Guo, S., Parameswaran, A. and Garcia-Molina, H., 2012. "<u>So who won?: dynamic max discovery with the crowd</u>." In *Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data* (pp. 385-396). ACM.
 - Marcus, A., Wu, E., Karger, D., Madden, S. and Miller, R., 2011. "<u>Human-powered sorts and joins</u>." Proceedings of VLDB, 5(1), pp.13-24.
 - Parameswaran, A.G., Park, H., Garcia-Molina, H., Polyzotis, N. and Widom, J., 2012. "<u>Deco: declarative</u> <u>crowdsourcing</u>." In *Proceedings of the 21st ACM international conference on Information and knowledge management* (pp. 1203-1212). ACM.
 - Wang, J., Kraska, T., Franklin, M.J. and Feng, J., 2012. "<u>Crowder: Crowdsourcing entity resolution</u>." Proceedings of VLDB,5(11), pp.1483-1494.5

CrowdDB

- Use a crowd to overcome limitations of relational databases
- Example:
 - Closed-world assumption:
 - SELECT market_capitalization FROM company WHERE name = "I.B.M.";
 - Crowd can find items not currently in DB (normally would give empty result if I.B.M. is not in the DB)
 - Entity resolution:
 - I.B.M. vs IBM vs International Business Machines
 - Questions that rely on human judgment:
 - SELECT image FROM picture WHERE topic = "Business Success" ORDER BY relevance LIMIT 1;
 - Relevance can be assessed by crowd
- Provides a "clean" way to think about crowds, by relating it to known data operations

CREATE TABLE Department (university STRING, name STRING, url CROWD STRING, phone STRING PRIMARY KEY (university, name));

CREATE TABLE Department (university STRING, name STRING, url CROWD STRING, phone STRING, PRIMARY KEY (university, name));

CREATE CROWD TABLE Professor (name STRING PRIMARY KEY, email STRING UNIQUE, university STRING, department STRING, FOREIGN KEY (university, department) REF Department(university, name));

CREATE CROWD TABLE Professor (name STRING PRIMARY KEY, email STRING UNIQUE, university STRING, department STRING, FOREIGN KEY (university, department) REF Department(university, name));

SELECT profile FROM department WHERE name ~= "CS";

CREATE TABLE picture (p IMAGE, subject STRING);

SELECT p FROM picture WHERE subject = "Golden Gate Bridge" ORDER BY CROWDORDER(p, "Which picture visualizes better %subject");

SELECT profile FROM department WHERE name ~= "CS";

CREATE TABLE picture (p IMAGE, subject STRING);

SELECT p FROM picture WHERE subject = "Golden Gate Bridge" ORDER BY CROWDORDER(p, "Which picture visualizes better %subject");

- Other operators
 - LIMIT: max amount of money
 - CrowdProbe: ask workers for answers until a majority is reached
 - CrowdJoin: Computes the join over two tables one of which is crowdsourced
 - CrowdCompare: implements CROWDEQUAL and CROWDORDER

CrowdDB: Assessment

- "Micro Benchmarks" simple tasks involving filling in missing data
- Time to completion
 - Tradeoff between time to completion and completion percent
- Payment levels
 - Completion rate
 - Answer quality

CrowdDB: Issues

• When do crowds get called?

CrowdDB: Interfaces

- Known field values are copied over, null values prompt asking user
- Uses javascript to check that responses are of the correct datatype

CrowdDB: Issues

- "If a query involves a CROWD table, then it is unclear how many tuples need to be crowdsourced in order to fully process the query."
- "In order to be practical, CrowdSQL should provide a way to define a budget for a query"
- Built-in quality testing

CrowdDB: Issues

• Architecture:

("Crowdsourced Databases: Query Processing with People")

- Crowds as user-defined functions
- Motivations:
 - HITs take a (relatively) long time
 - Query optimization should include financial cost and accuracy
 - Can't know ahead of time characteristics of operators necessary for optimization
- Example tasks:
 - Return CEO and contact number for each company in a table
 - "Join" a table of disaster victim photos with submitted photos from family members
 - Return the sentiment of each tweet in a table of Twitter tweets
 - Rank the items in a table of products using Amazon reviews

Qurk: Architecture

Qurk: Filter Example

SELECT * FROM images WHERE isFlower(img)

TASK isFlower(Image img) RETURN Bool:

TaskType: Question Text: "Does this image: contain a flower?", URLify(img) Response: Choice("YES","NO")

Qurk: Filter Example

SELECT * FROM images WHERE isFlower(img)

TASK isFlower(Image img) RETURN Bool:

TaskType: Question Text: "Does this image: contain a flower?", URLify(img) Response: Choice(''YES'',''NO'')

Qurk: Get Values Example

SELECT companyName, findCEO(companyName).CEO, findCEO(companyName).Phone FROM companies

TASK findCEO(String companyName) RETURNS (String CEO,String Phone): TaskType: Question Text: "Find the CEO and the CEO's phone number for the company %s", companyName Response: Form(("CEO",String), ("Phone",String))

Qurk: Get Values Example

SELECT companyName, findCEO(companyName).CEO, findCEO(companyName).Phone FROM companies

TASK findCEO(String companyName) RETURNS (String CEO,String Phone): TaskType: Question Text: "Find the CEO and the CEO's phone number for the company %s", companyName Response: Form(("CEO",String), ("Phone",String))

Qurk: Ranking Example

SELECT productID, productName FROM products ORDER BY rankProducts(productName)

TASK rankProducts(String[] prodNames) RETURNS String[]: TaskType: Rank Text: "Sort the following list of products by their user reviews on Amazon.com" List: prodNames

Qurk: Ranking Example

SELECT productID, productName FROM products ORDER BY rankProducts(productName)

TASK rankProducts(String[] prodNames) RETURNS String[]: TaskType: Rank Text: "Sort the following list of products by their user reviews on Amazon.com" List: prodNames

Qurk: Join Example

SELECT survivors.location, survivors.name FROM survivors, missing WHERE imgContains(survivors.image, missing.image)

TASK imgContains(Image[] survivors, Image[] missing) **RETURNS** Bool:

TaskType: JoinPredicate Text: "Drag a picture of any Survivors in the left column to their matching picture in the Missing People column to the right." Response: DragColumns("Survivors", survivors,

"Missing People", missing)

Qurk: Join Example

SELECT survivors.location, survivors.name FROM survivors, missing WHERE imgContains(survivors.image, missing.image)

TASK imgContains(Image[] survivors, Image[] missing) RETURNS Bool: TaskType: JoinPredicate Text: "Drag a picture of any Survivors in the left column to their matching picture in the Missing People

column to the right." Response: DragColumns("Survivors", survivors,

"Missing People", missing)

Qurk: Features

- Results are multi-valued to reflect that different workers might give different answers
- "convenience functions" (example: majorityVote) to collapse values to a single value

Qurk: Query Optimization

- Use Qurk query annotations:
 - maxCost: maximum \$ willing to pay
 - minConfidence: minimum number of workers who must agree
 - maxLatency: how long willing to wait on a HIT
 - NecessaryConditions statement (example: photos must have same race and gender)
- Optimizations that can be made:
 - Adjust pricing at runtime
 - Uniformly sample input table
 - Combine multiple Tasks into single HITs
 - Operator implementaions (example: rank by comparison vs scores)
 - TurkIt-like caching
 - Replace large set of HITs with fewer HITS and apply machine learning

Qurk: Issues

Qurk: Issues

("Human-powered Sorts and Joins")

- Describes (some of the) implementation
- Additional syntax element: POSSIBLY
- Evaluated performance on simple joins and sorts and their combination
 - Sort: Tried different human computation algorithms, different UIs
 - SELECT name, scene.img FROM actors JOIN scenes ON inScene(actors.img, scenes.img) AND POSSIBLY numInScene(scenes.img) > 1 ORDER BY name, quality(scenes.img)

("Human-powered Sorts and Joins")

- Describes (some of the) implementation
- Additional syntax element: POSSIBLY
- Evaluated performance on simple joins and sorts and their combination
 - Sort: Tried different human computation algorithms, different UIs
 - SELECT name, scene.img
 FROM actors JOIN scenes

ON inScene(actors.img, scenes.img) AND POSSIBLY numInScene(scenes.img) > 1 ORDER BY name, quality(scenes.img)

("Human-powered Sorts and Joins")

Operator	Optimization	# HITs
Join	Filter	43
Join	Filter + Simple	628
Join	Filter + Naive	160
Join	Filter + Smart 3x3	108
Join	Filter + Smart 5x5	66
Join	No Filter + Simple	1055
Join	No Filter + Naive	211
Join	No Filter + Smart 5x5	43
Order By	Compare	61
Order By	Rate	11
Total (unoptimized)		1055 + 61 = 1116
Total (optimized)		66 + 11 = 77

Table 5: Number of HITs for each operator optimization.

- Motivation:
 - Handle worker disagreement
 - What is the right data model and query language (= how to extend SQL)
 - How to handle crowdsourced data in a database:
 - Do you store all answers, or just cleaned answers? (And if all answers, how is it stored?)
 - How does it get updated with new answers?
 - When does data go stale?
 - How do queries get executed?

- Provides a relational data model with well-defined semantics SELECT name,address,rating,cuisine FROM Restaurant WHERE rating > 4 ATLEAST 5
- Provides a query language that stays close to SQL
- Describes push-pull execution model
 - Ask for one or more restaurant name-address pairs
 - Ask for a rating given a restaurant name and an address Ask for a cuisine given a restaurant name
 - Ask for a restaurant name given a cuisine

("Deco: Declarative Crowdsourcing")

- Assessment
 - Experiments

Compared expressiveness to CrowdDB

- Entity resolution: I.B.M. vs IBM vs International Business Machines SELECT p.id, q.id FROM product p, product q WHERE p.product_name ~= q.product_name;
- Pure crowdsourcing infeasible given number of possible matches

ID	Product Name	Price
r_1	iPad Two 16GB WiFi White	\$490
r_2	iPad 2nd generation 16GB WiFi White	\$469
r_3	iPhone 4th generation White 16GB	\$545
r_4	Apple iPhone 4 16GB White	\$520
r_5	Apple iPhone 3rd generation Black 16GB	\$375
r_6	iPhone 4 32GB White	\$599
r_7	Apple iPad2 16GB WiFi White	\$499
r_8	Apple iPod shuffle 2GB Blue	\$49
r_9	Apple iPod shuffle USB Cable	\$19

• Approach:

- Machine does initial crude pass
- People verify most likely matches

DEFINITION 1 (CLUSTER-BASED HIT GENERATION). Given a set of pairs of records, \mathcal{P} , and a cluster-size threshold, k, the cluster-based HIT generation problem is to generate the minimum number of cluster-based HITs, H_1, H_2, \dots, H_h , that satisfy two requirements: (1) $|H_\ell| \leq k$ for any $\ell \in [1, h]$, where $|H_\ell|$ denotes the number of records in H_ℓ ; (2) for any $(r_i, r_j) \in \mathcal{P}$, there exists H_ℓ ($\ell \in [1, h]$) s.t. $r_i \in H_\ell$ and $r_j \in H_\ell$.

THEOREM 1. The cluster-based HIT generation problem is NP-Hard.

Algorithm 1: TWO-TIERED (\mathcal{P}, k)					
	I	$\mathbf{nput}: \mathcal{P}: a \text{ set of pairs of records}$			
	k: a cluster-size threshold				
Output : H_1, H_2, \cdots, H_h : cluster-based HITs					
1	b	egin			
2		Let CC denote the connected components of the graph			
		that is built based on \mathcal{P} ;			
3		$SCC = \{cc \in CC \mid cc \leq k\};$ //Small Connected Components			
4		$LCC = \{cc \in CC \mid cc > k\};$ //Large Connected Components			
5		SCC \cup = PARTITIONING(LCC, k); //Top Tier			
6		$H_1, H_2, \cdots, H_h = \operatorname{PacKING}(SCC, k);$ //Bottom Tier			
7	e	nd			

Figure 6: An overview of two-tiered approach.

Figure 10: Comparison of the number of clusterbased HITs for various likelihood thresholds (cluster-size=10).

Figure 12: Comparing hybrid human-machine workflow with existing machine-based techniques.

- Theoretical analysis
 - Hardness
 - "Back of the envelope" algorithmic analysis
 - Experiments with AMT
 - Compared human-powered algorithm with no-human algorithm

• Motivating example

SELECT most-recent(photo) FROM photoDB WHERE singlePerson(photo) GROUP BY Person(photo)

• Motivating example

SELECT most-recent(photo) FROM photoDB WHERE singlePerson(photo) GROUP BY Person(photo)

• Motivating example

SELECT most-recent(photo) FROM photoDB WHERE singlePerson(photo) GROUP BY Person(photo)

- Goal: Use the "crowd" to answer type and value questions
 - Both take two items as input
 - type: are they of the same type
 - value: which comes first

- Algorithms for and mathematical analysis of:
 - Max and top-k
 - Cluster on type
 - Cluster on type and values
- Error models:
 - Questions answered correctly with probability $\geq \frac{1}{2} + \epsilon$ for constant ϵ 0 < $\epsilon \leq \frac{1}{2}$
 - If $x_i > x_j$ Pr[x_j is returned as the larger element] $\leq \frac{1}{f(j-i)} \varepsilon$ where
 - *f* is monotone
 - *f*(1) ≥ 2
 - $\varepsilon > 0$ is a constant

Algorithm 1 Algorithm for finding the maximum element.

- 1: Choose a random permutation Π of the elements x_1, \dots, x_n .
- 2: for levels L = 1 to $\log n$ in the comparison tree do { leaves are in level 0, the root is in level $\log n^*$ }
- 3: $\text{If } L \leq \log X \text{ (lower } \log X \text{ levels), do one comparison at each internal node. Propagate the winners to the level above.$
- 4: If $L > \log X$ (upper $\log \frac{n}{X}$ levels), do N_L comparison at each internal node. Take majority vote and propagate the winners to the level above.

5: end for

6: **return** The element at the root node of the comparison tree.

THEOREM 2. For all strictly growing functions f and constant $\epsilon, \delta > 0, n + o(\frac{n}{\delta} \log \frac{1}{\delta})$ value questions are sufficient to output the maximum element x_1 with probability $\geq 1 - \delta$ in the variable error model.

Further, if $f(\Delta) = \Omega(\Delta)$, then $n + O(\frac{\log \log n}{\delta^2} \log \frac{1}{\delta})$ questions are sufficient. If $f(\Delta) = 2^{\Delta}$, then $n + O(\log^2 \frac{1}{\delta})$ questions are sufficient.

Algorithm 2 Algorithm for clustering with only type questions (given *n* elements, and the values of $\epsilon, \delta > 0$))

- 1: List the elements in arbitrary order L.
- 2: Initialize a set for clusters $P = \emptyset$.
- 3: while *L* is not empty do
- 4: Let y be the first element in L.
- 5: Find elements with the same type as y among the remaining elements in L as follows: For each remaining element x in L, ask the type question type(x) = type(y) $O(\frac{1}{\epsilon^2}(\log \frac{n}{\delta}))$ times. If the majority of the answers are "yes", x, y are decided to have the same type; otherwise they are decided to have different types.
- 6: Collect all elements of the same type, make a cluster C, add to P, and delete these elements from L.
- 7: end while
- 8: **return** the clusters in *P*.

THEOREM 3. For all $\delta > 0$, to group *n* elements into *J* clusters with probability $\geq 1 - \delta$, $O(nJ \log \frac{n}{\delta})$ type questions in expectation are sufficient in the constant error model.

On the other hand, $\Omega(nJ)$ type questions are necessary (i) even if the algorithm is randomized, (ii) even when answers to all type questions are exact, and (iii) even when the value of J is known.

Algorithm 3 Algorithm for clustering in the full correlation case (given $\epsilon, \delta > 0$)

- 1: List all elements in L in an arbitrary order.
- 2: Initialize link(y) = null for each element y.
- 3: Set repeat_loop = true.
- 4: while repeat_loop is true do
- 5: -Let s = |L|.
- 6: Initially, the entire L forms a single interval.
- 7: while |L| > s/2 do {/*The total number of elements in L is not halved*/}
- 8: **if** each interval has exactly one element **then**
- 9: repeat_loop = false
- 10: else
- 11: /* Divide each interval in half to form two smaller intervals*/
- 12: **for** each interval *B* with two or more elements **do**
- 13: Find the median of the elements in B.
- 14: Partition the elements in *B* in two halves comparing with the median by value questions.
- 15: Each of these two halves forms a new interval, say B_1 and B_2 .
- 16: **for** both $B_i, i \in \{1, 2\}$ **do**
- 17: Check if B_i has at least two types: The first element y in B_i is compared with each of the other elements z in B_i to check if there is a z such that $type(y) \neq type(z)$.
- 18: If B_i has at least two types, B_i is called an *ac*tive interval. Do nothing.
- 19: If B_i is not active (all elements have the same type), choose an arbitrary element y from B_i . For the other elements z in the interval, set link(z) = y. Delete all elements in B_i from L
 - except y.
- 20: end for
- 21: end for
- 22: end if
- 23: end while
- 24: end while
- 25: return all elements y with their link link(y).

THEOREM 4. Given any $\delta > 0$, it is sufficient to ask $O\left(\left(n\log(\alpha J) + \alpha J\right)\log\frac{n}{\delta}\right)$ type and value questions in expectation to cluster n elements into J clusters with probability $\geq 1 - \delta$.

- Assessment:
 - Theorems

- Algorithms for and mathematical analysis of computing Max without pre-set ("structured") algorithm:
 - Judgment Problem: "What's the best estimate so far?"
 - Next Votes Problem: "If I spend a little more money, what do I spend it on?"

ML FORMULATION 1 (JUDGMENT). Given W and p, determine: $\arg \max_j P(\pi^{-1}(1) = j|W)$. (where W is the matrix of votes, π^{-1} is a permutation over the items)

THEOREM 2. (Hardness of the Judgment Problem) Finding the maximum object given evidence is NP-Hard.

THEOREM 3. (#P-Hardness of Probability Computation) Computing $P(\pi^{-1}(1) = j, W)$ is #P-Hard.

Strategy 5 Iterative

```
Require: n objects, vote matrix W
Ensure: ans = predicted maximum object
  dif[\cdot] \leftarrow 0 \{ dif[\cdot] \text{ is the scoring metric} \}
  for i : 1 ... n do
     for j:1\ldots n, j\neq i do
        dif[j] \leftarrow dif[j] + w_{ij}; dif[i] \leftarrow dif[i] - w_{ij}
     end for
  end for
  initialize set Q {which stores objects}
  for i : 1 ... n do
     Q \leftarrow Q \cup i
  end for
  while |Q| > 1 do
     sort objects in Q by dif[\cdot]
     for r: (\frac{|Q|}{2} + 1) \dots |Q| do
        remove object i (with rank r) from Q
        for j : j \in Q do
           if w_{ii} > 0 then
              dif[j] \leftarrow dif[j] - w_{ij}; dif[i] \leftarrow dif[i] + w_{ij}
           end if
           if w_{ii} > 0 then
              d\tilde{i}f[i] \leftarrow dif[i] - w_{ji}; dif[j] \leftarrow dif[j] + w_{ji}
           end if
        end for
     end for
  end while
  ans \leftarrow S[1] \{S[1] \text{ is the final object in } S\}
```

- Iterative is the best when the number of votes sampled is n(n-1)/2
- PageRank is the best when there are few votes and worker accuracy is high
- PageRank is poor when worker accuracy is low

Figure 2: Comparison of ML and heuristics. Prediction performance versus Edge Coverage. 5 objects, p=0.75. P@1 (left), MRR (right).

- Assessment:
 - Theorems about hardness of exact solution
 - Experiments about approximation methods

• Assessment:

- Theorems about hardness of exact solution
- Experiments about approximation methods
- Nothing with humans

Week of Sept 20

- Required readings:
 - Martin, D., Hanrahan, B.V., O'Neill, J. and Gupta, N., 2014. "Being a turker." In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing(pp. 224-235). ACM.
 - Irani, L.C. and Silberman, M., 2013. "Turkopticon: interrupting worker invisibility in Amazon Mechanical Turk." In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 611-620). ACM.
- Additional readings:
 - Brawley, A.M. and Pury, C.L., 2016. "Work experiences on MTurk: Job satisfaction, turnover, and information sharing." Computers in Human Behavior, 54, pp.531-546.
 - Gray, M.L., Suri, S., Ali, S.S. and Kulkarni, D., 2016. "<u>The crowd is a collaborative network</u>." In *Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing* (pp. 134-147). ACM.
 - Gupta, N., Martin, D., Hanrahan, B.V. and O'Neill, J., 2014. "<u>Turk-life in India</u>." In *Proceedings of the 18th International Conference on Supporting Group Work* (pp. 1-11). ACM.
 - Lee, M.K., Kusbit, D., Metsky, E. and Dabbish, L., 2015. "<u>Working with machines: The impact of algorithmic and data-driven</u> <u>management on human workers</u>." In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems* (pp. 1603-1612). ACM.
 - McInnis, B., Cosley, D., Nam, C. and Leshed, G., 2016. "<u>Taking a HIT: Designing around Rejection, Mistrust, Risk, and Workers'</u> <u>Experiences in Amazon Mechanical Turk</u>." In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems* (pp. 2271-2282). ACM.
 - Salehi, N., Irani, L.C., Bernstein, M.S., Alkhatib, A., Ogbe, E. and Milland, K., 2015. "We are dynamo: Overcoming stalling and friction in collective action for crowd workers." In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 1621-1630). ACM.