
Bindel, Fall 2023 Numerics for Data Science

2023-08-31

1 Direct methods for large least squares
Our brief discussion of methods for least squares has so far focused on dense
factorization methods (normal equations with Cholesky, QR, and SVD). For
A ∈ Rm×n, these methods all require O(mn2) time to set up the factorization
and O(mn) time to solve the system for a particular right hand sice. They
also all require O(mn) space. What happens when either m or n is so large
as to make this awkward? We consider a few scenarios:

• If m is large but n is not too large (say on the order of a few hun-
dreds, or even 1000-2000), we might still use a standard factorization,
but arranged to be efficient on parallel machines. The tall skinny QR
(TSQR) approach involves breaking the observations into groups and
doing a factorization on each group, then recursively combining the
factorizations.

• In many cases with large n, the matrix A is often sparse: that is, most
of the entries of A might be zero. Sometimes, we have that A is data-
sparse: that is, it has special structure that can be described with far
fewer than mn parameters.

In the sparse case, we are sometimes able to use sparse direct methods.
That is, if A is sparse (most of the elements are zero), we might be able
to write an economy QR factorization A = QR where R is also sparse (the
matrix Q is usually dense and therefore not saved, though we might be able to
store in compressed form as a product of simpler othogonal transformations).
Sparse QR isn’t always practical, as the R factor is sometimes significantly
denser than A. The order of the columns in A can make a huge difference in
the sparsity of R, and so we typically would seek a factorization AΠ = QR
where Π is a permutation matrix that reorders the columns.

Frequently, though, sparse direct methods are simply impractical. In this
case, we turn to iterative methods.

Bindel, Fall 2023 Numerics for Data Science

2 Iterative methods
We started with a discussion of direct methods for solving least squares prob-
lems based on matrix factorizations. These methods have a well-understood
running time, and they produce a solution that is accurate except for round-
off effects. For larger or more complicated problems, though, we turn to
iterative methods that produce a series of approximation solutions.

We will turn now to iterative methods: gradient and stochastic gradient
approaches, Newton and Gauss-Newton, and (block) coordinate descent. We
will see additional solver ideas as we move through the class, but these are
nicely prototypical examples that illustrate two running themes in the design
of numerical methods for optimization.

Fixed point iterations All our nonlinear solvers (and some of our linear
solvers) will be iterative. We can write most as fixed point iterations

(1) xk+1 = G(xk),

which we hope will converge to a fixed point, i.e. x∗ = G(x∗). We often
approach convergence analysis through the error iteration relating the error
ek = xk − x∗ at successive steps:

(2) ek+1 = G(x∗ + ek)−G(x∗).

Model-based methods Most nonquadratic problems are too hard to solve
directly. On the other hand, we can model hard nonquadratic problems by
simpler (possibly linear) problems as a way of building iterative solvers. The
most common tactic — but not the only one! — is to approximate the
nonlinear function by a linear or quadratic function and apply all the things
we know about linear algebra. We will return to this idea in when we discuss
Newton-type methods for optimization.

3 Gradient descent
One very simple iteration is steepest descent or gradient descent:

(3) xk+1 = xk − αk∇ϕ(xk)

where αk is the step size, chosen adaptively or with some fixed schedule.

Bindel, Fall 2023 Numerics for Data Science

To understand the convergence of this method, consider gradient descent
with a fixed step size α for the quadratic model problem

ϕ(x) =
1

2
xTAx+ bTx+ c

where A is symmetric positive definite. We have computed the gradient for
a quadratic before:

∇ϕ(x) = Ax+ b,

which gives us the iteration equation

xk+1 = xk − α(Axk + b).

Subtracting the fixed point equation

x∗ = x∗ − α(Ax∗ + b)

yields the error iteration

ek+1 = (I − αA)ek.

If {λj} are the eigenvalues of A, then the eigenvalues of I−αA are {1−αλj}.
The spectral radius of the iteration matrix is thus

max{|1− αλj|}j = max (|1− αλmin|, |1− αλmax|) .

The iteration converges provided α < 2/λmax, and the optimal α is

α∗ =
2

λmin + λmax

,

which leads to the spectral radius

1− 2λmin

λmin + λmax

= 1− 2

1 + κ(A)

where κ(A) = λmax/λmin is the condition number for the (symmetric positive
definite) matrix A. If A is ill-conditioned, then, we are forced to take very
small steps to guarantee convergence, and convergence may be heart break-
ingly slow. We will get to the minimum in the long run — but, then again,
in the long run we all die.

Bindel, Fall 2023 Numerics for Data Science

4 The Benefits of Slow Convergence
How steepest descent behaves on a quadratic model is how it behaves gen-
erally: if x∗ is a strong local minimizer of some general nonlinear ϕ, then
gradient descent with a small enough step size will converge locally to x∗.
But if Hϕ(x∗) is ill-conditioned, then one has to take small steps, and con-
vergence can be quite slow.

Somewhat surprisingly, sometimes we want this slow convergence. To
illustrate why, consider the Landweber iteration, which is steepest descent
iteration applied to linear least squares problems:

xk+1 = xk − αkA
T (Axk − b).

If we start from the initial guess x0 = 0 and let the step size be a fixed value
αk = α, we have the subsequent steps

x1 = αAT b

x2 = (I − αATA)αAT b+ αAT b

x3 = (I − αATA)2αAT b+ (I − αATA)αAT b+ αAT b

and so forth. That is, each step is a partial sum of a Neumann series, which
is the matrix generalization of the geometric series

k∑
j=0

zj = (1− zk+1)(1− z)−1 → (1− z)−1 as k → ∞ for |z| < 1.

Using the more concise expression for the partial sums of the Neumann series
expansion, we have

xk+1 =
k∑

j=0

(I − αATA)jαAT b

= (I − (I − αATA)k+1)(αATA)−1αAT b

= (I − (I − αATA)k+1)A†b.

Alternately, we can write the iterates in terms of the singular value decom-
position with a filter for regularization:

xk+1 = V Σ̃−1UT b, σ̃−1
j = (1− (1− ασ2

j)
k+1))σ−1

j .

Bindel, Fall 2023 Numerics for Data Science

Hence, rather than running the Landweber iteration to convergence, we typ-
ically stop when k is large enough so that the filter is nearly the identity for
large singular values, but is small enough so that the influence of the small
singular values is suppressed.

5 Preconditioning stationary iterations
While the slow convergence of iterations like Landweber has some surprising
advantages, sometimes it is just a pain. However, we can speed up these
transformations by preconditioning the problem. That is, rather than apply-
ing the Landweber iteration to the problem

min
x

∥Ax− b∥2

we instead consider
min

x=R−1y
∥AR̃−1y − b∥2

where R̃−1 is easy to apply (e.g. because R̃ might be chosen to be upper
triangular) and AR̃−1 has a much smaller condition number than A. In
the extreme case where R̃ is the R factor in a QR factorization of A, we
would be able to solve the resulting problem by one step of Landweber with
step length one. But we can often do pretty well even when far from the
case where AR̃−1 has orthonormal columns. This type of re-scaling of the
problem to encourage fast convergence is often called preconditioning.

6 Krylov subspace iterations
We now consider a more general class of iterative methods that accelerates the
convergence of methods like Landweber. There are many ways to derive these
accelerated methods (Krylov subspace methods). We deliberately choose a
somewhat unorthodox description that highlights the connections to other
accelerated solvers we will encounter later in the class, as well as to our final
unit on learning dynamical systems from data.

Let’s momentarily consider the case of solving a linear system Ax = b,
keeping the special case of the normal equations in the back of our minds. A
stationary iteration has the form

Mxk+1 = Kxk + b

Bindel, Fall 2023 Numerics for Data Science

where A = M − K is sometimes called a splitting. The typical way that
we analyze such iterations is to subtract the fixed point equation from the
iteration, yielding

M(xk+1 − x∗) = K(xk − x∗)

or ek+1 = (M−1K)ek = (M−1K)ke0 where ek = xk−x∗ is the error at step k.
The Landweber iteration with fixed step size is an example of a stationary
iteration.

Stationary iterations are an example of a linear time-invariant (LTI) dy-
namical system in discrete time. The dynamics can be described entirely
by the eigenvalue decomposition of the iteration matrix R = M−1K. Even
when the error is guaranteed to decay, general it may decay quickly in some
directions (associated with eigenvalues of small magnitude) and slowly in
others (associated with eigenvalues with magnitude near 1). We can get rid
of the slowly-decaying directions (also called modes) of the error by filtering
them from the sequence. Unfortunately, the simplest way to construct such
a filter in advance involves knowing where the eigenvalues of the iteration
matrix lie, at least approximately, and that’s often tricky.

An alternative approach is to “learn” the filter from the data by consid-
ering all possible filtered sequences, i.e. we consider

x̃k =
k∑

j=0

βjkxk

for some to-be-determined set of coefficients β. Simplifying slightly by taking
x0 = 0, we would have that x̃k lies in the k + 1-dimensional Krylov subspace

Kk+1(R, b) = sp{b, Rb,R2b, . . . , Rkb} = {p(R)b : p ∈ Pk}

where Pk is the space of polynomials of degree at most k.
It turns out that Krylov subspaces often contain very good approxima-

tions to the solution to a linear system. Different Krylov subspace methods
choose the “best” approximate solution to Ax = b in a Krylov subspace us-
ing different criteria. When A is symmetric and positive definite, we might
minimize a quadratic form ϕ(z) = zTAz/2 − zT b over the subspace; this
gives us the method of conjugate gradients (CG). Or we might minimize the
residual ∥Az− b∥ over all z in the subspace; this gives us the minimum resid-
ual method (MINRES) in the symmetric case, or the generalized minimal
residual method (GMRES) in the nonsymmetric case.

Bindel, Fall 2023 Numerics for Data Science

Applying CG and MINRES to the normal equations gives an algorithms
that, while effective in principle, are not as numerically stable as one might
like. One can rearrange these algorithms to get more stable versions specif-
ically for least squares problems; CG in this setting is the basis for LSQR,
and MINRES is the basis for LMRES.

7 Gradient descent with errors
Before we turn to stochastic gradient descent, let us instead look at how to
analyze gradient descent with errors. In particular, consider the iteration

xk+1 = xk − αkp
k

where
pk = ∇ϕ(xk) + uk

for some error uk that is “small.” As before, let’s keep things simple by
looking how this iteration behaves for a quadratic model problem with a
fixed step size, i.e.

xk+1 = xk − α(Axk + b+ uk).

Subtracting x∗ from both sides gives the error iteration
ek+1 = (I − αA)ek − αuk.

A little mumbling over the iteration gives us

ek+1 = (I − αA)k+1e0 − α
k∑

j=0

(I − αA)k−juj.

In order to analyze the second term in this iteration, we need some addi-
tional sort of control. In the simplest case, that control might be determin-
istic. For example, if we can guarantee that ∥uk∥ ≤ Cγ−k, then we have the
bound∥∥∥∥∥

k∑
j=0

(I − αA)k−juj

∥∥∥∥∥ ≤ Cγ−k

k∑
j=0

(γ∥(I − αA)∥)k−j ≤ Cγ−k−1

1− γ∥I − αA∥
.

Hence, we can make the iteration converge with inaccurate gradients, as long
as the accuracy improves sufficiently quickly with time.

We will pick up this iteration again next time under the assumption that
the errors are random, which is what happens in the stochastic gradient
method.

	Direct methods for large least squares
	Iterative methods
	Gradient descent
	The Benefits of Slow Convergence
	Preconditioning stationary iterations
	Krylov subspace iterations
	Gradient descent with errors

