
Bindel, Fall 2023 Numerics for Data Science

2023-08-24

1 Optimality conditions
In an unconstrained problem with a differentiable objective function, a nec-
essary (but not sufficient) condition for x∗ to be a local minimizer is that
ϕ′(x∗) = 0. For intuition, picture a function ϕ : Rn → R; if you’d like to
be concrete, let n = 2. Absent a computer, we might optimize ϕ by the
physical experiment of dropping a tiny ball onto the surface and watching
it roll downhill (in the steepest descent direction) until it reaches the mini-
mum. The statement that ϕ′(x∗) = 0 (or that ∇ϕ(x∗) = 0) basically means
the function looks flat at x∗ to a sufficiently near-sighted observer; if ϕ′(x∗)
is not zero, then x∗ − ϵ∇ϕ(x∗) will be a little bit “downhill” of x∗; that is, if
∥∇ϕ(x∗)∥ ̸= 0 then

ϕ(x∗ − ϵ∇ϕ(x∗)) = ϕ(x∗)− ϵ∥∇ϕ(x∗)∥2 + o(ϵ) < ϕ(x∗)

for sufficiently small ϵ.
Most students learn the first-order optimality conditions for unconstrained

optimization in a first course, but sometimes that course gets everyone too
stuck on the idea of computing a gradient. What is really happening is that
the function should be “flat in all directions,” i.e. all directional derivatives
are zero. This is equivalent to the statement that the gradient is zero, of
course, but sometimes it is notationally easier to check that an arbitrary
directional derivative is zero than to try to write down the gradient. For
example, consider the quadratic objective

ϕ(x) =
1

2
xTAx+ xT b+ c.

Now, we will write an arbitrary directional derivative of ϕ in terms of “vari-
ational notation” (described in the background notes):

δϕ(x) =
d

dϵ

∣∣∣∣
ϵ=0

ϕ(x+ ϵδx) = (δx)T (Ax+ b).

At a critical point, δϕ(x) should be zero for any choice of δx, so the sta-
tionary point occurs at Ax∗ + b = 0. There is a unique minimizer x∗ if A is
positive definite. When the number of variables is not too large — up to a



Bindel, Fall 2023 Numerics for Data Science

few thousand, say — we might solve this system of linear equations directly
using a variant of Gaussian elimination if we wanted to find the minimizer.
When the number of variables is much larger, we may prefer to use an it-
erative method to solve the system, e.g. the method of conjugate gradients
(CG). This method can be interpreted either as an iterative solver for linear
equations or as an iterative optimization method.

Now let’s turn to the constrained case. Rather than repeating the formal
derivation of the first-order constrained optimality conditions that you have
likely seen before, let me again give you an interpretation that involves some
physical intuition. For the unconstrained case, we thought about solving the
problem by rolling a tiny ball down hill until it came to rest. If we wanted
to solve a constrained minimization problem, we could build a great wall
between the feasible and the infeasible region. A ball rolling into the wall
would still roll freely in directions tangent to the wall (or away from the
wall) if those directions were downhill; at a constrained miminizer, the force
pulling the ball downhill would be perfectly balanced against an opposing
force pushing into the feasible region in the direction of the normal to the
wall. If the feasible region is {x : c(x) ≤ 0}, the normal direction pointing
inward at a boundary point x∗ s.t. c(x∗) = 0 is proportional to −∇c(x∗).
Hence, if x∗ is a constrained minimum, we expect the sum of the “rolling
downhill” force (−∇ϕ) and something proportional to −∇c(x∗) to be zero:

−∇ϕ(x∗)− µ∇c(x∗) = 0.

The Lagrange multiplier µ in this picture represents the magnitude of the
restoring force from the wall balancing the tendency to roll downhill.

More abstractly, and more generally, suppose that we have a mix of
equality and inequality constraints. We define the augmented Lagrangian

L(x, λ, µ) = ϕ(x) +
∑
i∈E

λici(x) +
∑
i∈I

µici(x).

The Karush-Kuhn-Tucker (KKT) conditions for x∗ to be a constrained min-
imizer are

∇xL(x∗) = 0

ci(x∗) = 0, i ∈ E equality constraints
ci(x∗) ≤ 0, i ∈ I inequality constraints

µi ≥ 0, i ∈ I non-negativity of multipliers
ci(x∗)µi = 0, i ∈ I complementary slackness



Bindel, Fall 2023 Numerics for Data Science

where the (negative of) the “total force” at x∗ is

∇xL(x∗) = ∇ϕ(x∗) +
∑
i∈E

λi∇ci(x∗) +
∑
i∈I

µi∇ci(x∗).

The complementary slackness condition corresponds to the idea that a mul-
tiplier should be nonzero only if the corresponding constraint is active (a
“restoring force” is only present if our test ball is pushed into a wall).

Like the critical point equation in the unconstrained case, the KKT con-
ditions define a set of (necessary but not sufficient) nonlinear algebraic equa-
tions that must be satisfied at a minimizer. I like to think about the “rolling
downhill” intuition for these necessary conditions because it suggests a way
of thinking about numerical methods.

For completeness, we will say a few brief words about the second-order
sufficient conditions for optimality. In the unconstrained case, x∗ is a strong
local minimizer of ϕ if ∇ϕ(x∗) = 0 and the Hessian matrix Hϕ is positive
definite; that is because in this case x∗ is the strong minimizer of the quadratic
approximation

ϕ(x) ≈ ϕ(x∗) +
1

2
(x− x∗)

THϕ(x∗)(x− x∗).

In the constrained case, the Hessian only needs to be positive definite for
those u that are orthogonal to ∇ci(x∗) for each ci that is active (has a nonzero
Lagrange multiplier). We will see this idea in two weeks when we talk about
kernel methods, and in particular talk about the idea of a conditionally pos-
itive definite kernel function.

2 Numerical methods
With our lightning review of some fundamental theory out of the way, it
is time for a lightning overview of some numerical methods! We will see
additional solver ideas as we move through the semester, but these are nicely
prototypical examples that illustrate two running themes in the design of
numerical methods for optimization.

Fixed point iterations All our optimizers and nonlinear solvers (and
some of our linear solvers) will be iterative. We can write most as fixed



Bindel, Fall 2023 Numerics for Data Science

point iterations

(1) xk+1 = G(xk),

which we hope will converge to a fixed point, i.e. x∗ = G(x∗). We often
approach convergence analysis through the error iteration relating the error
ek = xk − x∗ at successive steps:

(2) ek+1 = G(x∗ + ek)−G(x∗).

As a teaser for this sort of analysis, consider one of the simplest algorithms
I know: gradient descent with a fixed step size h, applied to the quadratic
model problem

ϕ(x) =
1

2
xTAx+ bTx+ c

where A is assumed to be symmetric and positive definite. The algorithm
produces iterates

xk+1 = xk − h∇ϕ(xk)

= xk − h(Axk + b)

= (I − hA)xk − hb.

Now we subtract the fixed point equation for the true solution x∗ in order to
get an error iteration:

[xk+1 = (I − hA)xk − hb]

−[x∗ = (I − hA)x∗ − hb]

=[ek+1 = (I − hA)ek]

where ek = xk − x∗. The error iteration converges iff the largest eigenvalue
of A is less than 2h−1; if this condition is satisfied, then

∥ek+1∥ ≤ (1− hλmax(A))∥ek∥

and so we have ∥ek+1∥ ≤ (1−hλmax(A))
k+1∥e0∥, a convergence rate which is

known as (R)-linear convergence or as geometric convergence, depending on
which corner of the literature one prefers to read.


