
Bindel, Fall 2023 Numerics for Data Science

2023-08-22

1 Introduction
The title of this course is “Numerical Methods for Data Science.” What
does that mean? Before we dive into the course technical material, let’s put
things into context. I will not attempt to completely define either “numerical
methods” or “data science,” but will at least give some thoughts on each.

Numerical methods are algorithms that solve problems of continuous
mathematics: finding solutions to systems of linear or nonlinear equations,
minimizing or maximizing functions, computing approximations to functions,
simulating how systems of differential equations evolve in time, and so forth.
Numerical methods are used everywhere, and many mathematicians and sci-
entists focus on designing these methods, analyzing their properties, adapting
them to work well for specific types of problems, and implementing them to
run fast on modern computers. Scientific computing, also called Computa-
tional Science and Engineering (CSE), is about applying numerical methods
— as well as the algorithms and approaches of discrete mathematics — to
solve “real world” problems from some application field. Though different
researchers in scientific computing focus on different aspects, they share the
interplay between the domain expertise and modeling, mathematical analy-
sis, and efficient computation.

I have read many descriptions of data science, and have not been satisfied
by any of them. The fashion now is to call oneself a data scientist and (if
in a university) perhaps to start a master’s program to train students to call
themselves data scientists. There are books and web sites and conferences
devoted to data science; SIAM even has a new journal on the Mathematics of
Data Science. But what is data science, really? Statisticians may claim that
data science is a modern rebranding of statistics. Computer scientists may
reply that it is all about machine learning1 and scalable algorithms for large
data sets. Experts from various scientific fields might claim the name of data
science for work that combines statistics, novel algorithms, and new sources
of large scale data like modern telescopes or DNA sequencers. And from my
biased perspective, data science sounds a lot like scientific computing!

1The statisticians could retort that machine learning is itself a modern rebranding of
statistics, with some justification.



Bindel, Fall 2023 Numerics for Data Science

Though I am uncertain how data science should be defined, I am certain
that a foundation of numerical methods should be involved. Moreover, I am
certain that advances in data science, broadly construed, will drive research
in numerical method design in new and interesting directions. In this course,
we will explore some of the fundamental numerical methods for optimization,
numerical linear algebra, and function approximation, and see the role they
play in different styles of data analysis problems that are currently in fashion.
In particular, we will spend roughly two weeks each talking about

• Linear algebra and optimization concepts for ML.

• Latent factor models, factorizations, and analysis of matrix data.

• Low-dimensional structure in function approximation.

• Function approximation and kernel methods.

• Numerical methods for graph data analysis.

• Methods for learning models of dynamics.

You will not strictly need to have a prior numerical analysis course for this
course, though it will help (the same is true of prior ML coursework). But you
should have a good grounding in calculus and linear algebra, as well as some
“mathematical maturity”. I have posted some to remind you of some things
you may have forgotten, and perhaps to fill in some things you may not have
seen. In addition, the readings section of the home page consists of a number
of basic (and not-so-basic) texts to which you can refer. Along with course
notes, we will be using chapters from some of these books (and sometimes
research papers) as required reading. Please do ask questions as we go, and
if you see anything that you think should be corrected or clarified, send me
an email (or you can suggest a change on the course GitHub repository.

2 What does a matrix mean?
2.1 Linear algebra objects and matrix representations
I like to think about four fundamental objects in linear algebra involving
maps on or between abstract vector spaces V and U :

https://www.cs.cornell.edu/courses/cs6241/2021sp/background.pdf


Bindel, Fall 2023 Numerics for Data Science

1. A linear map A : V → U satisfies A(v + w) = Av +Aw and A(αv) =
αAv for any vectors v, w ∈ V and scalar α.

2. An operator A : V → V represents a mapping of a space onto itself.

3. A bilinear form a : V×U → R is linear in both the first and the second
argument. If V and U are vector fields over C, it is natural to instead
consider sesquilinear forms, which are linear in the first argument and
in the conjugate of the second argument.

4. A quadratic form ϕ : V → R is ϕ(v) = a(v, v) where a : V × V → R is
a bilinear form (real case) or sesquilinear form (complex case).

All four of these objects appear in various applications in data analysis.
Linear maps between different spaces are a basic building block for regres-
sion and function approximation; operators are used to describe linear time
invariant systems, such as Markov chains; bilinear forms model the similarity
between pairs of objects represented by vectors v and u; and quadratic forms
are used to measure a variety of quantities of interest in network analysis,
such as cut sizes and edge densities.

The abstract objects of linear algebra can be realized concretely as matri-
ces with a choice of bases. One way of thinking of a basis is as an invertible
map from a concrete vector space (like Rn) to an abstract vector space (like
V). Taking this perspective, we write a basis for V as the “quasimatrix”

V =
[
v1 . . . vn

]
where each column is a vector in V , allowing us to write an expansion of a
general vector v ∈ V compactly as

v =
n∑

j=1

vjxj = V x.

We can similarly write a basis for U as the quasimatrix

U =
[
u1 . . . um

]
.

With this notation in place, we have the following matrix representations

1. We represent a linear map A : V → U by the matrix A = U−1AV .
Then the abstract operation u = Av is equivalent to the concrete
matrix-vector product y = Ax, where u = Uy and v = V x.



Bindel, Fall 2023 Numerics for Data Science

2. We represent a bilinear form a : V × U → R as a(V x, Uy) = yTAx.

3. We represent an operator A by A = V −1AV — just as with a linear
map between two spaces, but restricted to a single choice of basis.

4. We represent a quadratic form ϕ : V → R as ϕ(V x) = xTAx for some
symmetric matrix A.

2.2 Canonical forms and decompositions
Given a good choice of basis, we can find matrix representations with very
simple forms, sometimes called canonical forms. For general choices of ma-
trices, the canonical forms are

• For a linear map, we have the canonical form

A = U−1AV =

[
Ik 0
0 0

]
where k is the rank of the matrix and the zero blocks are sized so the
dimensions make sense.

• For an operator, we have the Jordan canonical form,

J = V −1AV =

Jλ1

Jλ2

. . . Jλr


where each Jλ is a Jordan block with λ down the main diagonal and 1
on the first superdiagonal.

• For a quadratic form, we have the canonical form

a(V x) =

k+∑
i=1

x2
i −

k++k−∑
i=k++1

x2
i = xTAx, A =

Ik+ −Ik−
0k0

 .

The integer triple (k+, k0, k−) is sometimes called the inertia of the
quadratic form (or Sylvester’s inertia).



Bindel, Fall 2023 Numerics for Data Science

As beautiful as these canonical forms are, they are terrible for computa-
tion. In general, they need not even be continuous! However, if V and U have
inner products, it makes sense to restrict our attention to orthonormal bases.
This restriction gives canonical forms that we tend to prefer in practice:

• For a linear map, we have the canonical form

U−1AV =

[
Σk 0
0 0

]
where k is the rank of the matrix and the zero blocks are sized so the
dimensions make sense. The matrix Σk is a diagonal matrix of singular
values

σ1 ≥ σ2 ≥ . . . ≥ σk > 0,

and the bases U and V consist of the singular vectors.

• For an operator, we have the Schur canonical form,

V −1AV = T

where T is an upper triangular matrix (in the complex case) or a quasi-
upper triangular matrix that may have 2-by-2 blocks (in the case of a
real matrix with complex eigenvalues). In this case, the basis vectors
span nested invariant subspaces of A.

• For a quadratic form, we have the canonical form

a(V x) =
n∑

i=1

λix
2
i = xTΛx,

where Λ is a diagonal matrix with λ1, . . . , λn on the diagonal.

If we compute canonical forms for matrices (rather than for abstract
operators), we have some of the standard matrix decompositions that appear
in numerical linear algebra:

• The Singular Value Decomposition (SVD):

A = UΣV ∗



Bindel, Fall 2023 Numerics for Data Science

• The Jordan decomposition (square A):

A = V JV −1

• The Schur decomposition (square A):

A = V TV ∗

• The symmetric eigendecomposition (symmetric A)

A = V ΛV ∗

When A is symmetric, the latter three decompositions are the same. When
A is in addition positive semi-definite, all four decompositions coincide. In
general, though, the “right” canonical decomposition depends on the type of
linear algebraic object we are working with.

3 Optimization
Much of this class2 will involve different types of optimization problems:

(1) minimize ϕ(x) s.t. x ∈ Ω.

Here ϕ : Rn → R is the objective function and Ω is the constraint set, usually
defined in terms of a collection of constraint equations and inequalities:

Ω = {x ∈ Rn : ci(x) = 0, i ∈ E and ci(x) ≤ 0, i ∈ I}.

A point in Ω is called feasible; points outside Ω are infeasible. In many cases,
we will be able to solve unconstrained problems where Ω is the entire domain
of the function (in this case, all of Rn), so that every point is feasible.

Even simple optimization problems need not have a solution. For exam-
ple, a function might not be bounded from below (e.g. the identity function
x 7→ x on Ω = R), or there might be an asymptotic lower bound that can
never be achieved (e.g. the function x 7→ 1/x on Ω = {x ∈ R : x > 0}). If
ϕ is continuous and Ω is closed and bounded (i.e. a compact subset of Rn),

2There are also some topics in the class that do not fit naturally into an optimization
framework, and we will deal with them as they come.



Bindel, Fall 2023 Numerics for Data Science

−4 −2 0 2 4

−10

0

10

Figure 1: The objective ϕ(x) = x2 sin(2x) on Ω = [−5, 5] has four local
minima (black), along with four maxima (white) and one critical point which
is neither (gray). Most optimizers will only find one of the local minima,
unless they are provided with a good initial guess at the global optimum.

then at least there is some x∗ ∈ Ω that solves the global optimization prob-
lem problem: that is, ϕ(x∗) ≤ ϕ(x) for all other x ∈ Ω. But just because a
solution exists does not mean it is easy to compute! If all we know is that
ϕ is continuous and Ω is compact, any algorithm that provably converges to
the global minimizer must eventually sample densely in Ω3. This statement
of gloom is usually too pessimistic, because we generally know more proper-
ties than simple continuity of ϕ. Nonetheless, in many cases, it may be too
expensive to solve the global optimization problem, or at least to prove that
we have solved the problem. In these cases, the best we know how to do in
practices is to find a good local minimizer, that is, a point x∗ ∈ Ω such that
ϕ(x∗) ≤ ϕ(x) for all x ∈ Ω close enough to x∗. If the inequality is strict, we
call x∗ a strong local minimizer.

The picture is rosier when we want to solve a convex problem; that is,

1. The set Ω is convex: ∀x, y ∈ Ω, we have αx+(1−α)y ∈ Ω for 0 < α < 1.
3See Global optimization by Törn and Žilinskas.



Bindel, Fall 2023 Numerics for Data Science

2. The function ϕ is convex on Ω: for any x, y ∈ Ω and 0 < α < 1,

ϕ (αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y).

If the inequality is strict, we say ϕ is strongly convex.

For a convex problem, every local minimizer is also a global minimizer, and
the local minimizers (if there is more than one) form a convex set. If the
function ϕ is strongly convex, then there is only one minimizer for the prob-
lem. Moreover, we have simple algorithms that we can prove converge to the
solution of a strongly convex problem, though we might still decide we are
unhappy about the cost of these methods for large problems.

Whether or not they are convex, many of the optimization problems that
arise in machine learning and data science have special structure, and we can
take advantage of this structure when we develop algorithms. For example:

• Among the simplest and most widely used optimization problems are
linear programs, where

ϕ(x) = cTx

subject to constraints Ax ≤ b and x ≥ 0. Among their many other
uses, linear programs are a building block for sparse recovery methods
in which we seek to represent a signal vector as a linear combination of
a small number of elements in some dictionary set. We will not discuss
sparse recovery in detail, but will touch on it when we discuss matrix
completion next week.

• Unconstrained problems with quadratic objective functions

ϕ(x) =
1

2
xTAx+ bTx+ c

are another simple and useful type. A common special case is the linear
least squares objective

ϕ(x) =
1

2
‖Ax− b‖2 = 1

2
xTATAx− bTAx+

1

2
bT b.

We constantly optimize quadratic functions, both because they are use-
ful on their own and because optimization of quadratics is a standard
building block for more complicated problems. Optimizing a quadratic
objective is the same as solving a linear system, and so we can bring to



Bindel, Fall 2023 Numerics for Data Science

bear many methods of modern linear algebra when solving this prob-
lem. For example, a particularly popular approach is the conjugate
gradient method.

• In many cases, the objective is a sum of simple terms:

ϕ(x) =
n∑

i=1

ϕi(x).

An important case is the nonlinear least squares problem ϕ(x) = ‖f(x)‖2,
which we will discuss later this week. In modern machine learning,
problems of this form are often solved by various stochastic gradient
methods.

• Most spectral methods in data science can be phrased in terms of the
quadratically constrained quadratic program

ϕ(x) =
1

2
xTAx+ bTx+ c, Ω = {x ∈ Rn : xTMx = 1}.

We will see such problems in matrix data analysis and also graph clus-
tering and partitioning methods. We can sometimes create methods
for these problems that build on the fact that we have good methods
for solving eigenvalue problems.

• Some nonconvex objectives are bi-convex: ϕ(x1, x2) is a convex function
of x1 for a fixed x2 and vice-versa, though not in x as a whole. We
will see these types of problems repeatedly when we consider analysis
of matrix data. We can sometimes create methods for these problems
based on the idea of block coordinate descent (also known as nonlinear
Gauss-Seidel or alternating iterations) that solve a sequence of convex
subproblems in each of the variables in turn.

• We also consider problems where ϕ (and possibly Ω) depend on an ad-
ditional parameter s; for example, in an optimization problem coming
from regression, we might have an additional regularization parameter.
In this case, we might consider continuation methods that compute the
curve of solutions.


	Introduction
	What does a matrix mean?
	Linear algebra objects and matrix representations
	Canonical forms and decompositions

	Optimization

