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Abstract. Nonnegative matrix factorization (NMF) has become a prominent technique for the
analysis of image databases, text databases, and other information retrieval and clustering applica-
tions. The problem is most naturally posed as continuous optimization. In this report, we define an
exact version of NMF. Then we establish several results about exact NMF: (i) that it is equivalent
to a problem in polyhedral combinatorics; (ii) that it is NP-hard; and (iii) that a polynomial-time
local search heuristic exists.
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1. Nonnegative matrix factorization. Nonnegative matrix factorization
(NMF) has emerged in the past decade as a powerful tool for clustering data and
finding features in datasets. Lee and Seung [13] showed that NMF can find features
in image databases, and Hofmann [11] showed that probabilistic latent semantic anal-
ysis, a variant of NMF, can effectively cluster documents according to their topics.
Cohen and Rothblum [6] describe applications for NMF in probability, quantum me-
chanics, and other fields. The earliest reference to nonnegative factorization known
to us is Thomas’ solution [14] to a problem posed by Berman and Plemmons (which,
according to a remark in the journal, was also solved by Ben-Israel).

NMF is defined as the following problem, which we denote as OPT-NMF. The
input is (A, k), where A is an m × n matrix with nonnegative entries and k is an
integer such that 1 ≤ k ≤ min(m,n). The output is a pair of matrices (W,H) with
W ∈ Rm×k and H ∈ Rk×n such that the distance from A to WH is minimized,
subject to the constraints that W and H both have nonnegative entries. The distance
can be measured as N(A,WH), where N is a real-valued function such that

N(X,Y ) ≥ 0; N(X,Y ) = 0 ⇔ X = Y,(1)

for example, N(A,WH) = ‖A−WH‖ for a standard matrix norm.
The precise choice for N may vary from one author to the next. (We could

adopt the notation OPTN -NMF for the problem under consideration if we needed to
precisely specify the distance function.) Furthermore, some authors seek sparsity in
either W or H or both. Sparsity may be imposed as a term in the objective function
[12]. We will not pursue sparsity further herein.

The algorithms proposed by [11, 12, 13] and others for OPT-NMF have generally
been based on local improvement heuristics. Another class of heuristics is based on
greedy rank-one downdating [1, 2, 3, 9]. No algorithm proposed in the literature
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COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION 1365

comes with a guarantee of optimality. This suggests that solving NMF to optimality
may be a difficult problem, although to the best of our knowledge this has never been
established formally.

The main purpose of this paper is to provide the proof that NMF is NP-hard.
This paper considers a particular version of NMF that we call exact NMF, which is
defined as follows.

EXACT NMF. The input is a matrix A ∈ Rm×n with nonnegative entries whose
rank is exactly k, k ≥ 1. The output is a pair of matrices (W,H), where W ∈ Rm×k

and H ∈ Rk×n, W and H both have nonnegative entries and A = WH . If no
such (W,H) exist, then the output is a statement of nonexistence of a solution. The
decision version of EXACT NMF takes the same input and gives as output yes if such
a W and H exist, else it outputs no.

Note that k is no longer explicitly an input to EXACT NMF. This is because the
rank of A can be determined efficiently. If A is specified as rational data, then its rank
may determined in polynomial time via reduction to row-echelon form [7]. In practice,
one would usually prefer singular value decomposition to determine rank(A) [10].

Observe that for the OPT version of NMF, an optimal algorithm when presented
with an A whose rank is exactly k must solve the exact NMF problem. This is true
for any choice of N satisfying the axiom (1). Thus, the usual NMF problem proposed
in the literature is a generalization of EXACT NMF. Therefore, any hardness result
that applies to exact NMF (such as our hardness result) would presumably apply to
most optimization versions as well.

A different generalization of EXACT NMF is the problem of nonnegative rank
determination due to Cohen and Rothblum, which asks, given A ∈ Rm×n with non-
negative entries, find the minimum value of k such that A = WH , W ∈ Rm×k,
H ∈ Rk×n, and W,H have nonnegative entries. Cohen and Rothblum give a super-
exponential time algorithm for finding the rank (but not necessarily W or H). Since
nonnegative rank determination is a generalization of EXACT NMF, our result shows
that it is also NP-hard.

The proof of NP-hardness of EXACT NMF has two parts: In section 2 we show
equivalence between EXACT NMF and a problem in polyhedral combinatorics that
we call INTERMEDIATE SIMPLEX, and in section 3 we show the NP-hardness of
this problem. A side result emerging from the proof of equivalence of EXACT NMF
to INTERMEDIATE SIMPLEX is that a certain local-search heuristic for NMF can
be solved with linear programming (section 4).

2. Equivalence to intermediate simplex. In this section, we show an equiv-
alence between EXACT NMF and a problem in polyhedral combinatorics that we call
INTERMEDIATE SIMPLEX. Although the focus in this section is on the decision
version of these problems, it is apparent from the proofs that the search-versions could
also be reduced to each other. (These reductions, however, do not necessarily preserve
the approximation properties of the search version; see the concluding discussion for
more remarks.) The reductions use a number of arithmetic operations polynomials in
m and n and are therefore polynomial time for both the usual Turing machine model
and the real-number model of Blum et al. [4].

A problem related to INTERMEDIATE SIMPLEX was proposed by Cohen and
Rothblum [6] and shown to be equivalent to nonnegative rank determination. This
was also understood by Thomas [14] and Ben-Israel. Therefore, these earlier results to
some extent imply the results of this section. Nonetheless, we present the equivalence
here in order to fully support our claim that all reductions are polynomial time.
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1366 STEPHEN A. VAVASIS

The equivalence is shown in three steps by first showing an equivalence to a
problem denoted P1.

P1. Given matrices W0 ∈ Rm×k and H0 ∈ Rk×n such that each has rank k and
such that all entries of W0H0 are nonnegative, does there exist a nonsingular matrix
Q ∈ Rk×k such that W0Q

−1 and QH0 both have all entries nonnegative?
Theorem 1. There is a polynomial-time reduction from EXACT NMF to P1

and vice versa.
Proof. First we demonstrate the reduction of EXACT NMF to P1. Suppose

that we have an NMF instance, that is, a nonnegative matrix A of rank exactly
k. In polynomial time (using, e.g., reduction to row-echelon form) one can factor
A = W0H0 such that W0 ∈ Rm×k and H0 ∈ Rk×n. (This factorization does not
solve exact NMF, since the signs of the entries of W0 and H0 are unknown.) We
claim that the original instance of EXACT NMF is a yes-instance if and only if the
instance of P1 is a yes-instance. For one direction, suppose the instance of EXACT
NMF is a yes-instance, and suppose W,H are solutions to exact NMF. Then clearly
Range(A) = Range(W ) = Range(W0), which is a dimension-k subspace of Rn, and
similarly Range(AT ) = Range(HT ) = Range(HT

0 ). This means that there exist two
nonsingular k×k nonsingular matrices, say, P,Q, such that W = W0P and H = QH0.
Thus, the equation WH = W0H0 may be rewritten as W0PQH0 = W0H0. Notice
that W0 has a left inverse and H0 has a right-inverse, since W0 has full column rank
and H0 has full row rank. Thus, the previous equation simplifies to PQ = I (where
I denotes the k × k identity matrix), i.e., P = Q−1. Thus, W0Q

−1 and QH0 both
have nonnegative entries, so the instance of P1 is a yes-instance. Conversely, suppose
the instance of P1 is a yes-instance. Then there exists Q such that W = W0Q

−1 and
H = QH0 both have all nonnegative entries and WH = W0H0 = A, so the instance
of exact NMF is a yes-instance.

For the opposite reduction, suppose we start with an instance (W0, H0) of P1.
Let A = W0H0; then A is nonnegative and has rank k. We claim that the instance of
A is a yes-instance if and only if the instance of P1 is a yes-instance. The proof uses
essentially the same arguments as in the previous paragraph.

In order to simplify the main proof in this section, it is helpful to define a slightly
restricted version of P1 as follows.

RESTRICTED P1. Given matrices W0 ∈ Rm×k and H0 ∈ Rk×n such that (i)
W0 has rank k; (ii) all entries of W0H0 are nonnegative; (iii) the last column of W0 is
all 1’s; and (iv) there is no nonzero solution x ∈ Rk−1 to the inequality [xT , 0]H0 ≥ 0,
does there exist a nonsingular matrix Q ∈ Rk×k such that W0Q

−1 and QH0 both
have all nonnegative entries?

Remark 1. Side condition (iv) can be checked in polynomial time by solving a lin-
ear programming problem. However, checking this condition is not necessary because
the reduction of P1 to RESTRICTED P1 presented below can be modified to produce
a certificate that condition (iv) holds (in addition to the instance of RESTRICTED
P1).

Remark 2. Note that we dropped the side condition that H0 has rank k because
it is implied by the others. To see this, suppose g ∈ Rk is a solution to gTH0 = 0.
If the last entry of g is zero, then g = 0 because of side condition (iv). If the last
entry of g is nonzero, this will lead to a contradiction of the conditions. Assum-
ing the last entry of g is nonzero, without loss of generality, it may be taken to be
1 (by rescaling). Since W0 has rank k, there is a row of W0, say, wT

i , such that
wi �= g. Let p = wi − g. Then p �= 0, but p(k) = 0 (because wi(k) = g(k) = 1).
Since wT

i H0 ≥ 0 by condition (ii) and gTH0 = 0, then pTH0 ≥ 0. The exis-
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COMPLEXITY OF NONNEGATIVE MATRIX FACTORIZATION 1367

tence of this p, however, contradicts condition (iv). Thus, the conditions imply
that the only solution to gTH0 = 0 is g = 0, which is the same as saying that
rank(H0) = k.

Theorem 2. There is a polynomial-time reduction from P1 to RESTRICTED
P1 and vice versa.

Proof. Given an instance (W0, H0) of P1, we can produce an instance of RE-
STRICTED P1 as follows. First, delete all rows of W0 that are identically 0’s. This
does not affect the rank of W0, nor does it affect whether the product W0H0 is non-
negative. Finally, if Q is a solution problem P1 prior to deletion of identically zero
rows, then it is still a solution afterwards and vice versa.

For the next step, let Q̂ be a k×k nonsingular matrix chosen such that Q̂H0e = ek.
Here, e ∈ Rn denotes the vector of all 1’s, and ek ∈ Rk denotes the last column of
the k × k identity matrix. Such a Q̂ is guaranteed to exist because H0e cannot
be zero: W0H0e is the sum of columns of W0H0, which cannot be zero since the
columns of W0H0 are all nonnegative and W0H0 is not identically zero by the as-
sumption of rank at least 1. Then observe that (W0Q̂

−1, Q̂H0) is a yes-instance of
P1 if and only if (W0, H0) is a yes-instance. Such a Q̂ may be found in polyno-
mial time; for example, any k × k nonsingular matrix whose last column is H0e may
be taken as Q̂−1, and matrix inversion is polynomial time in the Turing machine
model [7].

Next, we observe that the last column of W0Q̂
−1 is W0Q̂

−1ek = W0Q̂
−1Q̂H0e =

W0H0e. We already argued above that this vector is nonzero, but now we will argue
more strongly that every entry of W0H0e is positive. First, note that W0H0e is the
sum of columns of the nonnegative matrix W0H0, and hence all its entries are at least
nonnegative. Focus on entry i of W0H0e; since it is a sum of nonnegative terms,
then if it were zero, then the entire ith row of W0H0 would have to be zeros. This
means that the ith row of W0 is orthogonal to every column of H0. But since H0

has full rank, this is possible only if the ith row of W0 is identically 0. However, this
possibility is ruled out, since we deleted identically zero rows of W0.

Thus, the last column ofW0Q̂
−1 contains all positive entries. Therefore, we define

an instance of RESTRICTED P1 given by (DW0Q̂
−1, Q̂H0), where D is an m ×m

positive definite diagonal matrix with diagonal entries chosen to make the last column
of DW0Q̂

−1 equal to all 1’s. This instance of P1 is a yes-instance only if the original
instance was a yes-instance, because multiplying the first factor by a positive definite
diagonal matrix does not affect the signs of W0H0 nor of W0Q̂

−1Q−1.
We have already verified side conditions (i)–(iii) of the instance produced by the

condition, and we can check condition (iv) as follows. Suppose [xT , 0]Q̂H0 ≥ 0.
Multiply on the right by e to obtain [xT , 0]Q̂H0e = [xT , 0]ek = 0. Thus, each entry
of [xT , 0]Q̂H0 is nonnegative, and these entries add to 0, so they must be all zero.
Since Q̂H0 has rank k, this possible only if [xT , 0] is the zero vector.

The opposite reduction, namely, the one from RESTRICTED P1 to P1, is trivial
since any instance of RESTRICTED P1 is also an instance of P1.

Now finally, we get to the main new problem of this section.
INTERMEDIATE SIMPLEX. We are given a bounded polyhedron P = {x ∈

Rk−1 : Ax ≥ b}, where A ∈ Rn×(k−1) and b ∈ Rn. We are also given a set
S ⊂ Rk−1 of m points that are all contained in P and that are not all contained in
any hyperplane (i.e., they affinely span Rk−1). The question is whether there exists
a (k − 1)-simplex T such that S ⊂ T ⊂ P .

Theorem 3. There is a polynomial-time reduction from RESTRICTED P1 to
INTERMEDIATE SIMPLEX and vice versa.
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1368 STEPHEN A. VAVASIS

Proof. We will prove that both reductions exist at the same time by exhibiting a
bijection between instances of RESTRICTED P1 and instances of INTERMEDIATE
SIMPLEX such that both directions of the bijection can be computed in polynomial
time.

Given an instance (W0, H0) of RESTRICTED P1, we produce an instance of
INTERMEDIATE SIMPLEX as follows. The polytope P ⊂ Rk−1 is given by {x ∈
Rk−1 : (H0(1 : k − 1, :))Tx ≥ −(H0(k, :))

T }. This constraint may be written more
compactly as HT

0 [x; 1] ≥ 0. The set S of m points in P is given by S = {(W0(1, 1 :
k− 1))T , . . . , (W0(m, 1 : k− 1))T }. The inverse mapping of this transformation starts
with an instance of INTERMEDIATE SIMPLEX given by P = {x : Ax ≥ b},
A ∈ Rn×(k−1), and S = {x1, . . . ,xm} and produces an instance of RESTRICTED P1
given by

W0 =

⎛
⎜⎝

xT
1 1
...

...
xT
m 1

⎞
⎟⎠

and H0 = [AT ;−bT ].
We first show that all side constraints present in the statement of RESTRICTED

P1 are equivalent under this bijection to the side constraints of INTERMEDIATE
SIMPLEX. The side constraint that x1, . . . ,xm affinely span Rk−1 is equivalent to
requiring that [x1; 1], . . . , [xm; 1] linearly span Rk, i.e., to the side constraint that W0

has rank k. The side constraint that S ⊂ P means that Axi ≥ b for i = 1, . . . ,m, i.e.,
[A,−b][xi; 1] ≥ 0, which is equivalent to the side constraint that all entries of W0H0

are nonnegative.
Finally, the side constraint that P is bounded is equivalent to requiring that the

only solution to Ax ≥ 0 is x = 0. In turn, this is equivalent to the side constraint of
RESTRICTED P1 that there is no nontrivial solution to (H0(1 : k − 1, :))Tx ≥ 0.

We now show that the above bijection in both directions maps yes-instances
to yes-instances. Let (S, P ) be a yes-instance of INTERMEDIATE SIMPLEX and
(W0, H0) the corresponding instance of RESTRICTED P1. Let T be a solution to
the instance of INTERMEDIATE SIMPLEX. Let its vertices be g1, . . . ,gk, which are
vectors in Rk−1. The condition that T ⊂ P is equivalent to requiring g1, . . . ,gk ∈ P ,
i.e., to HT

0 [gi; 1] ≥ 0 for each i = 1, . . . , k. If we let

G =

(
g1 · · · gk

1 · · · 1

)
,(2)

then we have shown that the condition T ⊂ P implies that HT
0 G has all nonnegative

entries.
The condition that S ⊂ T means that for all i = 1, . . . ,m, xi ∈ T . Recall that,

by definition, a vector is inside a simplex if it is a convex combination of its vertices.
Let qi be the putative vector of coefficients of the convex combination that expresses
xi in the hull of the vertices of T for i = 1, . . . ,m. In other words,

[g1, . . . ,gk]qi = xi,(3)

plus the requirements that the entries of qi are nonnegative and sum to 1. The latter
constraint may be combined with (3) to write Gqi = [xi; 1], where G is as in (2), i.e.,
qi = G−1(W0(i, :))

T . The hypothesis that S ⊂ T is thus equivalent to the condition
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that each entry of G−1WT
0 for each i = 1, . . . ,m is nonnegative, i.e., all entries of

G−1WT
0 must be nonnegative. Hence, we have shown that if T is a solution to the

instance (S, P ), then GT is a solution to the instance (W0, H0) of RESTRICTED P1.
For the other direction, let Q be a solution to RESTRICTED P1. Let ĝ1, . . . , ĝk

be the columns of QT , none of which can be zero. We claim that the last entry of
each ĝi is positive. Observe that HT

0 ĝi ≥ 0, since ĝi is a solution to RESTRICTED
P1. Note that the last entry of ĝi cannot be zero because of the side condition that
there is no nontrivial solution to HT

0 ĝi ≥ 0 whose last coordinate is zero. We claim
the last coordinate of ĝi cannot be negative either; if it were, then by rescaling ĝi,
we could take its last entry to be −1, which means that its first k − 1 entries, say,
gi (after rescaling) would constitute a solution to [gT

i ,−1]TH0 ≥ 0, i.e., Agi ≥ −b.
We already have k linearly independent solutions to Ax′ ≥ b (namely, the rows of
W0), so if we add ĝi to x′, we would have a solution to Ay ≥ 0. This solution is
nontrivial for at least one of the choices of x′, contradicting the hypothesis that there
is no nontrivial solution to this equation.

Thus, each ĝi has a positive number for its last entry. By rescaling the ĝi’s
if necessary, i.e., replacing the RESTRICTED P1 solution Q by DQ for a positive
definite diagonal matrixD, we can assume that each ĝi has 1 as its last entry. Then we
claim that g1, . . . ,gk that are defined to be entries 1 to k−1 of ĝ1, . . . , ĝk, respectively,
constitute a solution to INTERMEDIATE SIMPLEX. It is clear that Agi ≥ b for
each i, because this is equivalent to HT

0 ĝi ≥ 0. Also, using the same arguments as
above, a row of WQ−1, say, W (i, :)Q−1, corresponds to the coefficients needed to
express W (i, :) as a convex combination of ĝ1, . . . , ĝk.

An easy consequence of the transformation of EXACT NMF to INTERMEDIATE
SIMPLEX is the observation that when rank(A) = 2, the NMF instance is always a
yes-instance. The reason is that the resulting instance of INTERMEDIATE SIM-
PLEX is one-dimensional, in which case P is an interval. However, if P is an interval,
then it is already a simplex, so one could take T = P to solve the instance. This
observation yields a simple linear-time algorithm to find an exact nonnegative factor-
ization of A in the case of rank(A) = 2. This result was first established by Cohen
and Rothblum [6], who also propose a simple linear-time algorithm. This observation
was also used by Boutsidis and Gallopoulos [5] to develop a heuristic algorithm for
NMF.

3. INTERMEDIATE SIMPLEX is NP-hard. In this section, we will argue
that the problem INTERMEDIATE SIMPLEX introduced in the previous section is
NP-hard.

Before delving into the statement of the main theorem and its proof, we first state
the following simpler lemma. This lemma describes the “gadget” used in the main
theorem below to encode a setting of a boolean variable.

Lemma 1. Consider the following instance of INTERMEDIATE SIMPLEX: the
polyhedron P is given by P = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}, while the set S is given by
{(0, 1/2), (1, 1/2), (1/2, 1/4), (1/2, 3/4)}. This instance has precisely two solutions T0

or T1 defined by T0 = hull{(0, 0), (0, 1), (1, 1/2)} and T1 = hull{(1, 0), (1, 1), (0, 1/2)}.
A diagram of the lemma is given in Figure 1. We omit the full proof, since the

lemma can be understood from the diagram. The full proof involves taking cases on
whether the two points (0, 1/2) and (1, 1/2) are contained in zero- or one-dimensional
faces of the simplex T .

We now turn to the main result for this section, namely, the NP-hardness of
INTERMEDIATE SIMPLEX. In particular, we reduce 3-SAT [8] to this problem. Our
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1370 STEPHEN A. VAVASIS

Fig. 1. Illustration of Lemma 1. The four large dots are the points in S; the thin solid line
is the boundary of P , and the two triangles indicated with thick dashed lines are the two possible
solutions T0 and T1.

reduction uses integers whose magnitude is polynomial in the instance of the 3-SAT
instance, and hence our result is “strong” NP-hardness. Recall that an instance of 3-
SAT involves p boolean variables denoted x1, . . . , xp and q clauses denoted c1, . . . , cq.
Each clause is a disjunction of three literals, where a literal is either a variable xj or
its complement x̃j . An instance of 3-SAT is a yes-instance if and only if there exists
a setting of the variables, that is, an assignment of a value of either 0 or 1 to each
variable, such that each clause is satisfied, i.e., at least one of its three literals is 1.
It is assumed that the same variable does not occur twice (either in complemented or
plain form) in any particular clause.

Given such an instance of 3-SAT, we define the following instance of INTERME-
DIATE SIMPLEX. It contains 3p+ q variables (i.e., k− 1 = 3p+ q) denoted si, ti, ui,
i = 1, . . . , p, and vj , j = 1, . . . , q. These variables are written as (s, t,u,v) for short.
The polyhedron P is defined by the following inequalities:

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(s, t,u,v) : 0 ≤ s ≤ u,
0 ≤ t ≤ u,
0 ≤ u ≤ e,
0 ≤ v ≤ 5qe,
si − 2ti ≤ vj whenever x̃i ∈ cj,
2ti − 2si − ui ≤ vj whenever xi ∈ cj

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.(4)

Here, e denotes the vector of all 1’s either in Rp or Rq. Let ei denote the ith column
of the identity matrix (either the p×p or q×q identity). The set of points S is defined
as follows. Each of the points in the following equation is also given a name for future
reference:

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
(e/(4p), e/(4p), e/(2p), 2.5e/(8p)) (≡ b),
(0,0,0, ej) (≡ hj), j = 1, . . . , q,
(0, ei/4, ei/2, e) (≡ r1i ), i = 1, . . . , p,
(ei/2, ei/4, ei/2, e) (≡ r2i ), i = 1, . . . , p,
(ei/4, ei/8, ei/2, e) (≡ r3i ), i = 1, . . . , p,
(ei/4, 3ei/8, ei/2, e) (≡ r4i ), i = 1, . . . , p.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(5)
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Let us first confirm that the side constraints of INTERMEDIATE SIMPLEX
are satisfied by this instance. Since 0 ∈ S, S affinely spans R3p+q if and only if
it linearly spans R3p+q. Points hj , j = 1, . . . , q, span the subspace defined by the
last q coordinate entries. Fix some i ∈ {1, . . . , p}. Subtract h1 + · · · + hq from the
three points r1i , r

2
i , r

3
i . This yields three points whose nonzero entries are restricted

to the (si, ti, ui) positions; in these positions the three points have coordinate en-
tries (0, 1/4, 1/2), (1/2, 1/4, 1/2), and (1/4, 1/8, 1/2), which are linearly independent.
Thus, the subspace indexed by (si, ti, ui) is spanned by S. This is true for all i, so
therefore the points in S span all of R3p+q.

The next side constraint is that P is bounded. This is clear from the upper and
lower bound on the variables. The final side constraint is that S ⊂ P , which is an
elementary matter to check.

The main theorem of this section is as follows.
Theorem 4. The instance of 3-SAT is a yes-instance if and only if the above

instance of INTERMEDIATE SIMPLEX is a yes-instance. In other words, the 3-
SAT instance has a satisfying assignment if and only if there exists a simplex T such
that S ⊂ T ⊂ P .

Proof. First, let us choose some terminology for the coordinates of R3p+q. The
individual coordinates may be denoted by si, ti, ui, or vj for i = 1, . . . , p and j =
1, . . . , q. Collectively, the three coordinates (si, ti, ui) are called the “xi coordinates,”
since they correspond to the ith boolean variable in the 3-SAT instance.

Let T be a solution to the instance of INTERMEDIATE SIMPLEX. From T we
will construct a satisfying assignment σ for the 3-SAT instance. Clearly, T has exactly
3p+ q + 1 vertices. Observe first that the point 0 is an extreme point of P and also
lies in S, and therefore one vertex of T must be 0.

Similarly, observe that each hj , j = 1, . . . , q, lies on extreme edge of P , and
therefore T must have q vertices of the form λjhj , j = 1, . . . , q with each λj ≥ 1.

This accounts for all but 3p of the vertices of T . For an i ∈ {1, . . . , p}, let us say
that a vector (s, t,u,v) ∈ R3p+q is xi-supported if it is zero in all the xj coordinates
for all j ∈ {1, . . . , p}−{i}. More strongly, say that it is xi-positive if it is xi-supported
and is positive in at least one of the xi coordinates. Fix a particular i ∈ {1, . . . , p},
and consider the four S-points r1i , . . . , r

4
i which are all xi-positive. Projected into

the xi coordinates, these points are (0, 1/4, 1/2), (1/2, 1/4, 1/2), (1/4, 1/8, 1/2), and
(1/4, 3/8, 1/2). Since none of the T -vertices has negative entries, each of r1i , . . . , r

4
i

must lie in the hull only of T -vertices that are xi-supported, such as 0, λ1h1, . . . , λqhq.
Furthermore, it must lie in the hull of at least one xi-positive vertex of T . In fact,
there must be at least three such xi-positive T -vertices, since the four points, when
projected into the xi coordinates, are linearly independent. Thus, T must have at
least three xi-positive vertices for each i = 1, . . . , p. Since there are only 3p vertices
of T not yet enumerated, we conclude that T must have exactly three xi-positive
vertices for each i, which we denote gi,1,gi,2,gi,3.

Let ḡi,1, ḡi,2, ḡi,3 ∈ R3 denote the xi coordinates of gi,1,gi,2,gi,3. By the as-
sumption that T covers the four points (0, 1/4, 1/2), (1/2, 1/4, 1/2), (1/4, 1/8, 1/2),
and (1/4, 3/8, 1/2) in the projection into the xi coordinates, we conclude that there
must exist a 3× 4 matrix B with nonnegative entries such that

(ḡi,1, ḡi,2, ḡi,3) · B =

⎛
⎝ 0 1/2 1/4 1/4

1/4 1/4 1/8 3/8
1/2 1/2 1/2 1/2

⎞
⎠ .

As mentioned above, all of ḡi,1, ḡi,2, ḡi,3 are nonzero. Because of the inequalities

D
ow

nl
oa

de
d 

02
/1

2/
20

 to
 1

28
.8

4.
12

4.
21

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1372 STEPHEN A. VAVASIS

0 ≤ s ≤ u and 0 ≤ t ≤ u that define P , it must be the case that the third entries of
ḡi,1, ḡi,2, ḡi,3 are all positive and no smaller than the first and second entries. There-
fore, define new vectors ĝi,1, ĝi,2, ĝi,3 that are all exactly 1/2 in the last coordinate
and have other coordinates lying in [0, 1/2] obtained by rescaling each of ḡi,1, ḡi,2, ḡi,3

by twice its third coordinate. By rescaling B in a reciprocal manner, we find that
there is a nonnegative matrix B̂ such that

(ĝi,1, ĝi,2, ĝi,3) · B̂ =

⎛
⎝ 0 1/2 1/4 1/4

1/4 1/4 1/8 3/8
1/2 1/2 1/2 1/2

⎞
⎠ .

By considering the third row of the above system of equations, we conclude that each
column of B̂ sums to exactly 1. Then dropping the third row on both sides yields the
equation

(ĝi,1(1 : 2), ĝi,2(1 : 2), ĝi,3(1 : 2)) · B̂ =

(
0 1/2 1/4 1/4
1/4 1/4 1/8 3/8

)
,

where the notation v(1 : 2) denotes the first two entries of a vector. Now we observe
that this is precisely a half-sized version of the instance of INTERMEDIATE SIM-
PLEX described in the preliminary lemma of this section, namely, find three points ly-
ing in [0, 1/2]2 whose convex hull covers the four points {(0, 1/4), (1/2, 1/4), (1/4, 1/8),
(1/4, 3/8)}. As established by the lemma, there are precisely two solutions to this
system, which we will denote T0/2 and T1/2. Let C0 be the set of i’s such that the
triangle defined by (ĝi,1(1 : 2), ĝi,2(1 : 2), ĝi,3(1 : 2)) is T0/2, while C1 is the set of i’s
such that this triangle is T1/2. Thus we conclude that for i ∈ C0,

(ḡi,1, ḡi,2, ḡi,3) = (μi,1(0, 0, 1), μi,2(0, 1, 1), μi,3(1, 1/2, 1)),(6)

and, for i ∈ C1,

(ḡi,1, ḡi,2, ḡi,3) = (μi,1(1, 0, 1), μi,2(1, 1, 1), μi,3(0, 1/2, 1)),(7)

where μi,k > 0 for k = 1, 2, 3. This determines the xi entries of gi,k, k = 1, 2, 3, and
the remaining xj entries are zeros since gi,k is xi-positive. Therefore, it remains only
to determine the vj entries of gi,k, k = 1, 2, 3. There are several constraints on these
entries as follows. First, we have the inequalities vj ≥ 0, and thus all those entries
must be nonnegative. Next, we have the constraints si − 2ti ≤ vj whenever x̃i ∈ cj
and 2ti − 2si − ui ≤ vj whenever xi ∈ cj . These inequalities are redundant whenever
their left-hand side is nonpositive, since we have already constrained vj ≥ 0. Thus,
we need only consider the cases when the left-hand sides are positive. We see that the
left-hand side of the first inequality si − 2ti ≤ vj is positive only in the case of ḡi,1

only for i ∈ C1, and the left-hand side of the second inequality 2ti − 2si − ui ≤ vj is
positive only in the case of ḡi,2 only for i ∈ C0. Thus, for i ∈ C1, for all j such that
x̃i occurs as a literal in clause cj , we must have

gi,1|vj ≥ μi,1.(8)

(Here, the notation gi,1|vj denotes the vj coordinate entry of gi,1.) Similarly, for
i ∈ C0, for all j such that xi occurs as a literal in clause cj , we must have

gi,2|vj ≥ μi,2.(9)
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Next, T must contain the point b from (5), so there must be coefficients αi,k, i =
1, . . . , p, k = 1, 2, 3, and θj , j = 1, . . . , q, adding up to at most 1 and all nonnegative
such that

b =

p∑
i=1

3∑
k=1

αi,kgi,k +

q∑
j=1

θjλjhj .(10)

Fix a particular i. The projection of b into xi coordinates is b̄ = (1/(4p), 1/(4p),
1/(2p)). Referring back to (6) and (7), one can see that regardless of whether i ∈ C0

or i ∈ C1, b̄ is expressed uniquely as b̄ = ḡi,1/(8pμi,1) + ḡi,2/(8pμi,2) + ḡi,3/(4pμi,3).
Therefore,

αi,1 = 1/(8pμi,1); αi,2 = 1/(8pμi,2); αi,3 = 1/(4pμi,3).(11)

Suppose i ∈ C0. Then for each j such that xi occurs as a literal in clause cj , if we
combine (9) and (11), we obtain

3∑
k=1

αi,kgi,k

∣∣∣∣∣
vj

≥ 1/(8p).

The identical inequality holds when i ∈ C1 and x̃i ∈ cj.
Now, sum the preceding inequality for i = 1, . . . , p to obtain

p∑
i=1

3∑
k=1

αi,kgi,k

∣∣∣∣∣
vj

≥ mj/(8p),(12)

where mj is the number of literals xi ∈ cj with i ∈ C0 plus the number of literals
x̃i ∈ cj with i ∈ C1. Let us now combine these inequalities: From (5), b|vj = 2.5/(8p).
From (10),

b|vj ≥
p∑

i=1

3∑
k=1

αi,kgi,k

∣∣∣∣∣
vj

,

since the last term of (10) is nonnegative. Finally, from (12), the above summation is
at least mj/(8p). Thus, we conclude that mj ≤ 2.5. Since mj is integral, this means
mj ≤ 2. Let σ be the setting of the xi’s in the 3-SAT instance defined by taking
xi = 1 for i ∈ C1 and xi = 0 for i ∈ C0. Then if xi ∈ cj and i ∈ C0, this literal is
falsified in the clause. Similarly, if x̃i ∈ cj and i ∈ C1, then this literal is also falsified.
In other words, mj is the number of literals in clause cj falsified by assignment σ. We
have just argued that mj ≤ 2 for all j = 1, . . . , q. In other words, for each clause,
there are at most two literals falsified by assignment σ. Therefore, σ is a satisfying
assignment for the 3-SAT instance.

Summarizing, we have proved that if there is a simplex T solving the instance
of INTERMEDIATE SIMPLEX, then there are exactly three vertices of T that are
xi-positive for each i = 1, . . . , p; that, based on these vertices, i can be classified as
either C0 or C1; and that the assignment σ of the boolean variables in the original
3-SAT instance derived from C0 and C1 must be a satisfying assignment.
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Conversely, suppose the 3-SAT instance has a satisfying assignment. From this
assignment we construct a solution T to the instance of INTERMEDIATE SIMPLEX.
The vertices of T will be 0, 5qh1, . . . , 5qhq together with gi,1,gi,2,gi,3 for each i =
1, . . . , p, defined as follows. Let C0 index the variables set to 0 by the satisfying
assignment and C1 the variables set to 1. Define ḡi,1, ḡi,2, ḡi,3 as in (6) and (7)
according to C0 and C1. Take μi,k = 5/8 for all (i, k). When i ∈ C0 and xi is a literal
in cj , then take gi,2|vj = 5/8. When i ∈ C1 and x̃i is a literal in cj , then take gi,1|vj =
5/8. In all other cases, take gi,k|vj = 0. It is easy to see that all the inequalities
defining P are satisfied by these choices. Furthermore, all the points in S are covered
by convex combinations of the 3p+q+1 points 0, 5qh1, . . . , 5qhq,g1,1, . . . ,gp,3, which
are the vertices of T .

For example, the point r1i = (0, ei/4, ei/2, e) in the case where i ∈ C0 is expressed
as (2/5)gi,1 + (2/5)gi,2 + h, where h is some linear combination of 5qh1, . . . , 5qhq

chosen to make the vj entries each equal to 1. (Note that the vj entries of (2/5)gi,1+
(2/5)gi,2 before h is added will be either 0 or 1/4). The total sum of the coefficients
to express (0, ei/4, ei/2, e) is 2/5 + 2/5 + h1, where h1 is the sum of the coefficients
needed in the terms of h. These coefficients are bounded as follows. The vj entry of
h must be either 3/4 or 1. Therefore, the coefficient of (5q)hj must be either 1/(5q)
or 3/(20q). The sum of q such coefficients is at most 1/5. Thus, h1 ≤ 1/5. If the sum
2/5 + 2/5 + h1 is less than 1, then we include a contribution of 0, another vertex of
T , in the linear combination to make the sum of coefficients exactly 1.

Similarly, as sketched out earlier, to obtain the point b = (e/(4p), e/(4p), e/(2p),
2.5e/(8p)) in the hull of the vertices of T , we use (10) with coefficients chosen according
to (11). This choice of αi,j ’s yields xi coordinate entries equal to (1/(4p), 1/(4p), 1/(2p))
for each i and has entries less than or equal to 2/(8p) in each vj coordinate entry.
Then, as above, one can include additional terms involving 0 and 5qh1, . . . , 5qhq to
complete the convex combination. One point to note is that the sum of the αi,k co-
efficients appearing in (10), assuming μi,k = 5/8, is equal to 4/5, and hence does not
exceed 1. Addition of the θj coefficients will make the total higher but still less than 1
because, as in the previous case, the coefficients needed for the points 5qh1, . . . , 5qhq

are all bounded by 1/(5q) and hence their sum by 1/5.

4. Local-search heuristic. In this section we will describe a heuristic for NMF
that arises from consideration of problem P1 (or, equivalently, INTERMEDIATE
SIMPLEX).

Consider first EXACT NMF, and rewrite the problem in the form given by P1,
i.e., the input is a pair (W0, H0). The algorithm initializes Q arbitrarily and then
updates Q on each iteration. The update to Q is a rank-one change of the form
Q̄ = Q+ fzT , where Q̄ is the new value of Q and f , z are both k-vectors. We assume
that one of f , z is chosen according to a fixed rule, while the other is found using
optimization. The optimization method is described below.

For example, the fixed rule could be that f cycles through the columns of the iden-
tity matrix denoted e1, . . . , ek over successive iterations while using optimization to
find z. The interpretation of this rule in the context of INTERMEDIATE SIMPLEX
is that the heuristic moves one vertex of the trial simplex per iteration. Another pos-
sibility is that z is taken to be Q−Tei as i cycles from 1 to k while using optimization
to find f ; this corresponds to moving a facet of the trial simplex per iteration.

Let us assume that f is now determined by the fixed rule and see how to optimize
z. The key fact that makes the heuristic feasible is that the optimal selection of z
can be written as linear programming. If we have not found a solution yet, then it
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may be the case where QH0 has negative entries, say, the most negative entry is −μ.
To diminish the magnitude of the negative entries, we wish to select z to satisfy a
constraint of the form Q̄H0 ≥ −μ′E, where μ′ is less than μ and E is the k × n
matrix of all 1’s. This can be written (Q+ fzT )H0 ≥ −μ′E, which is clearly a linear
constraint on z.

Now consider

Q̄−1 = Q−1 − Q−1fzTQ−1

1 + zTQ−1f

by the Sherman–Morrison formula. If we wish to impose the constraint W0Q̄
−1 ≥

−μ′′E, where now E is the m× k matrix of all 1’s, then this can be written

(1 + zTQ−1f)W0Q
−1 −W0Q

−1fzTQ−1 ≥ −μ′′E(1 + zTQ−1f)

plus the extra constraint 1 + zTQ−1f > 0. Both the main and extra constraints are
linear in z. In the case where f = ei, the extra constraint expresses the geometric con-
dition that when a vertex of the simplex defined by the ith row of Q is moved, it does
not cross through the hyperplane defined by the other vertices, i.e., the orientation of
the simplex is unchanged.

Thus, for a fixed μ′, μ′′, the problem of finding z reduces to linear feasibility. If
we wish to optimize μ′′, then the problem is nonlinear (because of the cross term
μ′′zTQ−1f), but the optimal μ′′ can be approximated in a straightforward fashion by
carrying out a binary search and checking feasibility for each choice of μ′′.

Thus, the heuristic consists of iterations in which either f or z is determined by
a fixed rule and then the other one of f , z is found by solving linear inequalities to
update Q.

Now consider applying this heuristic to OPT-NMF rather than EXACT NMF.
Given a nonnegative matrix A and integer k, the singular value decomposition can
find W0 ∈ Rm×k and H0 ∈ Rk×n such that W0H0 is the optimal approximation
to A in both the Frobenius and 2-norms. This does not give rise to an instance of
P1, however, because the side constraint W0H0 ≥ 0 will usually not hold for these
matrices. On the other hand, the heuristic described above does not require the
side constraint, so it is still applicable. Upon termination, the heuristic will yield a
factorization A = (W0Q

−1)(QH0), where W0Q
−1 and QH0 are probably closer to

being nonnegative than the original W0 and H0. This approximation is still optimal
in the sense that A − (W0Q

−1)(QH0) has the minimum 2- or Frobenius-norm. If a
solution that is truly nonnegative is sought, one can apply this heuristic and then
change the negative entries of W0Q

−1 and QH0 to zeros upon termination.
Compared to other local search heuristics mentioned in section 1, the main ad-

vantage of this approach is that the search space is Rk×(k−1) (i.e., a search for Q)
rather than Rm×k × Rk×n (i.e., a search for (W,H)). Thus, one might anticipate
that the search space of the heuristic described in this section could be explored more
thoroughly, since it is of a much lower dimension.

5. Discussion. We have shown that OPT-NMF, EXACT NMF, INTERMEDI-
ATE SIMPLEX, and nonnegative rank computation are all NP-hard. Some questions
left unresolved by these results are as follows.

1. Are any of these problems in NP [8]? The difficulty, of course, is that a
certificate of membership in NP is apparently the solution to the relevant
problem (e.g., W and H in the case of EXACT NMF), but since the problem
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involves high-degree polynomial constraints (e.g., observe the presence of Q−1

in the formulation of P1), there is no known polynomial bound on the number
of bits needed to write down a solution.
This question is related to an open question posed by Cohen and Rothblum,
still unsolved as far as we know. They ask, suppose an m×n rational matrix
A has nonnegative rank k and a corresponding nonnegative factorization A =
WH , W ∈ Rm×k, H ∈ Rk×n. Is it guaranteed that there exist rational W,H
with the same properties? Note that the instance of NMF constructed in our
NP-hardness proof has the property that if a solution exists, then a rational
solution exists, so it does not contribute to progress on this open question.

2. It follows immediately from the NP-hardness of EXACT NMF that the ap-
proximation version of the OPT-NMF problem is also NP-hard in the most
common sense of approximation. This sense is as follows: We demand that
the approximate solution have an objective function value N(A,WH) that
is at most a constant multiple larger than the optimal solution. The NP-
hardness follows for the trivial reason that a constant multiple of zero is still
zero. On the other hand, suppose we demand an approximate solution that
differs from the optimum by at most an additive term, perhaps by a term
proportional to ‖A‖. In this case, our hardness result does not apply, but the
problem still seems to be difficult.
Similarly, our result does not say anything about the difficulty of approximate
solutions to the nonnegative rank problem.

3. It would be interesting to see if the heuristic proposed in the previous section
is competitive with other published and implemented heuristic algorithms.
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