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Abstract. The problem of estimating the trace of matrix functions appears in applications rang-
ing from machine learning and scientific computing, to computational biology. This paper presents an
inexpensive method to estimate the trace of f(A) for cases where f is analytic inside a closed interval
and A is a symmetric positive definite matrix. The method combines three key ingredients, namely,
the stochastic trace estimator, Gaussian quadrature, and the Lanczos algorithm. As examples,
we consider the problems of estimating the log-determinant (f(t) = log(t)), the Schatten p-norms
(f(t) = tp/2), the Estrada index (f(t) = et), and the trace of the matrix inverse (f(t) = t−1). We
establish multiplicative and additive error bounds for the approximations obtained by this method.
In addition, we present error bounds for other useful tools such as approximating the log-likelihood
function in the context of maximum likelihood estimation of Gaussian processes. Numerical experi-
ments illustrate the performance of the proposed method on different problems arising from various
applications.
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1. Introduction. The problem of estimating the trace of matrix functions ap-
pears frequently in applications of machine learning, signal processing, scientific com-
puting, statistics, computational biology, and computational physics [6, 17, 39, 37, 20,
30, 33, 2, 26]. Developing fast and scalable algorithms to perform this task has long
been a primary focus of research in these fields. An important instance of the trace
estimation problem is that of approximating log(det(A)), the log-determinant of a pos-
itive definite matrix A. Log-determinants of covariance and precision matrices play
an important role in Gaussian processes and Gaussian graphical models [37, 39]. Log-
determinant computations also appear in applications such as kernel learning [14],
discrete probabilistic models [1], Bayesian learning [35], spatial statistics [4], and
Markov field models [45, 26, 9].

Another instance of the trace estimation problem in applications is that of esti-
mating Schatten p-norms, particularly the nuclear norm, since this norm is used as
the convex surrogate of the matrix rank. The Schatten p-norms appear in convex
optimization problems, e.g., in the context of matrix completion [10], in differential
privacy problems [27], and in sketching and streaming models [33, 2]. On the other
hand, in uncertainty quantification and in lattice quantum chromodynamics [30, 46],
it is necessary to estimate the trace of the inverse of covariance matrices. Moreover,
estimating the Estrada index (trace of the exponential function) is another illustration
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1076 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

of the problem. Other applications include protein indexing [17], statistical thermo-
dynamics [18], and information theory [11].

For a symmetric matrix A ∈ Rn×n with an eigendecomposition A = UΛUT

with Λ = diag(λ1, . . . , λn), where λi, i = 1, . . . , n are the eigenvalues of A, the matrix
function f(A) is defined as f(A) = Uf(Λ)UT with f(Λ) = diag(f(λ1), . . . , f(λn)) [28].
Then the trace estimation problems mentioned above can be formulated as follows:
given a symmetric matrix A ∈ Rn×n, compute an approximation of the trace of the
matrix function f(A), i.e.,

(1) tr(f(A)) =

n∑
i=1

f(λi),

where λi, i = 1, . . . , n, are the eigenvalues of A, and f is the desired function. A naive
approach for estimating the trace of matrix functions is to compute this trace from
the eigenvalues of the matrix. A popular approach to computing the log-determinant
is to exploit the Cholesky decomposition [22]. Given the decomposition A = LL>, the
log-determinant of A is log det(A) = 2

∑
i log(Lii). Computing the Schatten norms in

a standard way would typically require the singular value decomposition (SVD) of the
matrix. These methods have cubic computational complexity (in terms of the matrix
dimension, i.e., O(n3) cost) in general, and are not viable for large scale applications.
In this paper, we study inexpensive methods for accurately estimating these traces
for large matrices.

Our contribution. This paper is a study of the method we call the stochastic
Lanczos quadrature (SLQ) for approximating the trace of functions of large matrices
[6, 7, 20]. The method combines three key ingredients. First, the stochastic trace
estimator, also called the Hutchinson method [29], is considered for approximating
the trace. Next, the bilinear form that appears in the trace estimator is expressed as
a Riemann–Stieltjes integral, and the Gauss quadrature rule is used to approximate
this integral. Finally, the Lanczos algorithm is used to obtain the weights and the
nodes of the quadrature rule (see section 3 for details). We establish multiplicative
and additive approximation error bounds for the trace obtained by using the method.
To the best of our knowledge, such error bounds for SLQ have not appeared in the
prior literature. We show that the Lanczos quadrature approximation has a faster
convergence rate compared to popular methods such as those based on Chebyshev
or Taylor series expansions. The analysis can be extended to any matrix functions
that are analytic inside a closed interval and are analytically continuable to an open
Bernstein ellipse [42].

We consider several important trace estimation problems and their applications.
We discuss the log-determinant computation, estimation of the Estrada index, and
the trace of the matrix inverse, and show how the SLQ method can be used to ap-
proximately estimate these quantities rapidly. We also adapt our method for fast
estimation of the nuclear norm and Schatten-p norms of large matrices. In addition,
we establish error bounds for the approximation of log-likelihoods in the context of
maximum likelihood estimation of Gaussian processes. Several numerical experiments
are presented to demonstrate the superiority of the proposed method over existing
methods in practice.

Related works and comparison. A plethora of methods have been developed
in the literature to deal with trace estimation problems. In the following, we discuss
some of the works that are closely related to SLQ, particularly those that invoke the
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stochastic trace estimator. The stochastic trace estimator has been employed for a
number of applications in the literature, for example, for estimating the diagonal of a
matrix [8], for counting eigenvalues inside an interval [16], for approximating the score
function of Gaussian processes [41], and for estimating the numerical rank [43, 44].
For the log-determinant computation, a few methods have been proposed, which also
invoke the stochastic trace estimator. These methods differ in the approach used
to approximate the log function. [26] used the Chebyshev polynomial approxima-
tions for the log function. The log function was approximated using the Taylor series
expansions in [47]. [9] provided an improved analysis for the log-determinant compu-
tations using these Taylor series expansions. Aune, Simpson, and Eidsvik [4] adopted
the method proposed in [24] to estimate the log function. Here, the Cauchy integral
formula of the log function is considered and the trapezoidal rule is invoked to ap-
proximate the integral. This method is equivalent to using a rational approximation
for the function. The method requires solving a series of linear systems and is gen-
erally expensive. The functions can also be approximated by means of least squares
polynomials as proposed in [13].

Not many fast algorithms are available in the literature to approximate the nuclear
norm and Schatten-p norms; see [33, 2] for discussions. [25] extends the idea of using
Chebyshev expansions developed in [16, 26] to approximate the trace of various matrix
functions including Schatten norms, the Estrada index, and the trace of the matrix
inverse. Related articles on estimating the trace of the matrix inverse and other
matrix functions are [46, 12].

A key objective of this work is to demonstrate how the powerful Lanczos al-
gorithm can be employed to solve trace estimation problems for matrix functions.
The Lanczos method has clear advantages over the above-mentioned methods such
as Chebyshev expansions, Taylor series expansions, and rational function approxima-
tions. To understand the pros and cons of the Lanczos method, let us first examine
the three classes of techniques that are commonly used, namely, the Lanczos method,
polynomial approximation methods, and rational approximation methods. Most of
the polynomial and rational approximation methods require as input an interval con-
taining the spectrum of the matrix. One advantage of the Lanczos method is that
there exists no such requirement. In fact, the Lanczos algorithm itself is often used
to estimate the spectrum interval. On the other hand, a disadvantage of the Lanczos
method is that it requires one to store the Lanczos vectors and to reorthogonalize
these vectors in practice. Polynomial approximation methods are more economical in
terms of storage. In terms of convergence, in section 4, we show that the convergence
rate obtained by the Lanczos method is better than those reached by any polynomial
(Chebyshev or Taylor series) approximations. Such a faster convergence comes from
the fact that the Lanczos method applied to computing a bilinear form of a matrix
admits a quadrature interpretation, where the weight function in the quadrature is
matrix dependent. On the other hand, the convergence of polynomial approximation
methods does not depend on the matrix. As a result it is easy to estimate a posteriori
errors by analyzing only the function. For example, all that is needed to get the error
for the exponential function is to have an idea of the error made in approximating
the exponential by the given polynomial in an interval containing the spectrum of A.
Such a posteriori error estimates do not require any computations with the matrix
A. This is in contrast with the Lanczos approach for which such errors are generally
not as straightforward. There are no known good extensions of the a posteriori error
estimates given in [40] for the Lanczos approach to more general functions than the
exponential. Finally, rational approximations (see, e.g., [24]) usually converge the
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1078 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

fastest. However, a major disadvantage of this approach is that we need to solve a
number of shifted linear systems. This is expensive, in general, and prohibitive in
many realistic cases.

The polynomial approximation methods mentioned earlier may use several differ-
ent strategies to obtain a good polynomial: Taylor series expansions [47], Chebyshev
expansions [25], and least squares approximations [13]. The Taylor series approach
converges too slowly and is usually not appealing. Chebyshev is a good choice in many
scenarios but if the function has a steep derivative, then the expansion may need an
extremely large number of terms to achieve a good approximation. In the extreme
case, if there is a discontinuity (e.g., the sign/step function), then Chebyshev expan-
sions exhibit the Gibbs phenomenon. The least squares approach [13, 12] addresses
this issue by first approximating the function by using a spline, where more knots
are placed around the areas with larger derivatives, and then in turn approximating
the spline by a least squares polynomial. However, we show that the Lanczos method
converges faster than any polynomial methods. Section 5 also illustrates the superior
performance of the Lanczos method compared to the methods presented in [26, 47]
via several numerical experiments.

Outline. The outline of the paper is as follows: section 2 is a discussion of the
various applications that lead to estimating the trace of matrix functions. Section 3
describes the SLQ method in detail. A modified approach of the SLQ method that is
more suitable for the Schatten norm estimation is also given. This alternate approach
is appropriate when the input matrix has a large number of singular values close to
zero, is nonsymmetric, or even rectangular. Section 4 lays out the theoretical analysis
for the SLQ method. The analysis is applicable for any function that is analytic
inside a closed interval and analytically continuable to an open Bernstein ellipse. We
establish the approximation error bounds for the computation of different matrix
function traces mentioned in section 2 using the SLQ method. Section 5 presents
numerical experiments.

2. Applications. This section is a brief survey of applications that require the
computation of the trace of matrix functions. Such calculations arise in different ways
in many disciplines and what follows is just a small set of representative applications.
Much more information can be obtained by following the cited references.

2.1. Log-determinant. As previously mentioned, the log-determinants have
numerous applications in machine learning and related fields. The logarithm of the
determinant of a given positive definite matrix A ∈ Rn×n is equal to the trace of the
logarithm of the matrix, i.e.,

log det(A) = tr(log(A)) =

n∑
i=1

log(λi).

So, estimating the log-determinant of a matrix is equivalent to estimating the trace
of the matrix function f(A) = log(A).

Suppose the positive definite matrix A has its eigenvalues inside the interval
[λmin, λmax], then the logarithm function f(t) = log(t) is analytic over this interval.
When computing the log-determinant of a matrix, the case λmin = 0 is obviously ex-
cluded, where the function has its singularity. The Lanczos algorithm requires the in-
put matrix to be symmetric. If A is nonsymmetric, we can either consider the matrix1

1The matrix product need not be formed explicitly since the Lanczos algorithm requires only
matrix vector products.
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FAST ESTIMATION OF tr(f(A)) 1079

A>A, since log det(ATA) = 2 log |det(A)| or use the Golub–Kahan-bidiagonalization
algorithm described later.

2.2. Log-likelihood. The problem of computing the likelihood function occurs
in applications related to Gaussian processes [37]. Maximum likelihood estimation is
a popular approach used for parameter estimation when high dimensional Gaussian
models are used, especially in statistical machine learning. The objective in parameter
estimation is to maximize the log-likelihood function with respect to a hyperparameter
vector ξ:

(2) log p(z | ξ) = −1

2
z>S(ξ)−1z − 1

2
log detS(ξ)− n

2
log(2π),

where z is the data vector and S(ξ) is the covariance matrix parameterized by ξ. The
second term (log-determinant) in (2) can be computed by using the SLQ method.
We observe that the first term in (2) resembles the quadratic form that appears in
the trace estimator, and it can be also computed by using the Lanczos quadrature
method. That is, we can estimate the term z>S(ξ)−1z using m steps of the Lanczos
algorithm applied to z/‖z‖ as the starting vector, then compute the quadrature rule
for the inverse function f(t) = t−1, and rescale the result by ‖z‖2. In section 4, we
give further details on this and present the error bounds for the log-likelihood function
estimation by the SLQ method.

2.3. Computing the Schatten p-norms. Another important problem that
arises in applications is the estimation of the nuclear norm and the Schatten p-norms
of large matrices (a few applications were mentioned earlier). Given an input matrix
X ∈ Rd×n, the nuclear norm of X is defined as ‖X‖∗ =

∑r
i=1 σi, where σi are the

singular values of X and r is its rank. Suppose we define a positive semidefinite matrix
A as A = X>X or A = XX>. Then, the nuclear norm of X can be expressed as

‖X‖∗ =

r∑
i=1

σi =

r∑
i=1

√
λi,

where the λi’s are the eigenvalues of A. Hence, we can consider the symmetric positive
semidefinite matrix A = X>X, and compute the nuclear norm of X as

‖X‖∗ = tr(f(A)), f(t) =
√
t.

To estimate the above trace, we can invoke the SLQ method described in this work.
Generally, the Schatten p-norm of a general matrix X is defined as

‖X‖p =

(
r∑
i=1

σpi

)1/p

=

(
r∑
i=1

λ
p/2
i

)1/p

.

Hence, Schatten p-norms (the nuclear norm being a special case with p = 1) are
the traces of matrix functions of A with f(t) = tp/2, and they can be computed
inexpensively using the SLQ method. Note that the functions f(t) = tp/2 have a
singularity at zero. Input matrices whose Schatten norms we seek are likely to have
singular values equal or close to zero (low rank or numerically low rank). However,
we explain in section 4.5 that such input matrices can be easily handled with a simple
modification before applying SLQ.
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2.4. Trace of a matrix inverse and the Estrada index. Other frequent
matrix function trace estimation problems include estimating the trace of the matrix
inverse and the Estrada index. As the name indicates, the matrix inverse trace esti-
mation problem amounts to computing the trace of the inverse function f(t) = t−1 of
a positive definite matrix A ∈ Rn×n, whose eigenvalues lie in the interval [λmin, λmax]
with λmin > 0.

Estimation of the Estrada index of graphs is popular in computational biology.
This problem accounts for estimating the trace of the exponential function, i.e., f(t) =
exp(t). Note that, here, the matrix A is the adjacency matrix of a graph, which need
not be positive definite in general. However, the matrix exp(A) is always positive
definite and our method and theory are applicable in this case. In addition, resolvent-
based centrality measures (see [31, 3]) involve a resolvent matrix of the form R(α) =
(I − αA)−1, where α is a (small) parameter and in this context the matrix R(α)
involved is always positive definite. The inverse, exponential, and resolvent functions,
are analytic in the appropriate intervals of interest. Therefore, we can extend the
analysis presented in this paper to obtain approximation error bounds.

2.5. Other applications. The SLQ method has been employed in the literature
for a few related trace estimation problems before. One of the methods proposed by
Ubaru, Saad, and Seghouane [44] for estimating the numerical rank of large matrices
is equivalent to the SLQ method discussed here. The function f for this numerical
rank estimation problem turns out to be a step function with a value of one above an
appropriately chosen threshold. That is, the numerical rank of a matrix is the trace
of an appropriate step function of the matrix. The article also proposes an approach
to choosing this threshold based on the spectral density of the matrix.

An interesting related problem, which is mentioned in [25], is testing the positive
definiteness of a matrix. This problem is also equivalent to estimating the trace of a
step function of the matrix, with a value of one in a different interval. However, note
that the step function has a discontinuity at the point of inflection (the point where
it goes from zero to one) and hence we cannot directly apply the analysis developed
in this paper. Also, the degree or the number of Lancozs steps required might be
very high in practice. A workaround of this issue, proposed in [25] (also mentioned
in [44]), is to first approximate the step function by a shifted and scaled hyperbolic
tangent function of the form f̃(t) = 1

2 (1 + tanh(αt)), where α is an appropriately

chosen constant, and then approximate the trace of this surrogate function f̃(t).
Another problem where SLQ was previously used was in approximating the spec-

tral density of a matrix [34]. The spectral density, also known as density of states
of a matrix, is a probability density distribution that measures the likelihood of find-
ing eigenvalues of the matrix at a given point on the real line. Being a distribution,
the spectral density of a matrix can we written as a sum of delta functions of the
eigenvalues of the matrix. That is, the spectral density is defined as

φ(t) =
1

n

n∑
i=1

δ(t− λi),

where δ is the Dirac distribution or Dirac δ-function. Lin, Saad, and Yang [34]
demonstrated how the Lanczos algorithm can be used to approximately estimate the
spectral density (equivalent to the SLQ method). The idea is to replace the delta
function by a surrogate Gaussian blurring function. Then, the spectral density is
approximated by estimating the trace of this blurring function using the Lanczos
algorithm.
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3. Stochastic Lanczos quadrature. The Lanczos quadrature method was de-
veloped by Golub and his collaborators in a series of articles [21, 6, 7, 20]. The idea
of combining the stochastic trace estimator with the Lanczos quadrature method ap-
peared in [6, 7] for estimating the trace of the inverse and the determinant of matrices.
Given a symmetric positive definite (SPD) matrix2 A ∈ Rn×n, we wish to compute
the trace of the matrix function f(A), i.e., the expression given by (1), where we as-
sume that the function f is analytic inside a closed interval containing the spectrum
of A. To estimate the trace, we invoke the stochastic trace estimator [29], which is a
Monte Carlo-type method that uses only matrix vector products. The attractiveness
of this method is that it is inexpensive compared to the methods based on the com-
puting of all eigenvalues of the matrix. The method estimates the trace tr(f(A)) by
generating random vectors ul, l = 1, . . . ,nv, with Rademacher distribution (vectors
with ±1 entries of equal probability), forming unit vectors vl = ul/‖ul‖2, and then
computing the average over the samples v>l f(A)vl:

(3) tr(f(A)) ≈ n

nv

nv∑
l=1

v>l f(A)vl.

Hutchinson originally proposed to use vectors with ±1 entries of equal probability
(Rademacher distribution) without scaling. It has since been shown that vectors
from any other random distributions of zero mean and unit covariance also work [8, 5].
Strictly speaking, the prior results [5, 38] on which our bounds in section 4 are based,
compute the approximation as ‖ul‖22 · v>l f(A)vl, rather than n · v>l f(A)vl. However,
for Rademacher vectors, ‖ul‖22 = n. For other random vectors, in expectation, the two
approaches are the same, as long as E[ulu

>
l ] = I. Hence, for computing the trace we

only need to estimate the scalars of the form v>f(A)v, and the explicit computation
of f(A) is never needed.

The scalar (quadratic form) quantities v>f(A)v are computed by transforming
them to a Riemann–Stieltjes integral, and then employing the Gauss quadrature rule
to approximate this integral. Consider the eigendecomposition of A as A = QΛQ>.
Then, we can write the scalar product as

(4) v>f(A)v = v>Qf(Λ)Q>v =

n∑
i=1

f(λi)µ
2
i ,

where µi are the components of the vector Q>v. The above sum can be considered
as a Riemann–Stieltjes integral given by

(5) I = v>f(A)v =

n∑
i=1

f(λi)µ
2
i =

∫ b

a

f(t)dµ(t),

where the measure µ(t) is a piecewise constant function defined as

(6) µ(t) =


0 if t < a = λ1,∑i−1
j=1 µ

2
j if λi−1 ≤ t < λi, i = 2, . . . , n,∑n

j=1 µ
2
j if b = λn ≤ t,

2This matrix may be the sample covariance matrix of the input data matrix X, or may also be
the form X>X or XX> for the given general rectangular matrix X.
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1082 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

assuming that the eigenvalues λi are ordered nondecreasingly. Next, the integral can
be estimated using the Gauss quadrature rule [23]

(7)

∫ b

a

f(t)dµ(t) ≈
m∑
k=0

ωkf(θk),

where {ωk} are the weights and {θk} are the nodes of the (m+1)-point Gauss quadra-
ture, which are unknowns and need to be determined. We wish to remark that the
Riemann–Stieltjes integral, as well as the Gauss quadrature considered here, do not
require A to be positive definite; see [20].

An elegant way to compute the nodes and the weights of the quadrature rule
is to use the Lanczos algorithm [20]. For a given real symmetric matrix A ∈ Rn×n
and a starting vector w0 of unit 2-norm, the Lanczos algorithm generates an or-
thonormal basis Wm+1 for the Krylov subspace Span{w0, Aw0, . . . , A

mw0} such that
W>m+1AWm+1 = Tm+1, where Tm+1 is an (m+ 1)× (m+ 1) tridiagonal matrix. For
details, see [22]. The columns wk of Wm+1 are related as

wk = pk−1(A)w0, k = 1, . . . ,m,

where pk are the Lanczos polynomials. The vectors wk are orthonormal, and we can
show that the Lanczos polynomials are orthogonal with respect to the measure µ(t)
in (6); see [20, Theorem 4.2]. Therefore, the nodes and the weights of the quadrature
rule in (7) can be computed as the eigenvalues and the squares of the first entries of
the eigenvectors of Tm+1. Then, we can approximate the quadratic form (4) as

(8) v>f(A)v ≈
m∑
k=0

τ2kf(θk) with τ2k =
[
e>1 yk

]2
,

where (θk, yk), k = 0, 1, . . . ,m, are eigenpairs of Tm+1 by using v as the starting vector
w0. Note that the above quadrature formula in (8) is equal to eT1 f(Tm+1)e1, i.e.,∑m
k=0 τ

2
kf(θk) = (f(Tm+1))1,1,. Using this expression we can compute the quadrature

by other methods (depending on f) than the eigendecomposition; see, e.g., [28]. Thus,
the trace of matrix function f(A) can be computed as

(9) tr(f(A)) ≈ n

nv

nv∑
l=1

(
m∑
k=0

(τ
(l)
k )2f(θ

(l)
k )

)
=

n

nv

nv∑
l=1

(
f(T

(l)
m+1)

)
1,1
,

where (θ
(l)
k , τ

(l)
k ), k = 0, 1, . . . ,m, are eigenvalues and the first entries of the eigen-

vectors of the tridiagonal matrix T
(l)
m+1 corresponding to the starting vectors vl, l =

1, . . . ,nv. This method is far less costly than computing the eigenvalues of the matrix
A for the purpose of computing the trace via (1). The SLQ algorithm corresponding
to this procedure is summarized in Algorithm 1.
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Algorithm 1 Trace of a matrix function by SLQ using the Lanczos algorithm.

Input: SPD matrix A ∈ Rn×n, function f , degree m, and nv.
Output: Approximate trace Γ of f(A).
for l = 1 to nv do
1. Generate a Rademacher random vector ul and form unit vector vl = ul/‖ul‖2
2. T = Lanczos(A, vl,m+ 1); that is, apply m+ 1 steps of Lanczos to A with vl
as the starting vector.
3. [Y,Θ] = eig(T ) and compute τk = [e>1 yk] for k = 0, . . . ,m
4. Γ← Γ +

∑m
k=0 τ

2
kf(θk).

end for
Output Γ = n

nv
Γ.

In section 4, we establish error bounds for this approach for functions analytic
inside a closed interval. We show that the convergence rate of quadrature methods is
faster than other polynomial expansion methods, e.g., Chebyshev approximation.

Golub–Kahan bidiagonalization. In computing Schatten p-norms, when the input
matrix X has a large number of singular values close to zero, the Lanczos algorithm
might encounter numerical issues. In such scenarios, it is advantageous to use the
Golub–Kahan bidiagonalization (G-K-B) algorithm [19] on X in place of the Lanczos
algorithm on A = X>X or A = XX>. For the connections between the two algo-
rithms, see, e.g., [20]. Suppose Bm+1 is the bidiagonal matrix obtained by the G-K-B
algorithm, then the matrix Tm+1 = B>m+1Bm+1 will be the Lanczos Jacobi matrix
corresponding to X>X [20]. The singular values φk of Bm+1 are such that φk =

√
θk

for k = 0, . . . ,m, where θk are the eigenvalues of Tm+1. Thus, the Shatten p-norms
(corresponding to the pth power of the square root function) can be computed using
the singular values of the bidiagonal matrix Bm+1 obtained from m steps of the G-
K-B algorithm. Similarly, traces of functions of non-Hermitian matrices can also be
computed using this algorithm. Algorithm 2 presents a version of the SLQ method
that uses the G-K-B bidiagonalization.

Algorithm 2 Trace of a matrix function by SLQ using the G-K-B algorithm.

Input: X ∈ Rd×n, function f (with A = X>X, f̃ : f̃(t) = f(t2)), m, and nv.
Output: Approximate trace Γ of f(A).
for l = 1 to nv do
1. Generate a Rademacher random vector ul and form unit vector vl = ul/‖ul‖2
2. B = GKB(X, vl,m + 1); that is, apply m + 1 steps of GKB to X with vl as
the starting vector.
3. [U,Φ] = svd(B) and compute τk = [e>1 uk] for k = 0, . . . ,m
4. Γ← Γ +

∑m
k=0 τ

2
k f̃(φk).

end for
Output Γ = n

nv
Γ.

Computational cost. Since we apply m steps of Lanczos or the G-K-B algorithm
for nv different starting vectors, the cost of the SLQ method will be O((nnz(A)m +
nm2)nv), where nnz(A) is the number of nonzeros in A. The additional cost O(nm2)
is the orthogonalization cost inside the Lanczos algorithm. Assuming full reorthogo-
nalization, if we choose degree m, then we need to reorthogonalize m vectors of length
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1084 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

n. Typically both m and nv are much smaller than the matrix dimension n. Hence,
the method will be very inexpensive for large sparse matrices.

The Lanczos algorithm has an additional storage cost compared to polynomial
approximation methods. We need to store the orthogonalized vectors of the Krylov
subspace inside the Lanczos algorithm. This storage depends on whether partial or
full reorthogonalization is used. However, since the degree m is very small, we can use
full orthogonalization inside the Lanczos algorithm and this additional storage cost
will be negligible. That is, at each step of the algorithm, the new vector is orthogonal-
ized with respect to all the previous Lanczos vectors, which requires storing of these
vectors for orthogonalization. Note that, under exact arithmetic there is no need for
reorthogonalization, but due to numerical issues a partial or full reorthogonalization
is needed in practice.

The computations for both the Chebyshev and the Lanczos methods can be done
in parallel across the different starting vectors. This is an obvious coarse-grained
parallelism but it also is the most effective in practice. The use of MPI will be helpful
here and communication is minimal. Finer-grained parallelism can also happen within
each starting vector (such as in a threaded implementation). In this case, Chebyshev
is advantageous, as it requires no (or very few) global reductions. Communication
takes place only for matrix-vector multiplications and it is mostly local for sparse
matrices. Chebyshev does not need vector norm computation, and hence there is no
global synchronization. Lanczos, on the other hand, needs global synchronization for
computing inner products, norms, and for the reorthogonalization. However, since the
number of Lanczos steps required (degree m in both cases) is small, such finer-grained
parallelism is typically not necessary.

4. Analysis. In this section, we present multiplicative error bounds for approx-
imating the trace of a matrix function using SLQ. Additive error bounds are also
established for the log-determinant approximation of a positive definite matrix and
the log-likelihood function estimation. The nuclear norm and Schatten-p norms es-
timation of a general matrix is discussed in the latter part of the section. First, we
give the following definition: a Bernstein ellipse Eρ is an ellipse on the complex plane
with focii at −1, 1 and major semiaxis (ρ+ ρ−1)/2 with ρ > 1 [42]. It can be viewed
as a mapping of the circle C(0, ρ) (center at zero and radius ρ) using the Joukowsky
transform (z + z−1)/2. Hence we can have two values of ρ that are inverses of each
other, which give the same ellipse. Following is our main result.

Theorem 4.1. Consider an SPD matrix A ∈ Rn×n with eigenvalues in
[λmin, λmax] and condition number κ = λmax/λmin. Let f be a function analytic in
[λmin, λmax] and be either positive or negative (i.e., does not cross zero) inside this
interval. Denote by mf the absolute minimum value of f in the interval. Assume
that f is analytically continuable in an open Bernstein ellipse Eρ encompassing the
interval, with foci λmin, λmax and sum of the two semiaxes ρ, such that |f(z)| ≤ Mρ

for all z ∈ Eρ. Let ε, η be constants in (0, 1). Then for SLQ parameters satisfying

• m ≥ 1
2 log(

4Mρ(λmax−λmin)
εmρ(ρ2−1) )/ log(ρ) number of Lanczos steps, and

• nv ≥ (24/ε2) log(2/η) number of starting Rademacher vectors,
the output Γ of the SLQ method is such that

(10) Pr

[
|tr(f(A))− Γ| ≤ ε |tr(f(A))|

]
≥ 1− η.

In particular for ρ = (
√
κ+1)/(

√
κ−1) for which the function of interest is analytic in-

side Eρ, we have m ≥ (
√
κ/4) log(K/ε) with K = (λmax−λmin)(

√
κ−1)2Mρ/(

√
κmf ).
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To prove the theorem, we first derive error bounds for the Lanczos quadrature
approximation (which gives the convergence rate), using the facts that an (m + 1)-
point Gauss quadrature rule is exact for any 2m+ 1 degree polynomial and that the
function is analytic inside an interval and is analytically continuable in a Bernstein
ellipse. We then combine this bound with the error bounds for the stochastic trace
estimator to obtain the above result.

4.1. Convergence rate for the Lanczos quadrature. In order to prove The-
orem 4.1, we first establish the convergence rate for the Lanczos quadrature approxi-
mation of the quadratic form. Recall that the quadratic form v>f(A)v can be written
as a Riemann–Stieltjes integral I, as given in (5). Let Im denote the (m + 1)-point
Gauss quadrature rule that approximates the integral I, given by

Im =

m∑
k=0

ωkf(θk),

where {ωk} are the weights and {θk} are the nodes, computed by using m+1 steps of
the Lanczos algorithm. The well-known error analysis for the Gauss quadrature rule
is given by [20],

(11) |I − Im| =
f (2m+2)(ζ)

(2m+ 2)!

∫ b

a

[
m∏
k=0

(t− θk)

]2
dµ(t)

for some a < ζ < b. However, this analysis might not be useful for our purpose, since
the higher derivatives of both the logarithm and the square root function become
excessively large in the interval of interest. Hence, in this work, we establish improved
error analysis for the Lanczos quadrature approximations, using some classical results
developed in the literature, with the fact that functions of interest are analytic over
a certain interval. We begin with the following result.

Theorem 4.2. Let a function g be analytic in [−1, 1] and analytically continuable
in the open Bernstein ellipse Eρ with foci ±1 and sum of major and minor axis equal
to ρ > 1, where it satisfies |g(z)| ≤ Mρ. Then the (m + 1)-step Lanczos quadrature
approximation satisfies

(12) |I − Im| ≤
4Mρ

(ρ2 − 1)ρ2m
.

Proof. We follow a similar argument to that developed in [36] that estimates
the error of Gaussian quadratures for a Riemann integral. The result and the proof
strategy are usually covered in standard textbooks, e.g., [42, Thm. 19.3]. In our case,
the integral is a Riemann–Stieltjes integral with respect to a specific measure given
in (6). As a result, the bound admits the same rate but with a different constant.

For the given function g that is analytic over the interval [−1, 1], consider the
2m+ 1 degree Chebyshev polynomial approximation of g(t), i.e.,

P2m =

2m+1∑
j=0

ajTj(t) ≈ g(t).

We know that the (m+ 1)-point Gauss quadrature rule is exact for any polynomial of
degree up to 2m+ 1; see [20, Thm. 6.3] or [42, Thm. 19.1]. This can also be deduced

D
ow

nl
oa

de
d 

05
/0

2/
20

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1086 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

from the error term in (11). Hence, the error in integrating g is the same as the error
in integrating g − P2m. Thus, we have

|I − Im| = |I(g − P2m)− Im(g − P2m)| ≤ |I(g − P2m)|+ |Im(g − P2m)|

=

∣∣∣∣∣∣I
 ∞∑
j=2m+2

ajTj(t)

∣∣∣∣∣∣+

∣∣∣∣∣∣Im
 ∞∑
j=2m+2

ajTj(t)

∣∣∣∣∣∣
≤

∞∑
j=2m+2

|aj |
[
|I(Tj)|+ |Im(Tj)|

]
.

Next, we obtain bounds for the three terms inside the summation above.
If the function g is analytic in [−1, 1] and analytically continuable in the Bernstein

ellipse Eρ, then for the Chebyshev coefficients we have from [42, Theorem 8.1] and
[36, (14)],

|aj | ≤
2Mρ

ρj
.

Next, for the quadrature rule Im(Tj), we have

Im(Tj) =

m∑
k=0

τ2kTj(θk) ≤
m∑
k=0

|τ2k ||Tj(θk)| ≤ 1.

The last inequality results from the fact that, for f(t) = 1, the quadrature rule is
exact, and the thus the integral is equal to 1 (v>l f(A)vl = v>l vl = 1). Therefore, the
weights τ2k must sum to 1. The maximum value of Tj inside the interval is 1. Finally,
in order to bound the Riemann–Stieltjes integral I(Tj), we use the following:

I(Tj) = v>Tj(A)v ≤ λmax(Tj(A)) = 1

by the min-max theorem and ‖v‖ = 1. Therefore,

|I − Im| ≤
∞∑

j=2m+2

2Mρ

ρj
[1 + 1].

Since the Gauss quadrature rule is a symmetric rule [36], the error in integration of
Tj(t) for any odd j will be equal to zero. Thus, we get the result in the theorem

|I − Im| ≤
4Mρ

(ρ2 − 1)ρ2m
.

Remark 1. The convergence rate for the Chebyshev polynomial approximation of
an analytic function isO(1/ρm); see [42, Theorem 8.2]. Hence, the Lanczos quadrature
approximation is twice as fast as the Chebyshev approximation. Moreover, it is known
that the Gauss quadrature has the maximal polynomial order of accuracy [42].

Theorem 4.2 holds for functions that are analytic over [−1, 1]. The functions
considered in this paper such as logarithm, exponential, and square root functions are
analytic over [λmin, λmax] for λmin > 0. Hence, we need to use the following transform
to get the right interval.

If f(x) is analytic on [λmin, λmax], then

g(t) = f

[(
λmax − λmin

2

)
t+

(
λmax + λmin

2

)]D
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is analytic on [−1, 1]. If we denote the error in the quadrature rule for approximating
the integral of function f as E(f), then we have

E(f) =

(
λmax − λmin

2

)
E(g).

The function g will have its singularity at t0 = α = −κ+1
κ−1 . Hence, we choose the

ellipse Eρ with the semimajor axis length of |α|, where g is analytic inside. Then, the
convergence rate ρ will be

ρ = α±
√
α2 − 1 =

√
κ+ 1√
κ− 1

> 1.

The sign is chosen such that ρ > 1. From Theorem 4.2, the error E(g) ≤ 4Mρ/
[(ρ2 − 1)ρ2m], where |g(z)| < Mρ inside Eρ. Hence, the error E(f) will be

E(f) =

(
λmax − λmin

2

)
4Mρ

(ρ2 − 1)ρ2m
=

(λmax − λmin)(
√
κ− 1)2Mρ

2
√
κρ2m

with ρ defined as above. Thus, for a function f that is analytic on [λmin, λmax] and
Cρ = 2Mρ(λmax − λmin)/(ρ2 − 1) = (λmax − λmin)(

√
κ− 1)2Mρ/(2

√
κ), we have

(13)

∣∣∣∣∣v>f(A)v −
m∑
k=0

τ2kf(θk)

∣∣∣∣∣ ≤ Cρ
ρ2m

.

4.2. Approximation error of the trace estimator. The quadratic form
v>f(A)v for which we derived the error bounds in the previous section comes from the
Hutchinson trace estimator. Let us denote this estimator as trnv(A) = n

nv

∑nv

l=1 v
>
l Avl.

The convergence analysis for the stochastic trace estimator was developed in [5], and
improved in [38] for sample vectors with different probability distributions. We state
the following theorem which is proved in [38].

Theorem 4.3. Let A be an n × n symmetric positive semidefinite matrix and
vl, l = 1, . . . ,nv, be random starting vectors sampled from the Rademacher distribution
and scaled to a unit 2-norm. Then, with nv ≥ (6/ε2) log(2/η), we have

Pr [|trnv(A)− tr(A)| ≤ ε|tr(A)|] ≥ 1− η.

The above theorem can be used to bound the trace of any matrix function f(A), if
the function is either positive or negative inside the spectrum interval. Therefore, the
theorem holds for the square root function, its powers, and the exponential. However,
for the logarithm function, different scenarios occur depending on the spectrum, which
will be discussed later. Let Γ be the output of the SLQ method to estimate the trace
of such functions, given by

(14) Γ =
n

nv

nv∑
l=1

(
m∑
k=0

(τ
(l)
k )2f(θ

(l)
k )

)
.

We need the following lemma.

Lemma 4.4. Let A ∈ Rn×n be an SPD matrix with eigenvalues in [λmin, λmax]
and condition number κ = λmax/λmin, and f be an analytic function in this interval
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with |f(z)| ≤Mρ for all z inside a Bernstein ellipse Eρ that encompasses the interval.
Then, the following inequality holds:

|trnv
(f(A))− Γ| ≤ nCρ

ρ2m
,

where ρ = (
√
κ+ 1)/(

√
κ− 1) and Cρ = 2Mρ(λmax − λmin)/(ρ2 − 1) = (λmax − λmin)

(
√
κ− 1)2Mρ/(2

√
κ).

Proof. The lemma follows from (13). We have

|trnv(f(A))− Γ| = n

nv

∣∣∣∣∣
nv∑
l=1

v>l f(A)vl −
nv∑
l=1

I(l)m

∣∣∣∣∣
≤ n

nv

nv∑
l=1

∣∣∣v>l f(A)vl − I(l)m
∣∣∣

≤ n

nv

nv∑
l=1

Cρ
ρ2m

=
nCρ
ρ2m

.

Now, we are ready to prove Theorem 4.1. Based on the condition of m,

log
K

ε
≤ 4m√

κ
≤ 2m log

(√
κ+ 1√
κ− 1

)
.

Therefore,
K

ε
≤ ρ2m and hence

Cρ
ρ2m

≤ ε

2
fmin(λ),

where fmin(λ) ≡ mf is the absolute minimum of the function in the interval [λmin, λmax].
This gives us the lower bound on the degree m in the theorem. Then, from Lemma 4.4
we have

(15) |trnv(f(A))− Γ| ≤ εn

2
fmin(λ) ≤ ε

2
|tr(f(A))|.

From Theorem 4.3, we have

(16) Pr
[
|tr(f(A))− trnv

(f(A))| ≤ ε

2
|tr(f(A))|

]
≥ 1− η.

Combining the above two inequalities (15) and (16) leads to the result in Theorem 4.1:

1− η ≤ Pr
[
|tr(f(A))− trnv

(f(A))| ≤ ε

2
|tr(f(A))|

]
≤ Pr

[
|tr(f(A))− trnv(f(A))|+ |trnv(f(A))− Γ| ≤ ε

2
|tr(f(A))|+ ε

2
|tr(f(A))|

]
≤ Pr [|tr(f(A))− Γ| ≤ ε |tr(f(A))|] .

For comparison, note that for Chebyshev approximations [26], the required de-
gree of the polynomial is m = Θ(

√
κ log κ

ε ) and for Taylor approximations [9], m =
O(κ log κ

ε ). Recall from Remark 1, the Lanczos algorithm is superior to the Cheby-
shev expansions because the former approximation converges twice as fast as does the
latter. Clearly, the Lanczos approximation also converges faster than the Taylor ap-
proximation. Theorem 4.1 can be used to establish the error bounds for approximating
the log-determinants and the Schatten p-norms. The quality and the complexity of
the algorithms depend on the condition number κ, since matrix function approxi-
mations become harder when matrices become more ill-conditioned, which requires
higher degree approximations.
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4.3. Bounds for log-determinant. For the logarithm function, we encounter
three different scenarios depending on the spectrum of the matrix. The first case
is when λmax < 1, log(A) is negative definite, and the log-determinant will always
be negative. Thus, the conditions of Theorem 4.1 are satisfied. Similarly, Theorem
4.1 holds in the second case when λmin > 1, since log(A) is positive definite. In the
third case when λmin < 1 and λmax > 1, however, we cannot obtain multiplicative
error bounds of the form given in Theorem 4.1, since the log function will cross zero
inside the interval. In the worst case, the log-determinant can be zero. One simple
workaround to avoid this case is to scale the matrix such that its eigenvalues are
either all smaller than 1 or all greater than 1; however, such an approach requires the
computation of the extreme eigenvalues of A. The following corollary gives additive
error bounds without scaling; it holds for any SPD matrix.

Corollary 4.5. Given ε, η ∈ (0, 1), an SPD matrix A ∈ Rn×n with its eigenval-
ues in [λmin, λmax], and condition number κ = λmax/λmin for SLQ parameters

• m ≥ (
√

3κ/4) log(K1/ε) number of Lanczos steps, and
• nv ≥ (24/ε2) log(1 + κ))2 log(2/η) number of starting vectors,

where K1 = 5κ log(2(κ+ 1))/
√

2κ+ 1, we have

(17) Pr

[
|log det(A)− Γ| ≤ εn

]
≥ 1− η,

where Γ is the output of the SLQ method for log-determinant computation.

Proof. The proof of the corollary is on similar lines to the proof of Theorem 4.1.
In the logarithm case, Theorem 4.2 still holds, however, we need to choose a smaller
ellipse (smaller α) since the log function goes to infinity near the singularity. We
choose α = (κ + 1)/κ, then ρ = (

√
2κ+ 1 + 1)/(

√
2κ+ 1 − 1). For Theorem 4.3, we

consider the fact that, if B = A
λmax+λmin

, then

log detA = log detB + n log(λmax + λmin).

Since the matrix B has its eigenvalues inside (0, 1), the logarithm function is negative
and we hence can apply Theorem 4.3 with f(A) = log( A

λmax+λmin
), and then add and

subtract n log(λmax + λmin) to get an inequality of the form (16). To compute the
parameters in Theorem 4.2, we consider this function f(t) = log( t

λmax+λmin
), and the

ellipse Eρ where the function is analytic with ρ as defined above. Then, we have
ρ2 − 1 = (4

√
2κ+ 1)/(

√
2κ+ 1− 1)2 and Mρ is computed as

max
z∈Eρ

| log(z)| ≤ max
z∈Eρ

√
(log |z|)2 + π2

=
√

(log |1/2κ|)2 + π2 ≤ 5 log(2(κ+ 1)) = Mρ.

The first inequality comes from the fact | log(z)| = | log |z|+i arg(z)| ≤
√

(log |z|)2 + π2.
The ellipse Eρ is defined with foci at 1/(κ+ 1) and κ/(κ+ 1). The maximum occurs
at endpoint z0 = 1/(2κ). As in the proof of Theorem 4.1, we have

E(f) =

(
κ− 1

κ+ 1

)
2Mρ

(ρ2 − 1)ρ2m
≤ 5κ log(2(κ+ 1))

2
√

2κ+ 1ρ2m
.

The K1 value is obtained by setting

n5κ log(2(κ+ 1))

2
√

2κ+ 1ρ2m
≤ εn

2
.
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1090 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

The lower bound for mf is simplified using the fact
√

2κ+ 1 ≤
√

3κ. We can then
conclude the corollary using |log detB| ≤ n log(1 + κ) and choosing ε = ε/ log(1 + κ)
in Theorem 4.3.

4.4. Bounds for log-likelihood function. Recall the log-likelihood function
defined in (2). The log-determinant term in it can be bounded as above. The first
term z>S(ξ)−1z is computed using the Lanczos quadrature method with z/‖z‖ as
the starting vector for the Lanczos algorithm. The following corollary gives the error
bound for the log-likelihood function estimation by SLQ, which follows from Theo-
rem 4.1 and Corollary 4.5.

Corollary 4.6. Given a data vector z ∈ Rn, a covariance matrix S(ξ) ∈ Rn×n
with hyperparameter ξ and its eigenvalues in [λmin, λmax], and constants ε, η ∈ (0, 1)
for SLQ parameters

• m1 ≥ (
√

3κ/4) log(K1/ε), m2 ≥ (
√

3κ/4) log(K2/ε) and
• nv ≥ (24/ε2)(log(1 + κ))2 log(2/η),

where K1 is defined in Corollary 4.5 and K2 = ‖z‖2(κ− 1)(
√

2κ− 1− 1)2/
√

2κ− 1,
we have

(18) Pr

[
|log p(z | ξ)− Γ| ≤ ε(n+ 1)

]
≥ 1− η,

where Γ = −Γ1−Γ2− n
2 log(2π), Γ1 is the output of SLQ with parameters m1 and nv,

and Γ2 is the output of the Lanczos quadrature method for approximating z>S(ξ)−1z
with m2 steps of Lanczos and scaled by ‖z‖2.

Proof. To prove the corollary, we obtain bounds for the two quantities Γ1 and
Γ2. We bound the log-determinant term Γ1 obtained by SLQ using Corollary 4.5.
Bounds of Γ2, the Lanczos quadrature approximation of z>S(ξ)−1z, can be com-
puted using Theorem 4.2 as follows. We again need to choose a smaller ellipse
Eρ where the function is analytic, since the function f(t) = t−1 also goes to in-
finity near singularity. We set α = κ/(κ − 1), then ρ = (κ +

√
2κ− 1)/(κ − 1) and

ρ2−1 = (4
√

2κ− 1)/(
√

2κ− 1−1)2. For the inverse function, the maximum must oc-
cur on the real line, particularly at −α for g(z) or at λmin/2 for f(z), so, Mρ = 2/λmin.
Then,

E(f) =
(κ− 1)(

√
2κ− 1− 1)2√

2κ− 1ρ2m
.

We will have a scaling ‖z‖2. We get the bounds by setting ‖z‖2E(f) ≤ ε.
We can also compute the error bounds for approximating the trace of matrix

inverse by SLQ using the above proof.

4.5. Schatten p-norms estimation. When estimating the nuclear and Schat-
ten p-norms, we encounter the following issue when approximating the square root
function. In order to obtain strong theoretical results (exponential convergence) for a
given function f(t), the function must be analytic in the spectrum interval. However,
the square root function is nondifferentiable at t = 0. This will be a major stumbling
block for rank-deficient matrices since the interval of eigenvalues now contains zero.

Shifting the spectrum. To overcome the issue, we propose the following remedy,
which is based on the key observation, proper to the computation of the nuclear norm,
that the small and zero singular values do not contribute much to the norm itself. In
other words, the nuclear norm of a matrix depends mainly on the top singular values.
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The idea is then to shift the spectrum of the matrix by a small δ > 0 such that
no eigenvalues of the matrix A are equal to zero. That is, we replace A by A + δI,
such that the eigenvalues of the new shifted matrix are λi + δ. For the square root
function, the error is given by,√

λi + δ −
√
λi =

δ√
λi + δ +

√
λi
.

Hence, the error in the large eigenvalues will be small. The error in the nuclear norm
will be

(19)

n∑
i=1

√
λi + δ −

n∑
i=1

√
λi =

n∑
i=1

δ√
λi + δ +

√
λi
.

For the shifted matrix, the eigenvalues will be in the interval [δ, λmax + δ]. Now,
Theorem 4.1 holds in this interval (square root function will be positive) and we can
obtain the approximation error bounds. The error due to shifting is small, and can
also be corrected using the Taylor series expansion of the square root function (details
omitted). Algorithm 2 will be better suited for nuclear norm estimation.

Bounds for Schatten p-norms. To summarize, if the input matrix has full rank
(λmin > 0), then Theorem 4.1 is directly applicable, since the square root function is
positive and analytic in the interval. For rank deficient matrices (has zero singular
values), we will encounter the above problem, and we need to shift the spectrum by
δ. From (19), we can upper bound the error due to shifting by n

√
δ. Thus, the shift

δ is chosen such that this error due to shifting is at most ε‖X‖pp. Here, the value of
‖X‖p can be taken to be roughly poly(n). We can then compute ‖X‖p of the shifted
matrix using SLQ. We have the following general result.

Corollary 4.7. Given ε, η ∈ (0, 1), a matrix X ∈ Rd×n with its singular values
in [σmin, σmax], we consider the SPD matrix A = XTX (not formed explicitly) with
its condition number κ = σ2

max/σ
2
min for SLQ parameters

• m ≥ (
√
κ/4) log(K3/ε) number of Lanczos steps, and

• nv ≥ (24/ε2) log(2/η) number of starting vectors,

where K3 =
σ2
min(κ+1)p/2(κ2−1)√

κ
, we have

(20) Pr

[ ∣∣‖X‖pp − Γp
∣∣ ≤ ε‖X‖pp] ≥ 1− η,

where Γ is the output of the SLQ method for Schatten p norm computation.

Proof. Theorem 4.1 gives the above error bound. We consider the function f(t) =
tp/2 applied to A = XTX (not formed explicitly). We can also consider the G-K-
B algorithm. We choose ρ = (

√
κ + 1)/(

√
κ − 1) as in the theorem since g(t) is

analytic inside the ellipse Eρ. Then, mf = σpmin and Mρ = (σ2
max + σ2

min)p/2, since
the maximum occurs at the right end of the ellipse. Substituting these values in the
theorem, we get the above result.

Comparison of bounds. Here we compare the theoretical results of our SLQ
method with the Chebyshev and the Taylor methods. Table 1 lists the theoreti-
cal worst case degree m, the computational costs, and the memory requirements for
the three methods along with the Cholesky factorization method. Here Text refers to
the cost to compute the extreme eigenvalues of the matrix.

D
ow

nl
oa

de
d 

05
/0

2/
20

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1092 SHASHANKA UBARU, JIE CHEN, AND YOUSEF SAAD

Table 1
Computational cost and memory requirements.

Method Degree m Cost Memory

SLQ ≥ (
√
κ
4

log K
ε

) O((nnz(A)m+ nm2)nv) O(nnz(A) + nm2)
Chebyshev ≥ (

√
κ log κ

ε
) O(nnz(A)mnv) + Text O(nnz(A) + n)

Taylor O(κ log κ
ε

) O(nnz(A)mnv) + Text O(nnz(A) + n)
Cholesky - O(n3) O(n2)

As mentioned earlier, SLQ has an improved dependency on the condition number
of the matrix compared to other methods, i.e., the theoretical worst case degree m
required is the smallest. However, the SLQ method requires an additional cost of nm2

compared to the Chebyshev method. The degree m required in practice for SLQ is
typically small, hence, this additional cost is usually negligible. But, there might be
cases where the additional cost might not be negligible, e.g., when nnz(A) is small
and the function f to be approximated has large derivatives requiring a larger m.
However, in most cases in practice, SLQ yields more accurate results and requires a
much smaller degree m compared to the other methods as illustrated in the following
section. Both the Chebyshev and the Taylor methods require computation of the
extreme eigenvalues of the matrix which requires an additional cost, and this cost
depends on the spectrum of the matrix. Note that computing the smallest eigenvalue
accurately is usually difficult for data matrices that have very small spectral gap.

5. Numerical experiments. In this section, we present several examples to
illustrate the performance of the SLQ method in various applications. First, we eval-
uate its performance for log-determinant computation of large matrices, and compare
the performance against other related stochastic methods.

In the first experiment (Figure 1(a)), we compare the relative errors obtained by
the SLQ method for different degrees chosen, and compare it against the stochastic
Chebyshev [26] (implemented by the authors) and the stochastic Taylor series expan-
sions method [47]. We consider the sparse matrix california (a graph Laplacian
matrix) of size 9664×9664, nnz ≈ 105, and κ ≈ 5×104 from the University of Florida
(UFL) sparse matrix collection [15]. The number of starting vectors nv = 100 in all
three cases. The figure shows that our method is superior in accuracy compared to the
other two methods. With just a degree of around 50, we get 4 digits of accuracy, while
Chebyshev expansions give only 1–2 digits of accuracy and Taylor series expansions
are very inaccurate for such low degrees.

In the second experiment, we evaluate the performance of our method with respect
to the condition number of the matrix. We consider a Hadamard3 matrix H of size
8192 and form the test matrix as HDH>, where D is a diagonal matrix with entries
such that the desired condition number is obtained. Figure 1(b) plots the relative
errors obtained by the three stochastic methods for the log-determinant estimations
of the matrices with different condition numbers. The degree and the number of
starting vectors used in all three cases were m = 50 and nv = 30. Again, we observe
the superior accuracy of SLQ.

In the third experiment, we compare the runtime of the three algorithms for log-
determinant estimation of large sparse matrices. The matrices have used 10% nonzeros
in each row. An example MATLAB code is the following: N=20000; rho = 10/N;

3A Hadamard matrix is chosen since its eigenvalues are known a priori and is easy to generate.
Reproducing the experiment will be easier.

D
ow

nl
oa

de
d 

05
/0

2/
20

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST ESTIMATION OF tr(f(A)) 1093

10 20 30 40 50

10−4

10−2

100

Comparison nv=100

Degree (5 −> 50)

R
e
la

tiv
e

e
rr

o
r

Taylor
Chebyshev
Lanczos

(a)

100 105 10100

0.1

0.2

0.3

0.4
Comparison m=50, nv=30

Condition number

R
e
la
tiv
e
e
rr
o
r

Talyor
Chebyshev
Lanczos

(b)

0 2 4 6
x 104

10−2

100

102

104

Matrix Size

R
u
n
tim

e
(s
e
cs
)

Cholesky
Talyor
Chebyshev
Lanczos

Runtime comparison

(c)

20 40 60 80 100
6.4406
6.4408

6.441
6.4412

x 10
5

lo
g−

de
t

Chebyshev

20 40 60 80 100
6.4405

6.441

x 10
5

lo
g−

de
t

Lanczos

20 40 60 80 100
6.4405

6.441

x 10
5

n
v

(10 −> 100)

lo
g−

de
t

n
v

(10 −> 100)

lo
g−

de
t

n
v

(10 −> 100)

lo
g−

de
t

(d)

Fig. 1. Performance comparison between SLQ, Chebyshev, and Taylor series expansions: (a)
relative error versus degree m, (b) relative error versus condition number of the matrices, (c) runtime
comparison against Cholesky decomposition, and (d) estimation and standard error versus number
of starting vectors.

A = sprand(N,N,rho); A = A’*A + lmin*speye(N). These are the same matrices
used in [25, Fig. 1]. We also include the runtime for the Cholesky decomposition.
For a fair comparison, we chose m =

√
κ for the Chebyshev method, m =

√
κ/2 for

SLQ, and m = 4
√
κ for Taylor series (will be less accurate since we need m ≈ κ for

similar accuracy). Figure 1(c) plots the runtime of the four algorithms for different
matrix sizes. We observe that the runtime of the SLQ method is equal to or less
than the runtime of the Chebyshev method. Note also that both Chebyshev and
Taylor methods require computation of the extreme eigenvalues. The relative errors
we obtained by SLQ in practice are also lower than that obtained by the Chebyshev
method. These two methods are both significantly faster than the one based on
Cholesky. All experiments were conducted using MATLAB on an Intel core i-5 3.3
GHz machine. All timings are reported using cputime function. Comparisons with
Schur complement methods and rational approximations can be seen in [25, Fig. 1],
where it is shown that the Chebyshev method is superior to these two methods. Hence,
we compare SLQ with only the Chebyshev method in the following experiments.
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Table 2
Log-determinant computation of real datasets from UFL matrix collection with nv = 30.

Matrices Exact logdet Chebyshev Expansions Lanczos Quadrature
m Estimate time m Estimate time

California −35163 150 −31657.9 1.02 55 −35112.3 1.55
qpband 5521 70 5480.1 0.95 30 5517.0 0.28
thermo. −546787 75 −546640.3 7.76 25 −546793.9 7.34
boneS01 1.1093e6 150 4.119e6 26.15 35 1.104e6 17.59
ecology2 3.3943e6 60 3.3946e6 70.8 30 3.3949e6 75.24

Table 3
Description of matrices used for the experiments.

Matrices Applications Size
California Web search 9664
qpband Optimization 20000
thermomechTC Thermal 102158
boneS01 Model reduction 127224
ecology2 2 dimensional/3 dimensional 999999
Erdos992 undirected graph 6100
deter3 linear programming 7047
FA Pajek network graph 10617

For very large matrices (∼106 and above), it is impractical to compute the exact
log-determinants. To gauge the approximation quality, we approximate the estimator
variance by using sample variance and show the standard errors. Figure 1(d) plots
the log-determinants estimated and the error bars obtained for different number of
starting vectors for the matrix webbase-1M (web connectivity matrix) of size 106×106

obtained from the UFL database [15]. For Lanczos quadrature, we chose degree
m = 30, and for Chebyshev, m = 60. The width of the error bars gives us a rough
idea of how close the estimation might be to the trace of f(A) approximated by
the respective methods. The theoretical results for the four methods were listed in
Table 1.

Table 2 gives some additional comparison results between Chebyshev expansions
and SLQ methods on some large real datasets. All matrices were obtained from the
UFL sparse matrix collection [15] and are sparse. A description of the matrices from
the UFL collection that are used in the following experiments is given in Table 3. Some
of these matrices were also used in [9] as test matrices. The exact log-determinmants of
the matrices are listed in the third column. For the first two matrices, their singular
values are also available in the UFL database (logdet were computed using them).
For the remaining matrices, the exact log-determinants are reported in [9], where
the authors used Cholesky decomposition to obtain these values. For the Chebyshev
method, we increment the degree m until either we achieve 2-3 digits of accuracy or
m = 150. For SLQ, we increment the degree m (number of Lanczos steps) until we
achieve 3–4 digits of accuracy. The degrees used and the log-determinants estimated
by these two methods are listed in the table along with the time taken (averaged
over 5 trials) by these algorithms. In all experiments, the number of starting vectors
nv = 30.

We observe that, in all cases, results obtained by SLQ are way more accurate than
the Chebyshev method. Also, SLQ requires at least 2–3 times lower degree m than
the Chevbyshev method to achieve more accurate results. In addition, we note that
the stochastic trace estimator, in general, performs much better than what the worst
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Fig. 2. The nuclear norm estimated by SLQ for the example ukerbe1 matrix (left) as a function
of degree m and (right) as a function of number of starting vectors nv.

Table 4
Estimation of the sum of singular values of various matrices.

Matrices m Exact sum Estimated sum Time (secs) SVD time
Erdos992 40 3292.06 3294.5 1.05 876.2 secs
deter3 30 16518.08 16508.46 1.62 1.3 hrs
California 100 3803.74 3803.86 8.32 4.17 mins
FA 150 1306.79 1312.8 23.13 1.5 hrs
qpband 60 26708.14 26710.1 0.35 2.9 hrs

case analysis in Theorem 4.3 suggests. We get reasonably accurate trace estimation
for nv ≈ 30–50. Also, it is important to note that the stochastic Chebyshev and
Taylor series methods require computation of the largest and the smallest eigenvalues
of the matrix. The computational time reported in the table does not include this
additional cost of computing the extreme eigenvalues.

Nuclear norm. Next, let us consider the estimation of the nuclear norm of a
matrix for examining the effects of the parameters m and nv in the SLQ performance.
We consider the matrix ukerbe1 of size 5981 × 5981 from the UFL database. The
performance of the SLQ method in approximately estimating the sum of singular
values of this matrix is given in Figure 2.

The left figure plots the estimated nuclear norm for different numbers of Lanczos
steps m used, with the number of starting vectors nv = 30 (black solid line). The
right figure plots the approximate nuclear norm computed using Lanczos quadrature
obtained for different starting vectors vl and the cumulative average (black solid line)
for Lanczos quadrature of degree m = 50. The nuclear norm estimated for degree
m = 50 and nv = 30 was 7640.62. The exact sum of singular values is 7641.44.

Finally, we employ our SLQ algorithm 2 with G-K-B for the nuclear norm esti-
mation of real datasets. Table 4 lists the approximate nuclear norm estimated by our
method for a set of matrices from various applications. All matrices were obtained
from the UFL database [15] and are sparse (listed in Table 3). We increment the
degree m (number of G-K-B steps) until we achieve 3–4 digit accuracy. The degree
used and the approximate sum obtained are listed in the table along with the exact
sum and the time taken (averaged over 5 trials) by our algorithm. In all experiments,
the number of starting vectors nv = 30. In addition, we also list the time taken
to compute only the top 2000 singular values of each matrix (computed using the
MATLAB svds function which relies on ARPACK) in order to provide a rough illus-
tration of the potential computational gain of our algorithm over partial SVD.
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Stability. In general, we found that the stability of the Lanczos algorithm will not
be an issue here, as long as full reorthogonalization is done (since m is small). If partial
orthogonalization is used, we might encounter some stability issues. For a matrix
which has many eigenvalues close to zero (possibly ill-conditioned), particularly for
the Schatten p-norm applications, the Lanczos algorithm might encounter numerical
issues. In these scenarios, it is advantageous to use the G-K-B algorithm which is
a numerically safer approach. For example, for the matrix California (Table 2, row
3) of size 9664 which has rank = 1647 (has 8017 zero singular values), the Lanczos
algorithm with m = 50 applied to XTX gives a tridiagonal matrix with a few (2 or
3) negative eigenvalues. The G-K-B algorithm will not have this issue, and gives a
more accurate estimation of the nuclear norm than the Lanczos algorithm.

Maximum likelihood estimation for GRFs. We now test our method for maximum
likelihood estimation of Gaussian Random Fields (GRFs). To illustrate the use of log-
determinant calculation in GRFs, we simulate one such field by using the Wendland
covariance function [37] with smoothness q = 0 on a 900× 1200 grid (n = 1.08× 106);
see Figure 3(a). To better demonstrate the fine details of this highly nonsmooth data,
we have zoomed into the middle 300 × 400 grid and shown only this part. Next,
we randomly sampled ten percent of the data and used them to estimate the length
scale of the function. These training data are the nonwhite pixels in Figure 3(b).
We compute a local log-likelihood curve (as in (2)) shown in Figure 3(c) using SLQ
with different values for the hyperparameter, which suggests a peak at 50. That is,
maximum likelihood estimation estimates using SLQ suggests the hyperparameter
value to be 50. This coincides with the true value used for simulation. The log-
determinants therein were computed using 100 Lanczos steps and 100 random vectors.
Because the covariance matrix is multilevel Toeplitz, the matrix-vector multiplications
were carried out through circulant embedding followed by the FFT, which resulted
in an O(n log n) cost [22]. With the estimated length scale, we perform a prediction
calculation for the rest of the data (white pixels in Figure 3(b)) and show the predicted
values, together with the ten percent used for training, in Figure 3(d). We observe that
the pattern obtained from the predicted values appears quite similar to the original
data pattern. The relative difference between Figures 3(a) and 3(d) is 0.27.

Spatial analysis using GMRF for CO2 data. We consider the Gaussian Markov
random field (GMRF) [39] parameter estimation problem for real spatial data with
missing entries. We use a global dataset of column-integrated CO2 obtained from
http://niasra.uow.edu.au/cei/webprojects/UOW175995.html. The values of column-
integrated CO2 are on a grid of 1.25◦ longitude by 1◦ latitude, which results in a
total of 288× 181 = 52128 grid cells (matrix size) on the globe [32]. The dataset has
26633 observations. We assume the GRMF model for the data and use maximum
likelihood estimation to predict the remaining (missing) values. For the GMRF field,
we considered the spatial autoregressive model, i.e., the precision matrix is defined
as G(ξ) = ξ4C + ξ2G1 + G2, where matrices C,G1, and G2 define the neighborhood
(four, eight, and 16 neighbors, respectively) and are sparse [39]. We obtain maxi-
mum likelihood estimates using the SLQ method to choose the optimal parameter ξ.
That is, we sweep through a set of values for ξ and estimate the log-likelihood for
the data given by log p(z | ξ) = log detG(ξ) − z>G(ξ)z − n

2 log(2π), and determine
the parameter ξ that maximizes the log-likelihood. Figure 4(top) shows the sparse
observations of the CO2 data across the globe. The GMRF interpolation with the
parameter ξ = 0.2 is given in Figure 4(bottom).D
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(a) (b)

(c) (d)

Fig. 3. Estimation and prediction for a GRF. (a) The random field. (b) Training data (non-
white pixels) for parameter estimation. (c) Log-likelihood; the horizontal axis denotes the length-scale
parameter. (d) Prediction by using the estimated parameter.
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Prediction using GMRF interpolation
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Fig. 4. GMRF interpolation for CO2 data. Top: Original data with missing values. Bottom:
GMRF interpolated values with parameter ξ = 0.2.D
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6. Conclusions. In this paper, we studied an inexpensive technique which we
called the SLQ to approximately compute the trace of matrix functions tr(f(A)). We
derived approximation error bounds for the method, and showed that it converges
faster than any polynomial approximation method. We also established error bounds
for approximating useful quantities such as the log-likelihood function. Numerical
experiments demonstrated the superior performance of SLQ in practice.
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