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Abstract

For applications as varied as Bayesian neural networks, determinantal point pro-
cesses, elliptical graphical models, and kernel learning for Gaussian processes
(GPs), one must compute a log determinant of an n× n positive definite matrix,
and its derivatives – leading to prohibitive O(n3) computations. We propose novel
O(n) approaches to estimating these quantities from only fast matrix vector mul-
tiplications (MVMs). These stochastic approximations are based on Chebyshev,
Lanczos, and surrogate models, and converge quickly even for kernel matrices that
have challenging spectra. We leverage these approximations to develop a scalable
Gaussian process approach to kernel learning. We find that Lanczos is generally
superior to Chebyshev for kernel learning, and that a surrogate approach can be
highly efficient and accurate with popular kernels.

1 Introduction

There is a pressing need for scalable machine learning approaches to extract rich statistical struc-
ture from large datasets. A common bottleneck — arising in determinantal point processes [1],
Bayesian neural networks [2], model comparison [3], graphical models [4], and Gaussian process
kernel learning [5] — is computing a log determinant over a large positive definite matrix. While
we can approximate log determinants by existing stochastic expansions relying on matrix vector
multiplications (MVMs), these approaches make assumptions, such as near-uniform eigenspectra
[6], which are unsuitable in machine learning contexts. For example, the popular RBF kernel gives
rise to rapidly decaying eigenvalues. Moreover, while standard approaches, such as stochastic power
series, have reasonable asymptotic complexity in the rank of the matrix, they require too many terms
(MVMs) for the precision necessary in machine learning applications.

Gaussian processes (GPs) provide a principled probabilistic kernel learning framework, for which a
log determinant is of foundational importance. Specifically, the marginal likelihood of a Gaussian
process is the probability of data given only kernel hyper-parameters. This utility function for kernel
learning compartmentalizes into automatically calibrated model fit and complexity terms — called
automatic Occam’s razor — such that the simplest models which explain the data are automatically
favoured [7, 5], without the need for approaches such as cross-validation, or regularization, which
can be costly, heuristic, and involve substantial hand-tuning and human intervention. The automatic
complexity penalty, called the Occam’s factor [3], is a log determinant of a kernel (covariance) matrix,
related to the volume of solutions that can be expressed by the Gaussian process.

Many current approaches to scalable Gaussian processes [e.g., 8–10] focus on inference assuming
a fixed kernel, or use approximations that do not allow for very flexible kernel learning [11], due
to poor scaling with number of basis functions or inducing points. Alternatively, approaches which
exploit algebraic structure in kernel matrices can provide highly expressive kernel learning [12], but
are essentially limited to grid structured data.
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Recently, Wilson and Nickisch [13] proposed the structured kernel interpolation (SKI) framework,
which generalizes structuring exploiting methods to arbitrarily located data. SKI works by providing
accurate and fast matrix vector multiplies (MVMs) with kernel matrices, which can then be used in
iterative solvers such as linear conjugate gradients for scalable GP inference. However, evaluating the
marginal likelihood and its derivatives, for kernel learning, has followed a scaled eigenvalue approach
[12, 13] instead of iterative MVM approaches. This approach can be inaccurate, and relies on a fast
eigendecomposition of a structured matrix, which is not available in many consequential situations
where fast MVMs are available, including: (i) additive covariance functions, (ii) multi-task learning,
(iii) change-points [14], and (iv) diagonal corrections to kernel approximations [15]. Fiedler [16] and
Weyl [17] bounds have been used to extend the scaled eigenvalue approach [18, 14], but are similarly
limited. These extensions are often very approximate, and do not apply beyond sums of two and
three matrices, where each matrix in the sum must have a fast eigendecomposition.

In machine learning there has recently been renewed interest in MVM based approaches to approxi-
mating log determinants, such as the Chebyshev [19] and Lanczos [20] based methods, although these
approaches go back at least two decades in quantum chemistry computations [21]. Independently,
several authors have proposed various methods to compute derivatives of log determinants [22, 23].
But both the log determinant and the derivatives are needed for efficient GP marginal likelihood
learning: the derivatives are required for gradient-based optimization, while the log determinant itself
is needed for model comparison, comparisons between the likelihoods at local maximizers, and fast
and effective choices of starting points and step sizes in a gradient-based optimization algorithm.

In this paper, we develop novel scalable and general purpose Chebyshev, Lanczos, and surrogate
approaches for efficiently and accurately computing both the log determinant and its derivatives
simultaneously. Our methods use only fast MVMs, and re-use the same MVMs for both computations.
In particular:

• We derive fast methods for simultaneously computing the log determinant and its derivatives
by stochastic Chebyshev, stochastic Lanczos, and surrogate models, from MVMs alone. We
also perform an error analysis and extend these approaches to higher order derivatives.

• These methods enable fast GP kernel learning whenever fast MVMs are possible, including
applications where alternatives such as scaled eigenvalue methods (which rely on fast eigen-
decompositions) are not, such as for (i) diagonal corrections for better kernel approximations,
(ii) additive covariances, (iii) multi-task approaches, and (iv) non-Gaussian likelihoods.
• We illustrate the performance of our approach on several large, multi-dimensional datasets,

including a consequential crime prediction problem, and a precipitation problem with
n = 528, 474 training points. We consider a variety of kernels, including deep kernels [24],
diagonal corrections, and both Gaussian and non-Gaussian likelihoods.

• We have released code and tutorials as an extension to the GPML library [25] at https:
//github.com/kd383/GPML_SLD. A Python implementation of our approach is also
available through the GPyTorch library: https://github.com/jrg365/gpytorch.

When using our approach in conjunction with SKI [13] for fast MVMs, GP kernel learning is
O(n+ g(m)), for m inducing points and n training points, where g(m) ≤ m logm. With algebraic
approaches such as SKI we also do not need to worry about quadratic storage in inducing points,
since symmetric Toeplitz and Kronecker matrices can be stored with at most linear cost, without
needing to explicitly construct a matrix.

Although we here use SKI for fast MVMs, we emphasize that the proposed iterative approaches are
generally applicable, and can easily be used in conjunction with any method that admits fast MVMs,
including classical inducing point methods [8], finite basis expansions [9], and the popular stochastic
variational approaches [10]. Moreover, stochastic variational approaches can naturally be combined
with SKI to further accelerate MVMs [26].

We start in §2 with an introduction to GPs and kernel approximations. In §3 we introduce stochastic
trace estimation and Chebyshev (§3.1) and Lanczos (§3.2) approximations. In §4, we describe the
different sources of error in our approximations. In §5 we consider experiments on several large
real-world data sets. We conclude in §6. The supplementary materials also contain several additional
experiments and details.

2

https://github.com/kd383/GPML_SLD
https://github.com/kd383/GPML_SLD
https://github.com/jrg365/gpytorch


2 Background

A Gaussian process (GP) is a collection of random variables, any finite number of which have
a joint Gaussian distribution [e.g., 5]. A GP can be used to define a distribution over functions
f(x) ∼ GP(µ(x), k(x, x′)), where each function value is a random variable indexed by x ∈ Rd, and
µ : Rd → R and k : Rd × Rd → R are the mean and covariance functions of the process.

The covariance function is often chosen to be an RBF or Matérn kernel (see the supplementary
material for more details). We denote any kernel hyperparameters by the vector θ. To be concise we
will generally not explicitly denote the dependence of k and associated matrices on θ.

For any locations X = {x1, . . . , xn} ⊂ Rd, fX ∼ N (µX ,KXX) where fX and µX represent the
vectors of function values for f and µ evaluated at each of the xi ∈ X , and KXX is the matrix
whose (i, j) entry is k(xi, xj). Suppose we have a vector of corresponding function values y ∈ Rn,
where each entry is contaminated by independent Gaussian noise with variance σ2. Under a Gaussian
process prior depending on the covariance hyperparameters θ, the log marginal likelihood is given by

L(θ|y) = −1

2

[
(y − µX)Tα+ log |K̃XX |+ n log 2π

]
(1)

where α = K̃−1
XX(y − µX) and K̃XX = KXX + σ2I . Optimization of (1) is expensive, since the

cheapest way of evaluating log |K̃XX | and its derivatives without taking advantage of the structure of
K̃XX involves computing the O(n3) Cholesky factorization of K̃XX . O(n3) computations is too
expensive for inference and learning beyond even just a few thousand points.

A popular approach to GP scalability is to replace the exact kernel k(x, z) by an approximate
kernel that admits fast computations [8]. Several methods approximate k(x, z) via inducing points
U = {uj}mj=1 ⊂ Rd. An example is the subset of regressor (SoR) kernel:

kSoR(x, z) = KxUK
−1
UUKUz

which is a low-rank approximation [27]. The SoR matrix KSoR
XX ∈ Rn×n has rank at most m,

allowing us to solve linear systems involving K̃SoR
XX = KSoR

XX + σ2I and to compute log |K̃SoR
XX |

in O(m2n + m3) time. Another popular kernel approximation is the fully independent training
conditional (FITC), which is a diagonal correction of SoR so that the diagonal is the same as for the
original kernel [15]. Thus kernel matrices from FITC have low-rank plus diagonal structure. This
modification has had exceptional practical significance, leading to improved point predictions and
much more realistic predictive uncertainty [8, 28], making FITC arguably the most popular approach
for scalable Gaussian processes.

Wilson and Nickisch [13] provides a mechanism for fast MVMs through proposing the structured
kernel interpolation (SKI) approximation,

KXX ≈WKUUW
T (2)

where W is an n-by-m matrix of interpolation weights; the authors of [13] use local cubic inter-
polation so that W is sparse. The sparsity in W makes it possible to naturally exploit algebraic
structure (such as Kronecker or Toeplitz structure) in KUU when the inducing points U are on a grid,
for extremely fast matrix vector multiplications with the approximate KXX even if the data inputs
X are arbitrarily located. For instance, if KUU is Toeplitz, then each MVM with the approximate
KXX costs only O(n+m logm). By contrast, placing the inducing points U on a grid for classical
inducing point methods, such as SoR or FITC, does not result in substantial performance gains, due
to the costly cross-covariance matrices KxU and KUz .

3 Methods

Our goal is to estimate, for a symmetric positive definite matrix K̃,

log |K̃| = tr(log(K̃)) and
∂

∂θi

[
log |K̃|

]
= tr

(
K̃−1

(
∂K̃

∂θi

))
,

where log is the matrix logarithm [29]. We compute the traces involved in both the log determinant
and its derivative via stochastic trace estimators [30], which approximate the trace of a matrix using
only matrix vector products.
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The key idea is that for a given matrix A and a random probe vector z with independent entries with
mean zero and variance one, then tr(A) = E[zTAz]; a common choice is to let the entries of the
probe vectors be Rademacher random variables. In practice, we estimate the trace by the sample
mean over nz independent probe vectors. Often surprisingly few probe vectors suffice.

To estimate tr(log(K̃)), we need to multiply log(K̃) by probe vectors. We consider two ways to
estimate log(K̃)z: by a polynomial approximation of log or by using the connection between the
Gaussian quadrature rule and the Lanczos method [19, 20]. In both cases, we show how to re-use the
same probe vectors for an inexpensive coupled estimator of the derivatives. In addition, we may use
standard radial basis function interpolation of the log determinant evaluated at a few systematically
chosen points in the hyperparameter space as an inexpensive surrogate for the log determinant.

3.1 Chebyshev

Chebyshev polynomials are defined by the recursion

T0(x) = 1, T1(x) = x, Tj+1(x) = 2xTj(x)− Tj−1(x) for j ≥ 1.

For f : [−1, 1]→ R the Chebyshev interpolant of degree m is

f(x) ≈ pm(x) :=

m∑
j=0

cjTj(x), where cj =
2− δj0
m+ 1

m∑
k=0

f(xk)Tj(xk)

where δj0 is the Kronecker delta and xk = cos(π(k+1/2)/(m+1)) for k = 0, 1, 2, . . . ,m; see [31].
Using the Chebyshev interpolant of log(1 + αx), we approximate log |K̃| by

log |K̃| − n log β = log |I + αB| ≈
m∑
j=0

cj tr(Tj(B))

when B = (K̃/β − 1)/α has eigenvalues λi ∈ (−1, 1).

For stochastic estimation of tr(Tj(B)), we only need to compute zTTj(B)z for each given probe
vector z. We compute vectors wj = Tj(B)z and ∂wj/∂θi via the coupled recurrences

w0 = z, w1 = Bz, wj+1 = 2Bwj − wj−1 for j ≥ 1,

∂w0

∂θi
= 0,

∂w1

∂θi
=
∂B

∂θi
z,

∂wj+1

∂θi
= 2

(
∂B

∂θi
wj +B

∂wj
∂θi

)
− ∂wj−1

∂θi
for j ≥ 1.

This gives the estimators

log |K̃| ≈ E

 m∑
j=0

cjz
Twj

 and
∂

∂θi
log |K̃| ≈ E

 m∑
j=0

cjz
T ∂wj
∂θi

 .
Thus, each derivative of the approximation costs two extra MVMs per term.

3.2 Lanczos

We can also approximate zT log(K̃)z via a Lanczos decomposition; see [32] for discussion of a
Lanczos-based computation of zT f(K̃)z and [20, 21] for stochastic Lanczos estimation of log
determinants. We run m steps of the Lanczos algorithm, which computes the decomposition

K̃Qm = QmT + βmqm+1e
T
m

whereQm = [q1 q2 . . . qm] ∈ Rn×m is a matrix with orthonormal columns such that q1 = z/‖z‖,
T ∈ Rm×m is tridiagonal, βm is the residual, and em is the mth Cartesian unit vector. We estimate

zT f(K̃)z ≈ eT1 f(‖z‖2T )e1 (3)

where e1 is the first column of the identity. The Lanczos algorithm is numerically unstable. Several
practical implementations resolve this issue [33, 34]. The approximation (3) corresponds to a Gauss
quadrature rule for the Riemann-Stieltjes integral of the measure associated with the eigenvalue
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distribution of K̃. It is exact when f is a polynomial of degree up to 2m− 1. This approximation
is also exact when K̃ has at most m distinct eigenvalues, which is particularly relevant to Gaussian
process regression, since frequently the kernel matrices only have a small number of eigenvalues that
are not close to zero.

The Lanczos decomposition also allows us to estimate derivatives of the log determinant at minimal
cost. Via the Lanczos decomposition, we have

ĝ = Qm(T−1e1‖z‖) ≈ K̃−1z.

This approximation requires no additional matrix vector multiplications beyond those used to com-
pute the Lanczos decomposition, which we already used to estimate log(K̃)z; in exact arithmetic,
this is equivalent to m steps of CG. Computing ĝ in this way takes O(mn) additional time; sub-
sequently, we only need one matrix-vector multiply by ∂K̃/∂θi for each probe vector to estimate
tr(K̃−1(∂K̃/∂θi)) = E[(K̃−1z)T (∂K̃/∂θi)z].

3.3 Diagonal correction to SKI

The SKI approximation may provide a poor estimate of the diagonal entries of the original kernel
matrix for kernels with limited smoothness, such as the Matérn kernel. In general, diagonal corrections
to scalable kernel approximations can lead to great performance gains. Indeed, the popular FITC
method [15] is exactly a diagonal correction of subset of regressors (SoR).

We thus modify the SKI approximation to add a diagonal matrix D,
KXX ≈WKUUW

T +D , (4)
such that the diagonal of the approximated KXX is exact. In other words, D substracts the diagonal
of WKUUW

T and adds the true diagonal of KXX . This modification is not possible for the scaled
eigenvalue method for approximating log determinants in [13], since adding a diagonal matrix makes
it impossible to approximate the eigenvalues of KXX from the eigenvalues of KUU .

However, Eq. (4) still admits fast MVMs and thus works with our approach for estimating the log
determinant and its derivatives. Computing D with SKI costs only O(n) flops since W is sparse for
local cubic interpolation. We can therefore compute (WT ei)

TKUU (WT ei) in O(1) flops.

3.4 Estimating higher derivatives

We have already described how to use stochastic estimators to compute the log marginal likelihood
and its first derivatives. The same approach applies to computing higher-order derivatives for a
Newton-like iteration, to understand the sensitivity of the maximum likelihood parameters, or for
similar tasks. The first derivatives of the full log marginal likelihood are

∂L
∂θi

= −1

2

[
tr

(
K̃−1 ∂K̃

∂θi

)
− αT ∂K̃

∂θi
α

]
and the second derivatives of the two terms are

∂2

∂θi∂θj

[
log |K̃|

]
= tr

(
K̃−1 ∂2K̃

∂θi∂θj
− K̃−1 ∂K̃

∂θi
K̃−1 ∂K̃

∂θj

)
,

∂2

∂θi∂θj

[
(y − µX)Tα

]
= 2αT

∂K̃

∂θi
K̃−1 ∂K̃

∂θj
α− αT ∂2K̃

∂θi∂θj
α.

Superficially, evaluating the second derivatives would appear to require several additional solves
above and beyond those used to estimate the first derivatives of the log determinant. In fact, we can
get an unbiased estimator for the second derivatives with no additional solves, but only fast products
with the derivatives of the kernel matrices. Let z and w be independent probe vectors, and define
g = K̃−1z and h = K̃−1w. Then

∂2

∂θi∂θj

[
log |K̃|

]
= E

[
gT

∂2K̃

∂θi∂θj
z −

(
gT
∂K̃

∂θi
w

)(
hT

∂K̃

∂θj
z

)]
,

∂2

∂θi∂θj

[
(y − µX)Tα

]
= 2E

[(
zT
∂K̃

∂θi
α

)(
gT
∂K̃

∂θj
α

)]
− αT ∂2K̃

∂θi∂θj
α.
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Hence, if we use the stochastic Lanczos method to compute the log determinant and its derivatives,
the additional work required to obtain a second derivative estimate is one MVM by each second
partial of the kernel for each probe vector and for α, one MVM of each first partial of the kernel with
α, and a few dot products.

3.5 Radial basis functions

Another way to deal with the log determinant and its derivatives is to evaluate the log determinant
term at a few systematically chosen points in the space of hyperparameters and fit an interpolation
approximation to these values. This is particularly useful when the kernel depends on a modest
number of hyperparameters (e.g., half a dozen), and thus the number of points we need to precompute
is relatively small. We refer to this method as a surrogate, since it provides an inexpensive substitute
for the log determinant and its derivatives. For our surrogate approach, we use radial basis function
(RBF) interpolation with a cubic kernel and a linear tail. See e.g. [35–38] and the supplementary
material for more details on RBF interpolation.

4 Error properties

In addition to the usual errors from sources such as solver termination criteria and floating point arith-
metic, our approach to kernel learning involves several additional sources of error: we approximate
the true kernel with one that enables fast MVMs, we approximate traces using stochastic estimation,
and we approximate the actions of log(K̃) and K̃−1 on probe vectors.

We can compute first-order estimates of the sensitivity of the log likelihood to perturbations in the
kernel using the same stochastic estimators we use for the derivatives with respect to hyperparameters.
For example, if Lref is the likelihood for a reference kernel K̃ref = K̃ + E, then

Lref(θ|y) = L(θ|y)− 1

2

(
E
[
gTEz

]
− αTEα

)
+O(‖E‖2),

and we can bound the change in likelihood at first order by ‖E‖
(
‖g‖‖z‖+ ‖α‖2

)
. Given bounds on

the norms of ∂E/∂θi, we can similarly estimate changes in the gradient of the likelihood, allowing
us to bound how the marginal likelihood hyperparameter estimates depend on kernel approximations.

If K̃ = UΛUT + σ2I , the Hutchinson trace estimator has known variance [39]

Var[zT log(K̃)z] =
∑
i 6=j

[log(K̃)]2ij ≤
n∑
i=1

log(1 + λj/σ
2)2.

If the eigenvalues of the kernel matrix without noise decay rapidly enough compared to σ, the variance
will be small compared to the magnitude of tr(log K̃) = 2n log σ +

∑n
i=1 log(1 + λj/σ

2). Hence,
we need fewer probe vectors to obtain reasonable accuracy than one would expect from bounds that
are blind to the matrix structure. In our experiments, we typically only use 5–10 probes — and we
use the sample variance across these probes to estimate a posteriori the stochastic component of the
error in the log likelihood computation. If we are willing to estimate the Hessian of the log likelihood,
we can increase rates of convergence for finding kernel hyperparameters.

The Chebyshev approximation scheme requires O(
√
κ log(κ/ε)) steps to obtain an O(ε) approxima-

tion error in computing zT log(K̃)z, where κ = λmax/λmin is the condition number of K̃ [19]. This
behavior is independent of the distribution of eigenvalues within the interval [λmin, λmax], and is
close to optimal when eigenvalues are spread quasi-uniformly across the interval. Nonetheless, when
the condition number is large, convergence may be quite slow. The Lanczos approach converges
at least twice as fast as Chebyshev in general [20, Remark 1], and converges much more rapidly
when the eigenvalues are not uniform within the interval, as is the case with log determinants of
many kernel matrices. Hence, we recommend the Lanczos approach over the Chebyshev approach in
general. In all of our experiments, the error associated with approximating zT log(K̃)z by Lanczos
was dominated by other sources of error.
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5 Experiments

We test our stochastic trace estimator with both Chebyshev and Lanczos approximation schemes on:
(1) a sound time series with missing data, using a GP with an RBF kernel; (2) a three-dimensional
space-time precipitation data set with over half a million training points, using a GP with an RBF
kernel; (3) a two-dimensional tree growth data set using a log-Gaussian Cox process model with an
RBF kernel; (4) a three-dimensional space-time crime datasets with a log-Gaussian Cox model with
Matérn 3/2 and spectral mixture kernels; and (5) a high-dimensional feature space using the deep
kernel learning framework [24]. In the supplementary material we also include several additional
experiments to illustrate particular aspects of our approach, including kernel hyperparameter recovery,
diagonal corrections (Section 3.3), and surrogate methods (Section 3.5). Throughout we use the SKI
method [13] of Eq. (2) for fast MVMs. We find that the Lanczos and surrogate methods are able to
do kernel recovery and inference significantly faster and more accurately than competing methods.

5.1 Natural sound modeling

Here we consider the natural sound benchmark in [13], shown in Figure 1(a). Our goal is to recover
contiguous missing regions in a waveform with n = 59, 306 training points. We exploit Toeplitz
structure in the KUU matrix of our SKI approximate kernel for accelerated MVMs.

The experiment in [13] only considered scalable inference and prediction, but not hyperparameter
learning, since the scaled eigenvalue approach requires all the eigenvalues for an m×m Toeplitz
matrix, which can be computationally prohibitive with costO(m2). However, evaluating the marginal
likelihood on this training set is not an obstacle for Lanczos and Chebyshev since we can use fast
MVMs with the SKI approximation at a cost of O(n+m logm).

In Figure 1(b), we show how Lanczos, Chebyshev and surrogate approaches scale with the number
of inducing points m compared to the scaled eigenvalue method and FITC. We use 5 probe vectors
and 25 iterations for Lanczos, both when building the surrogate and for hyperparameter learning
with Lanczos. We also use 5 probe vectors for Chebyshev and 100 moments. Figure 1(b) shows the
runtime of the hyperparameter learning phase for different numbers of inducing points m, where
Lanczos and the surrogate are clearly more efficient than scaled eigenvalues and Chebyshev. For
hyperparameter learning, FITC took several hours to run, compared to minutes for the alternatives;
we therefore exclude FITC from Figure 1(b). Figure 1(c) shows the time to do inference on the 691
test points, while 1(d) shows the standardized mean absolute error (SMAE) on the same test points.
As expected, Lanczos and surrogate make accurate predictions much faster than Chebyshev, scaled
eigenvalues, and FITC. In short, Lanczos and the surrogate approach are much faster than alternatives
for hyperparameter learning with a large number of inducing points and training points.
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Figure 1: Sound modeling using 59,306 training points and 691 test points. The intensity of the
time series can be seen in (a). Train time for RBF kernel hyperparameters is in (b) and the time
for inference is in (c). The standardized mean absolute error (SMAE) as a function of time for an
evaluation of the marginal likelihood and all derivatives is shown in (d). Surrogate is (——), Lanczos
is (- - -), Chebyshev is (— �—), scaled eigenvalues is (— + —), and FITC is (— o —).

5.2 Daily precipitation prediction

This experiment involves precipitation data from the year of 2010 collected from around 5500 weather
stations in the US1. The hourly precipitation data is preprocessed into daily data if full information of
the day is available. The dataset has 628, 474 entries in terms of precipitation per day given the date,
longitude and latitude. We randomly select 100, 000 data points as test points and use the remaining

1https://catalog.data.gov/dataset/u-s-hourly-precipitation-data
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points for training. We then perform hyperparameter learning and prediction with the RBF kernel,
using Lanczos, scaled eigenvalues, and exact methods.

For Lanczos and scaled eigenvalues, we optimize the hyperparameters on the subset of data for
January 2010, with an induced grid of 100 points per spatial dimension and 300 in the temporal
dimension. Due to memory constraints we only use a subset of 12, 000 entries for training with
the exact method. While scaled eigenvalues can perform well when fast eigendecompositions are
possible, as in this experiment, Lanczos nonetheless still runs faster and with slightly lower MSE.

Method n m MSE Time [min]
Lanczos 528k 3M 0.613 14.3

Scaled eigenvalues 528k 3M 0.621 15.9
Exact 12k - 0.903 11.8

Table 1: Prediction comparison for the daily precipitation data showing the number of training points
n, number of induced grid points m, the mean squared error, and the inference time.

Incidentally, we are able to use 3 million inducing points in Lanczos and scaled eigenvalues, which is
enabled by the SKI representation [13] of covariance matrices, for a a very accurate approximation.
This number of inducing points m is unprecedented for typical alternatives which scale as O(m3).

5.3 Hickory data

In this experiment, we apply Lanczos to the log-Gaussian Cox process model with a Laplace
approximation for the posterior distribution. We use the RBF kernel and the Poisson likelihood in
our model. The scaled eigenvalue method does not apply directly to non-Gaussian likelihoods; we
thus applied the scaled eigenvalue method in [13] in conjunction with the Fiedler bound in [18] for
the scaled eigenvalue comparison. Indeed, a key advantage of the Lanczos approach is that it can be
applied whenever fast MVMs are available, which means no additional approximations such as the
Fiedler bound are required for non-Gaussian likelihoods.

This dataset, which comes from the R package spatstat, is a point pattern of 703 hickory trees in a
forest in Michigan. We discretize the area into a 60× 60 grid and fit our model with exact, scaled
eigenvalues, and Lanczos. We see in Table 2 that Lanczos recovers hyperparameters that are much
closer to the exact values than the scaled eigenvalue approach. Figure 2 shows that the predictions by
Lanczos are also indistinguishable from the exact computation.

Method sf `1 `2 − log p(y|θ) Time [s]
Exact 0.696 0.063 0.085 1827.56 465.9

Lanczos 0.693 0.066 0.096 1828.07 21.4
Scaled eigenvalues 0.543 0.237 0.112 1851.69 2.5

Table 2: Hyperparameters recovered on the Hickory dataset.

(a) Point pattern data (b) Prediction by exact (c) Scaled eigenvalues (d) Lanczos

Figure 2: Predictions by exact, scaled eigenvalues, and Lanczos on the Hickory dataset.

5.4 Crime prediction

In this experiment, we apply Lanczos with the spectral mixture kernel to the crime forecasting
problem considered in [18]. This dataset consists of 233, 088 incidents of assault in Chicago from
January 1, 2004 to December 31, 2013. We use the first 8 years for training and attempt to predict the
crime rate for the last 2 years. For the spatial dimensions, we use the log-Gaussian Cox process model,
with the Matérn-5/2 kernel, the negative binomial likelihood, and the Laplace approximation for the
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posterior. We use a spectral mixture kernel with 20 components and an extra constant component for
the temporal dimension. We discretize the data into a 17× 26 spatial grid corresponding to 1-by-1
mile grid cells. In the temporal dimension we sum our data by weeks for a total of 522 weeks. After
removing the cells that are outside Chicago, we have a total of 157, 644 observations.

The results for Lanczos and scaled eigenvalues (in conjunction with the Fiedler bound due to the
non-Gaussian likelihood) can be seen in Table 3. The Lanczos method used 5 Hutchinson probe
vectors and 30 Lanczos steps. For both methods we allow 100 iterations of LBFGS to recover
hyperparameters and we often observe early convergence. While the RMSE for Lanczos and
scaled eigenvalues happen to be close on this example, the recovered hyperparameters using scaled
eigenvalues are very different than for Lanczos. For example, the scaled eigenvalue method learns
a much larger σ2 than Lanczos, indicating model misspecification. In general, as the data become
increasingly non-Gaussian the Fiedler bound (used for fast scaled eigenvalues on non-Gaussian
likelihoods) will become increasingly misspecified, while Lanczos will be unaffected.

Method `1 `2 σ2 Trecovery[s] Tprediction[s] RMSEtrain RMSEtest
Lanczos 0.65 0.67 69.72 264 10.30 1.17 1.33

Scaled eigenvalues 0.32 0.10 191.17 67 3.75 1.19 1.36
Table 3: Hyperparameters recovered, recovery time and RMSE for Lanczos and scaled eigenvalues
on the Chicago assault data. Here `1 and `2 are the length scales in spatial dimensions and σ2 is the
noise level. Trecovery is the time for recovering hyperparameters. Tprediction is the time for prediction at
all 157, 644 observations (including training and testing).

5.5 Deep kernel learning

To handle high-dimensional datasets, we bring our methods into the deep kernel learning framework
[24] by replacing the final layer of a pre-trained deep neural network (DNN) with a GP. This
experiment uses the gas sensor dataset from the UCI machine learning repository. It has 2565
instances with 128 dimensions. We pre-train a DNN, then attach a Gaussian process with RBF
kernels to the two-dimensional output of the second-to-last layer. We then further train all parameters
of the resulting kernel, including the weights of the DNN, through the GP marginal likelihood. In
this example, Lanczos and the scaled eigenvalue approach perform similarly well. Nonetheless, we
see that Lanczos can effectively be used with SKI on a high dimensional problem to train hundreds
of thousands of kernel parameters.

Method DNN Lanczos Scaled eigenvalues
RMSE 0.1366± 0.0387 0.1053± 0.0248 0.1045± 0.0228

Time [s] 0.4438 2.0680 1.6320
Table 4: Prediction RMSE and per training iteration runtime.

6 Discussion

There are many cases in which fast MVMs can be achieved, but it is difficult or impossible to
efficiently compute a log determinant. We have developed a framework for scalable and accurate
estimates of a log determinant and its derivatives relying only on MVMs. We particularly consider
scalable kernel learning, showing the promise of stochastic Lanczos estimation combined with
a pre-computed surrogate model. We have shown the scalability and flexibility of our approach
through experiments with kernel learning for several real-world data sets using both Gaussian and
non-Gaussian likelihoods, and highly parametrized deep kernels.

Iterative MVM approaches have great promise for future exploration. We have only begun to explore
their significant generality. In addition to log determinants, the methods presented here could be
adapted to fast posterior sampling, diagonal estimation, matrix square roots, and many other standard
operations. The proposed methods only depend on fast MVMs—and the structure necessary for
fast MVMs often exists, or can be readily created. We have here made use of SKI [13] to create
such structure. But other approaches, such as stochastic variational methods [10], could be used
or combined with SKI for fast MVMs, as in [26]. Moreover, iterative MVM methods naturally
harmonize with GPU acceleration, and are therefore likely to increase in their future applicability and
popularity. Finally, one could explore the ideas presented here for scalable higher order derivatives,
making use of Hessian methods for greater convergence rates.
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A Background

Two popular covariance kernels are the RBF kernel

kRBF(x, x′) = s2
f exp

(
‖x− x′‖2

2`2

)
and the Matérn kernel

kMat,ν(x, x′) = s2
f

21−ν

Γ(ν)

(√
2ν ‖x−x

′‖
`

)ν
Kν

(√
2ν ‖x−x

′‖
`
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where 1/2, 3/2, and 5/2 are popular choices for ν to model heavy-tailed correlations between
function values. The spectral behavior of these and other kernels has been well-studied for years,
and we recommend [40] for recent results. Particularly relevant to our discussion is a theorem due
to Weyl, which says that if a symmetric kernel has ν continuous derivatives, then the eigenvalues
of the associated integral operator decay like |λn| = o(n−ν−1/2). Hence, the eigenvalues of kernel
matrices for the smooth RBF kernel (and of any given covariance matrix based on that kernel) tend to
decay much more rapidly than those of the less smooth Matérn kernel, which has two derivatives at
zero for ν = 5/2, one derivative at zero for ν = 3/2, and no derivatives at zero for ν = 1/2. This
matters to the relative performance of Chebyshev and Lanczos approximations of the log determinant
for large values of sf and small values of σ on the exact and approximate RBF kernel.

B Methods

B.1 Scaled eigenvalue method

The scaled eigenvalue method was introduced in [12] to estimate log |KXX+σ2I|, whereX consists
of n points. The eigenvalues {λi}ni=1 of KXX can be approximated using the n largest eigenvalues
of a covariance matrix K̃Y Y on a full grid with m points such that X ⊂ Y . Specifically,

log |KXX + σ2I| =
n∑
i=1

log(λi + σ2) ≈
n∑
i=1

log
( n
m
λ̃i + σ2

)
The induced kernel KUU plays the role of K̃Y Y when the scaled eigenvalue method is applied to
SKI and the eigenvalues of KUU can be efficiently computed. Assuming that the eigenvalues can be
computed efficiently is a much stronger assumption than our fast MVM based approach.

B.2 Radial basis function surrogates

Radial basis function (RBF) interpolation is one of the most popular approaches to approximating
scattered data in a general number of dimensions [35–38]. Given distinct interpolation points
Θ = {θi}ni=1, the RBF model takes the form

sΘ(θ) =

n∑
i=1

λiϕ(‖x− θi‖) + p(x) (5)

where the kernel ϕ : R≥0 → R is a one-dimensional function and p ∈ Πd
m−1, the space of

polynomials with d variables of degree no more than m − 1. There are many possible choices
for ϕ such as the cubic kernel ϕ(r) = r3 and the thin-plate spline kernel ϕ(r) = r2 log(r). The
coefficients λi are determined by imposing the interpolation conditions sΘ(θi) = log |K(θi)| for
i = 1, . . . , n and the discrete orthogonality condition

n∑
i=1

λiq(θ
i) = 0, ∀q ∈ Πd

m−1. (6)

For appropriate RBF kernels, this linear system is nonsingular provided that polynomials in Πd
m−1

are uniquely determined by their values on the interpolation set.

B.3 Comparison to a reference kernel

Suppose more generally that K̃ = K + σ2I is an approximation to a reference kernel matrix
K̃ref = Kref +σ2I , and let E = Kref−K. Let L(θ|y) and Lref(θ|y) be the log likelihood functions
for the two kernels; then

Lref(θ|y) = L(θ|y)− 1

2

[
tr(K̃−1E)− αTEα

]
+O(‖E‖2)

∂

∂θi
Lref(θ|y) =

∂

∂θi
L(θ|y)− 1

2

[
tr

(
K̃−1 ∂E

∂θi
− K̃−1 ∂K̃

∂θi
K̃−1E

)
− αT ∂E

∂θi
α

]
+O(‖E‖2).

12



If we are willing to pay the price of a few MVMs with E, we can use these expressions to improve
our maximum likelihood estimate. Let z and w be independent probe vectors with g = K̃−1z and
ĝ = K̃−1w. To estimate the trace in the derivative computation, we use the standard stochastic trace
estimation approach together with the observation that E[wwT ] = I:

tr

(
K̃−1 ∂E

∂θi
− K̃−1 ∂K̃

∂θi
K̃−1E

)
= E

[
gT
∂E

∂θi
z − gT ∂K

∂θi
wĝTEz

]
This linearization may be used directly (with a stochastic estimator); alternately, if we have an
estimates for ‖E‖ and ‖∂E/∂θi‖, we can substitute these in order to get estimated bounds on the
magnitude of the derivatives. Coupled with a similar estimator for the Hessian of the likelihood
function (described in the supplementary materials), we can use this method to compute the maximum
likelihood parameters for the fast kernel, then compute a correction −H−1∇θLref to estimate the
maximum likelihood parameters of the reference kernel.

C Additional experiments

This section contains several experiments with synthetic data sets to illustrate particular aspects of
the method.

C.1 1D cross-section plots

In this experiment we compare the accuracy of Lanczos and Chebyshev for 1-dimensional perturba-
tions of a set of true hyper-parameters, and demonstrate how critical it is to use diagonal replacement
for some approximate kernels. We choose the true hyper-parameters to be (`, sf , σ) = (0.1, 1, 0.1)
and consider two different types of datasets. The first dataset consists of 1000 equally spaced points
in the interval [0, 4] in which case the kernel matrix of a stationary kernel is Toeplitz and we can
make use of fast matrix-vector multiplication. The second dataset consists of 1000 data points drawn
independently from a U(0, 4) distribution. We use SKI with cubic interpolation to construct an
approximate kernel based on 1000 equally spaced points. The function values are drawn from a GP
with the true hyper-parameters, for both the true and approximate kernel. We use 250 iterations for
Lanczos and 250 Chebyshev moments in order to assure convergence of both methods. The results
for the first dataset with the RBF and Matérn kernels can be seen in Figure 3(a)-3(d). The results for
the second dataset with the SKI kernel can be seen in Figure 4(a)-4(d).

Lanczos yields an excellent approximation to the log determinant and its derivatives for both the
exact and the approximate kernels, while Chebyshev struggles with large values of sf and small
values of σ on the exact and approximate RBF kernel. This is expected since Chebyshev has issues
with the singularity at zero while Lanczos has large quadrature weights close to zero to compensate
for this singularity. The scaled eigenvalue method has issues with the approximate Matérn 1/2 kernel.

C.2 Why Lanczos is better than Chebyshev

In this experiment, we study the performance advantage of Lanczos over Chebyshev. Figure 5 shows
that the Ritz values of Lanczos quickly converge to the spectrum of the RBF kernel thanks to the
absence of interior eigenvalues. The Chebyshev approximation shows the expected equioscillation
behavior. More importantly, the Chebyshev approximation for logarithms has its greatest error near
zero where the majority of the eigenvalues are, and those also have the heaviest weight in the log
determinant.

Another advantage of Lanczos is that it requires minimal knowledge of the spectrum, while Chebyshev
needs the extremal eigenvalues for rescaling. In addition, with Lanczos we can get the derivatives
with only one MVM per hyper-parameter, while Chebyshev requires an MVM at each iteration,
leading to extra computation and memory usage.

C.3 The importance of diagonal correction

This experiment shows that diagonal correction of the approximate kernel can be very important.
Diagonal correction cannot be used efficiently for some methods, such as the scaled eigenvalue
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Figure 3: 1-dimensional perturbations for the exact RBF and Matérn 1/2 kernel where the data is 1000
equally spaced points in the interval [0, 4]. The exact values are (•), Lanczos is (—–), Chebyshev is
(—–). The error bars of Lanczos and Chebyshev are 1 standard deviation and were computed from
10 runs with different probe vectors

method, and this may hurt its predictive performance. Our experiment is similar to [8]. We generate
1000 uniformly distributed points in the interval [−10, 10], and we choose a small number of inducing
points in such a way that there is a large chunk of the interval where there is no inducing point. We
are interested in the behavior of the predictive uncertainties on this subinterval. The function values
are given by f(x) = 1 + x/2 + sin(x) and normally distributed noise with standard deviation 0.05 is
added to the function values. We find the optimal hyper-parameters of the Matérn 3/2 using the exact
method and use these hyper-parameters to make predictions with Lanczos, Chebyshev, FITC, and the
scaled eigenvalue method. We consider Lanczos both with and without diagonal correction in order
to see how this affects the predictions. The results can be seen in Figure 6.

It is clear that Lanczos and Chebyshev are too confident in the predictive mean when diagonal
correction is not used, while the predictive uncertainties agree well with FITC when diagonal
correction is used. The scaled eigenvalue method cannot be used efficiently with diagonal correction
and we see that this leads to predictions similar to Lanczos and Chebyshev without diagonal correction.
The flexibility of being able to use diagonal correction with Lanczos and Chebyshev makes these
approaches very appealing.

C.4 Surrogate log determinant approximation

The point of this experiment is to illustrate how accurate the level-curves of the surrogate model
are compared to the level-curves of the true log determinant. We consider the RBF and the Matérn
3/2 kernels and the same datasets that we considered in C.1. We fix sf = 1 and study how the
level curves compare when we vary ` and σ. Building the surrogate with all three hyper-parameters
produces similar results, but requires more design points. We use 50 design points to construct a
cubic RBF with a linear tail. The values of the log determinant and its derivatives are computed with
Lanczos. It is clear from Figure 7 that the surrogate model does a good job approximating the log
determinant for both kernels.
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Figure 4: 1-dimensional perturbations with the SKI (cubic) approximations of the RBF and Matérn
1/2 kernel where the data is 1000 points drawn from N (0, 2). The exact values are (•), Lanczos with
diagonal replacement is (—–), Chebyshev with diagonal replacement is (—–), Lanczos without diag-
onal replacement is (—–), Chebyshev without diagonal replacement is (—–), and scaled eigenvalues
is (×). Diagonal replacement makes no perceptual difference for the RBF kernel so the lines are
overlapping in this case. The error bars of Lanczos and Chebyshev are 1 standard deviation and were
computed from 10 runs with different probe vectors

C.5 Kernel hyper-parameter recovery

This experiments tests how well we can recover hyper-parameters from data generated from a GP. We
compare Chebyshev, Lanczos, the surrogate, the scaled eigenvalue method, and FITC. We consider a
dataset of 5000 points generated from a N (0, 2) distribution. We use SKI with cubic interpolation
and a total of 2000 inducing points for Lanczos, Chebyshev, and then scaled eigenvalue method.
FITC was used with 750 equally spaced points because it has a longer runtime as a function of the
number of inducing points. We consider the RBF kernel and the Matérn 3/2 kernel and sample from a
GP with ground truth parameters (`, sf , σ) = (0.01, 0.5, 0.05). The GPs for which we try to recover
the hyper-parameters were generated from the original kernel. It is important to emphasize that there
are two sources of errors present: the error from the kernel approximation errors and the stochastic
error from Lanczos and Chebyshev. We saw in Figure 3 and 4 that the stochastic error for Lanczos is
relatively small, so this follow-up experiment helps us understand how Lanczos is influenced by the
error incurred from an approximate kernel. We show the true log marginal likelihood, the recovered
hyper-parameters, and the run-time in Table 5.

It is clear from Table 5 that most methods are able to recover parameters close to the ground truth for
the RBF kernel. The results are more interesting for the Matérn 3/2 kernel where FITC struggles and
the parameters recovered by FITC have a value of the log marginal likelihood that is much worse
than the other methods.
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Figure 5: A comparison between the true spectrum, the Lanczos weights (m = 50), and the
Chebyshev weights (m = 100) for the RBF kernel with ` = 0.3, sf = 1, and σ = 0.1. All weights
and counts are on a log-scale so that they are easier to compare. Blue bars correspond to positive
weights while red bars correspond to negative weights.

RBF Matérn 3/2

True − log p(y|θ) −6.22e3 −4.91e3
Hypers (0.01, 0.5, 0.05) (0.01, 0.5, 0.05)

Exact
− log p(y|θ) −6.23e3 −4.91e3

Hypers (1.01e−2, 4.81e−1, 5.03e−2) (9.63e−3, 4.87e−1, 4.96e−2)
Time (s) 368.9 466.7

Lanczos
− log p(y|θ) −6.22e3 −4.86e3

Hypers (1.00e−2, 4.77e−1, 5.03e−2) (1.04e−2, 4.87e−1, 4.67e−2)
Time (s) 66.2 133.4

Chebyshev
− log p(y|θ) −6.23e3 −4.81e3

Hypers (9.84e−3, 4.85e−1, 5.12e−2) (1.11e−2, 4.66e−1, 5.78e−2)
Time (s) 110.3 173.3

Surrogate
− log p(y|θ) −6.22e3 −4.86e3

Hypers (1.01e−2, 4.88e−1, 4.85e−2) (1.02e−2, 4.80e−1, 4.66e−2)
Time (s) 48.2 44.3

Scaled eigenvalues
− log p(y|θ) −6.22e3 −4.71e3

Hypers (1.04e−2, 4.52e−1, 5.14e−2) (1.13e−2, 4.53e−1, 6.37e−2)
Time (s) 90.2 127.3

FITC
− log p(y|θ) −6.22e3 −4.11e3

Hypers (1.03e−2, 4.90e−1, 5.07e−2) (1.34e−2, 5.22e−1, 8.91e−2)
Time (s) 86.6 136.9

Table 5: Hyper-parameter recovery for the RBF and Matérn 3/2 kernels. The data was generated
from 5000 normally distributed points. Lanczos, surrogate, and scaled eigenvalues all used 2000
inducing points while FITC used 750. These numbers where chosen to make their run times close
to equal. Diagonal correction was applied to the Matérn 3/2 approximate kernel. The value of
the log marginal likelihood was was computed from the exact kernel and shows the value of the
hyper-parameters recovered by each method. We ran Lanczos 5 times and averaged the values.
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(d) Chebyshev without diagonal correction
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Figure 6: Example that shows how important diagonal correction can be for some kernels. The
Matérn 3/2 kernel was used to fit the data given by the black dots. This data was generated from
the function f(x) = 1 + x/2 + sin(x) to which we added normally distributed noise with standard
deviation 0.05. We used the exact method to find the optimal hyper-parameters and used these
hyper-parameters to study the different behavior of the predictive uncertainties when the inducing
points are given by the green crosses. The solid blue line is the predictive mean and the dotted red
lines shows a confidence interval of two standard deviations.
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(b) Matérn 3/2 exact
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Figure 7: Level curves of the exact and surrogate approximation of the log determinant as a function
of ` and σ for the RBF and Matérn 3/2 kernels. We used sf = 1 and the dataset consisted of 1000
equally spaced points in the interval [0, 4]. The surrogate model was constructed from the points
shown with (•) and the log determinant values were computed using stochastic Lanczos.
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