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COMPUTING A NONNEGATIVE MATRIX
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Abstract. In the nonnegative matrix factorization (NMF) problem we are given an n × m
nonnegative matrix M and an integer r > 0. Our goal is to express M as AW , where A and W are
nonnegative matrices of size n×r and r×m, respectively. In some applications, it makes sense to ask
instead for the product AW to approximate M , i.e. (approximately) minimize ‖M − AWF ‖, where
‖‖F , denotes the Frobenius norm; we refer to this as approximate NMF. This problem has a rich
history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics,
communication complexity, demography, chemometrics, etc. In the past decade NMF has become
enormously popular in machine learning, where A and W are computed using a variety of local
search heuristics. Vavasis recently proved that this problem is NP-complete. (Without the restriction
that A and W be nonnegative, both the exact and approximate problems can be solved optimally
via the singular value decomposition.) We initiate a study of when this problem is solvable in
polynomial time. Our results are the following: 1. We give a polynomial-time algorithm for exact
and approximate NMF for every constant r. Indeed NMF is most interesting in applications precisely
when r is small. 2. We complement this with a hardness result, that if exact NMF can be solved in
time (nm)o(r), 3-SAT has a subexponential-time algorithm. This rules out substantial improvements
to the above algorithm. 3. We give an algorithm that runs in time polynomial in n, m, and r under
the separablity condition identified by Donoho and Stodden in 2003. The algorithm may be practical
since it is simple and noise tolerant (under benign assumptions). Separability is believed to hold
in many practical settings. To the best of our knowledge, this last result is the first example of a
polynomial-time algorithm that provably works under a non-trivial condition on the input and we
believe that this will be an interesting and important direction for future work.
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1. Introduction. In the nonnegative matrix factorization (NMF) problem we
are given an n × m matrix M with nonnegative real entries (such a matrix will be
henceforth called “nonnegative”) and an integer r > 0. Our goal is to express M as
AW , where A and W are nonnegative matrices of size n× r and r ×m, respectively.
We refer to r as the inner dimension of the factorization and the smallest value of r
for which there is such a factorization as the nonnegative rank of M . An equivalent
formulation is that our goal is to write M as the sum of r nonnegative rank-one matri-
ces.1 We note that r must be at least the rank of M in order for such a factorization
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1It is a common misconception that since the real rank is the maximum number of linearly
independent columns, the nonnegative rank must be the size of the largest set of columns in which
no column can be written as a nonnegative combination of the rest. This is false, and has been the
source of many incorrect proofs demonstrating a gap between rank and nonnegative rank. A correct
proof finally follows from the results of Fiorini, Rothvoß, and Tiwary [15].
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NONNEGATIVE MATRIX FACTORIZATION 1583

to exist. In some applications, it makes sense to instead ask for AW to be a good
approximation to M in some suitable matrix norm. We refer to the problem of find-
ing a nonnegative A and W of inner dimension r that (approximately) minimizes
‖M −AW‖F as approximate NMF, where ‖‖F denotes the Frobenius norm. Without
the restriction that A and W be nonnegative, the problem can be solved exactly via
SVD [18].

NMF is a fundamental problem that has been independently introduced in a
number of different contexts and applications. Many interesting heuristics and lo-
cal search algorithms (including the familiar expectation maximization) have been
proposed to find such factorizations. One compelling family of applications is data
analysis, where a nonnegative factorization is computed in order to extract certain
latent relationships in the data and has been applied to image segmentation [27], [28],
information retrieval [22], and document clustering [37]. NMF also has applications in
fields such as chemometrics [26] (where the problem has a long history of study under
the name self modeling curve resolution) and biology (e.g., in vision research [11]): in
some cases, the underlying physical model for a system has natural restrictions that
force a corresponding matrix factorization to be nonnegative. In demography (see,
e.g., [21]), NMF is used to model the dynamics of marriage through a mechanism sim-
ilar to the chemical laws of mass action. In combinatorial optimization, Yannakakis
[39] characterized the number of extra variables needed to succinctly describe a given
polytope as the nonnegative rank of an appropriate matrix (called the “slack ma-
trix”). In communication complexity, Aho, Ullman, and Yannakakis [1] showed that
the log of the nonnegative rank of a Boolean matrix is polynomially related to its
deterministic communication complexity—and hence the famous log-rank conjecture
of Lovasz and Saks [29] is equivalent to showing a quasi-polynomial relationship be-
tween real rank and nonnegative rank for Boolean matrices. In complexity theory,
Nisan used nonnegative rank to prove lower bounds for noncommutative models of
computation [32]. Additionally, the 1993 paper of Cohen and Rothblum [12] gives a
long list of other applications in statistics and quantum mechanics. That paper also
gives an exact algorithm that runs in exponential time.

Question 1.1. Can an NMF be computed efficiently when the inner dimension,
r, is small?

Vavasis recently proved that the NMF problem is NP -hard when r is large [38],
but this only rules out an algorithm whose running time is polynomial in n, m, and r.
Arguably, in most significant applications, r is small. Usually the algorithm designer
posits a two-level generative model for the data and uses NMF to compute “hidden”
variables that explain the data. This explanation is only interesting when the number
of hidden variables (r) is much smaller than the number of examples (m) or the
number of observations per example (n). In information retrieval, we often take M
to be a “term-by-document” matrix, where the (i, j)th entry in M is the frequency
of occurrence of the ith term in the jth document in the database. In this context,
a NMF computes r “topics” which are each a distribution on words (corresponding
to the r columns of A) and each document (a column in M) can be expressed as a
distribution on topics given by the corresponding column ofW [22]. This example will
be a useful metaphor for thinking about nonnegative factorization. In particular it
justifies the assertion r should be small—the number of topics should be much smaller
than the total number of documents in order for this representation to be meaningful.
See the appendix for more details.
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1584 S. ARORA, R. GE, R. KANNAN, AND A. MOITRA

Focusing on applications, and the overwhelming empirical evidence that heuristic
algorithms do find good enough factorizations in practice, motivates our next question.

Question 1.2. Can we design very efficient algorithms for NMF if we make
reasonable assumptions about M?

1.1. Our results. Here we largely resolve Question 1.1. We give both an algo-
rithm for accomplishing this algorithmic task that runs in polynomial time for any
constant value of r and we complement this with an intractability result which states
that assuming the exponential-time hypothesis [24] no algorithm can solve the exact
NMF problem in time (nm)o(r).

Theorem 1.3. There is an algorithm for the exact NMF problem (where r is the

target inner dimension) that runs in time O((nm)O(r22r)).
This result is based on algorithms for deciding the first order theory of the reals—

roughly the goal is to express the decision question of whether or not the matrix M
has nonnegative rank at most r as a system of polynomial equations and then to
apply algorithms in algebraic geometry to determine if this semialgebraic set is non-
empty. The complexity of these procedures is dominated by the number of distinct
variables occurring in the system of polynomial equations. In fact, the number of
distinct variables plays an analogous role to VC-dimension. The naive formulation of
the NMF decision problem as a nonemptiness problem is to use nr + mr variables,
one for each entry in A or W [12]. Yet even for constant values of r, an algorithm
based on such a formulation would run in time exponential in n and m.

At the heart of our algorithm is a structure theorem—based on a novel method
for reducing the number of variables needed to define the associated semialgebraic set.
We are able to express the decision problem for NMF using r22r distinct variables
(and we make use of tools in geometry, such as the notion of a separable partition,
to accomplish this [20], [2], [23]). Thus we obtain the algorithm quoted in the above
theorem, and we note that prior to our work it was unknown whether even the case
r = 3 was hard or solvable in polynomial time, and indeed it is the latter.

In fact, in a natural special case of the problem, where the rank of M is equal
to the target inner dimension r we can obtain a further improvement: We refer to
this problem as the simplicial factorization (SF) problem. See section 2.1 for an
explanation for why this special case is natural in the context of information retrieval
and other applications where the goal is to learn latent statistical structure. Our
algorithm is again based on the first order theory of the reals, but here the system of
equations is much smaller so in practice one may be able to use heuristic approaches
to solve this system (in which case, the validity of the solution can be easily checked).

Theorem 1.4. There is an algorithm for the exact SF problem (where r is the

target inner dimension) that runs in time O((nm)O(r2)).
We complement these algorithms with a fixed parameter intractability result. We

make use of a recent result of Patrascu and Williams [33] and engineer low-dimensional
gadgets inspired by the gadgets of Vavasis [38] to show that under the exponential-
time hypothesis [24], there is no exact algorithm for NMF that runs in time (nm)o(r).
This intractability result holds also for the SF problem.

Theorem 1.5. If there is an exact algorithm for the SF problem (or for the NMF
problem) that runs in time O((nm)o(r)) then 3-SAT can be solved in 2o(n) time on
instances with n variables.

Now we turn to Question 1.2. We consider the NMF problem under an assump-
tion introduced by Donoho and Stodden [14] in the context of image segmentation
called “separability.” This assumption asserts that there are r rows of A that can
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be permuted to form a diagonal matrix. If we knew the names of these rows, then
computing a nonnegative factorization would be easy. The challenge in this context,
is to avoid a brute-force search (which runs in time nr) and to find these rows in
time polynomial in n, m, and r. To the best of our knowledge the following is the
first example of a polynomial-time algorithm that provably works under a nontrivial
condition on the input.

Theorem 1.6. There is an exact algorithm that can compute a separable, non-
negative factorization M = AW (where r is the inner dimension) in time polynomial
in n, m, and r if such a factorization exists.

Donoho and Stodden [14] argue that the separability condition is naturally met
in the context of image segmentation. Additionally, Donoho and Stodden prove that
separability in conjunction with some other conditions guarantees that the solution to
the NMF problem is unique. Our theorem above is an algorithmic counterpart to their
results, but requires only separability. Our algorithm can also be made noise tolerant,
and hence works even when the separability condition only holds in an approximate
sense. Indeed, an approximate separability condition is regarded as a fairly benign
assumption and is believed to hold in many practical contexts in machine learning.
For instance it is usually satisfied by model parameters fitted to various generative
models (e.g., latent Dirichlet allocation (LDA) [9] in information retrieval). We thank
D. Blei for this information.

Last, we consider the case in which the given matrix M does not have an exact
low-rank NMF but rather can be approximated by a nonnegative factorization with
small inner dimension.

Theorem 1.7. There is a 2poly(r log(1/ε))poly(n,m)-time algorithm that, given
an M for which there is a nonnegative factorization AW (of inner dimension r)
which is an ε-approximation to M in Frobenius norm, computes A′ and W ′ satisfying
‖M −A′W ′‖F ≤ O(ε1/2r1/4) ‖M‖F .

The rest of the paper is organized as follows: In section 2 we give an exact
algorithm for the SF problem and in section 3 we give an exact algorithm for the
general NMF problem. In section 4 we prove a fixed parameter intractability result
for the SF problem. And in sections 5 and 6 we give algorithms for the separable and
adversarial nonnegative fatorization problems. Throughout this paper, we will use
the notation that Mi and M j are the ith column and jth row of M , respectively.

1.2. Subsequent work. Since the initial publication of this paper, there has
been a considerable amount of follow-up work on separable NMF. In [4], a subset of
the authors used the algorithm for separable NMF to give a polynomial-time algorithm
for inferring the parameters of a broad range of topic models such as latent Dirichlet
allocation [9] and other more complicated models as well, provided that the topic
matrix of interest is separable. Our algorithm for solving separable NMF is based on
a solved sequence of m linear programs and Bittorf et al. [7], Gillis [16], and Kumar,
Sindhwani, and Kambadur [25] gave algorithms that scale much better in some cases
based on reducing the number of calls to a linear program solver. Arora et al. [5] and
Gillis and Vavasis [17] recently gave a purely combinatorial algorithm, thus removing
the need to use linear programming altogether. Additionally Arora et al. [5] gave
a probabilistic variant of the algorithm in [4] which inherits its provable guarantees,

but is additionally highly practical. Last, the fourth author gave an (nm)O(r2)-time
algorithm for computing the nonnegative rank (and an associated NMF) without the
separability condition and coupled with our hardness results in section 4 this is almost
optimal under the exponential-time hypothesis [24].
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1586 S. ARORA, R. GE, R. KANNAN, AND A. MOITRA

1.3. Organization. In section 2 we give a justification for why simplicial fac-
torization is a natural special case of the general problem in applications in machine
learning, and also an algorithm for computing such a factorization. In section 3 we
give an algorithm for general NMF. In section 4 we prove that NMF (in fact even
the special case of simplicial factorization) is fixed parameter intractable under the
exponential-time hypothesis [24]. In section 5 we give an algorithm for separable
NMF, and we prove that this algorithm can tolerate a modest amount of noise. In
section 6 we give an approximation algorithm for the general noisy NMF problem.

2. Simplicial factorization. Here we consider the simplicial factorization prob-
lem, in which M has rank equal to the target inner dimension r. Hence in any
factorization, the factors A and W must have full column rank and full row rank,
respectively.

2.1. Justification for simplicial factorization. We first argue that the extra
restriction imposed in simplicial factorization is natural in many contexts: Through a
rescaling we can assume that the columns of M , A, and W all have unit �1 norm. The
factorization M = AW can be interpreted probabilistically: Each column of M can
be expressed as a convex combination (given by the corresponding column of W ) of
columns in A. In the example in the introduction, columns of M represent documents
and the columns of A represent “topics.” Hence a nonnegative factorization is an
“explanation”: Each document can be expressed as a convex combination of the
topics. But if A does not have full column rank then this explanation is seriously
deficient. This follows from a restatement of Radon’s lemma. Let conv(AU ) be the
convex hull of the columns Ai for i ∈ U .

Observation 1. If A is an n × r (with n ≥ r) matrix and rank(A) < r, then
there are two disjoint sets of columns U, V ⊂ [r] so that conv(AU ) ∩ conv(AV ) �= ∅.

The observation implies that there can be a candidate document x that can be
expressed as a convex combination of topics (in U), or instead can be expressed as a
convex combination of an entirely disjoint set (V ) of topics. The end goal of NMF
is often to use the representation of documents as distributions on topics to perform
various tasks, such as clustering or information retrieval. But if (even given the set
of topics in a database) it is this ambiguous to determine how we should represent a
given document as a convex combination of topics, then the topics we have extracted
cannot be very useful for clustering! In fact, it seems unnatural to not require the
columns of A to be linearly independent! Conversely one should consider the process
(stochastic, presumably) that generates the columns of W . Any reasonable process
would almost surely result in a matrix M whose rank is equal to the rank of A.

2.2. Algorithm for simplicial factorization. In this section we give an al-
gorithm that solves the simplicial factorization problem in (nm)O(r2) time. Let L be
the maximum bit complexity of any coefficient in the input.

Theorem 2.1. There is an O((nm)O(r2))-time algorithm for deciding if the sim-
plicial factorization problem has a solution of inner dimension at most r. Further-
more, we can compute a rational approximation to the solution up to accuracy δ in
time poly(L, (nm)O(r2), log 1/δ).

The above theorem is proved by using Lemma 2.2 below to reduce the problem
of finding a simplicial factorization to finding a point inside a semialgebraic set with
poly(n) constraints and 2r2 real-valued variables (or deciding that this set is empty).
The decision problem can be solved using the well-known algorithm of Basu, Pollack,
and Roy [6] that solves this problem in nO(r2) time. We can instead use the algorithm
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of Renegar [34] (and a bound of poly(L, (nm)O(r2)) on the bit complexity of the
coefficients in the solution due to Grigor’ev and Vorobjov [19]) to compute a rational

approximation to the solution up to accuracy δ in time poly(L, (nm)O(r2), log 1/δ).

This reduction uses the fact that since A,W have full rank they have “pseudo-
inverses” A+, W+ which are r× n and n× r matrices, respectively such that A+A =
WW+ = Ir×r. Thus A+Mi = A+AWi = Wi and similarly M jW+ = Aj . Hence
the columns of A can be obtained from linear combinations of the columns of M and
similarly the rows of W can be obtain from linear combinations of rows of M . Let C
be a maximal set of linearly independent columns of M and let R be a maximal set
of linearly independent rows of M .

Lemma 2.2 (structure lemma for simplicial factorization). Let M be a rank r
matrix. Then M has a NMF of inner dimension r if and only if there are linear
transformations S and T such that

(i) CSTR = M ,

(ii) CS and TR are both nonnegative.

Proof. (“if”) Suppose the conditions in the theorem are met. Then set A = CS
and W = TR and these matrices are nonnegative and have size n × r and r × m,
respectively, and furthermore are a factorization for M . Since rank(M) = r, A and
W are a simplicial factorization.

(“only if”) Conversely suppose that there is a simplicial factorization M = AW .
Recall that because A andW have full column and row rank, respectively, the columns
of A can be obtained from linear combinations of the columns of M and also the rows
of W can be obtain from linear combinations of rows of M . Since R and C span
the row and column space of M , respectively, we have that the columns of A can
be obtained by a linear transformation of the columns of C and similarly W can be
obtained by a linear transformation of R.

3. General NMF. Now we consider the NMF problem where the factor ma-
trices A,W need not have full rank. Although the simplicial factorization problem
is a quite natural special case in applications in machine learning and statistics, in-
deed in other applications such as in extended formulations [39], it is crucial that
the nonnegative rank of a matrix can be much different than its rank. We note that
subsequent to our work, the fourth author gave a singly exponential-time algorithm
for computing the nonnegative rank of a matrix [30] and coupled with our hardness
results in section 4 this almost characterizes the fastest algorithm we could hope for
under the exponential-time hypothesis [24].

Theorem 3.1. There is an O((nm)O(r22r))-time deterministic algorithm that
given an n×m nonnegative matrix M outputs a factorization AW of inner dimension
r if such a factorization exists. Furthermore, we can compute a rational approximation
to the solution up to accuracy δ in time poly(L, (nm)O(r22r), log 1/δ).

As in the simplicial case the main idea will again be a reduction to an existence
question for a semialgebraic set, but this reduction is significantly more complicated
than Lemma 2.2.

3.1. General structure theorem: Minimality. Our goal is to recast NMF
(for constant r) as a system of polynomial inequalities where the number of variables
is constant, the maximum degree is constant, and the number of constraints is poly-
nomially bounded in n and m. The main obstacle is that A and W are large—we
cannot afford to introduce a new variable to represent each entry in these matrices.
We will demonstrate there is always a “minimal” choice for A and W so that
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1. there is a collection of linear transformations T1, T2, ...Tg(r) from the column
span of M to 
r and a choice function σW : [m] → [g(r)]

2. and a collection of linear transformations S1, S2, ...Sg(r) from the row span of
M to 
r and a choice function σA : [n] → [g(r)].

And these linear transformations and choice functions satisfy the conditions

1. for each i ∈ [n], Wi = TσW (i)Mi and
2. for each j ∈ [m], Aj = M jSσA(j).

Furthermore, the number of possible choice functions σW is at most mO(r2f(r))

and the number of possible choice functions for σA is at most nO(r2g(r)). These choice
functions are based on the notion of a simplicial partition, which we introduce later.
We then give an algorithm for enumerating all simplicial partitions (this is the primary
bottleneck in the algorithm). Fixing the choice functions σW and σA, the question of
finding linear transformations T1, T2, ...Tg(r) and S1, S2, ...Sg(r) that satisfy the above
constraints (and the constraint that M = AW , and A and W are nonnegative) is
exactly a system of polynomial inequalities with an O(r2g(r)) variables (each matrix
Ti or Sj is r × r), degree at most four, and furthermore there are at most O(mn)
polynomial constraints.

In this subsection, we will give a procedure (which given A and W ) generates a
“minimal” choice for A and W (call this minimal choice A′ and W ′), and we will later
establish that this minimal choice satisfies the structural property stated informally
above.

Definition 3.2. Let C(A) ⊂ 2[r] denote the subsets of [r] corresponding to
maximal independent sets of columns (of A). Similarly let R(W ) ⊂ 2[r] denote the
subsets of [r] corresponding to maximal independent sets of rows (of W ).

A basic fact from linear algebra is that all maximal independent sets of columns
of A have exactly rank(A) elements and all maximal independent sets of rows of W
similarly have exactly rank(W ) elements.

Definition 3.3. Let �s be the total ordering on subsets of [r] of size s so that if
U and V are both subsets of [r] of size s, U ≺s V iff U is lexicographically before V .

Definition 3.4. Given a column Mi, we will call a subset U ∈ C(A) a minimal
basis for Mi (with respect to A) if Mi ∈ cone(AU ) and for all V ∈ C(A) such that
Mi ∈ cone(AV ) we must have U ≺s V .

Claim 3.5. If Mi ∈ cone(A), then there is some U ∈ C(A) such that Mi ∈
cone(AU ).

Definition 3.6. A proper chain (A,W,A′,W ′) is a set of nonnegative matrices
for which M = AW , M = AW ′, and M = A′W ′ (the inner dimension of these
factorizations is r) and functions σW ′ : [m] → C(A) and σA′ : [n] → R(W ′) such that

1. for all i ∈ [m], AW ′
i = Mi, supp(W ′

i ) ⊂ σW ′ (i), and σW ′(i) is a minimal
basis w.r.t. A for Mi;

2. for all j ∈ [n], A′
jW

′ = M j, supp(Aj) ⊂ σA′(j), and σA′(j) is a minimal

basis w.r.t. W ′ for M j.
Note that the extra conditions on W ′ (i.e., the minimal basis constraint) is with

respect to A and the extra conditions on A′ are with respect to W ′. This simplifies
the proof that there is always some proper chain, since we can compute a W ′ that
satisfies the above conditions with respect to A and then find an A′ that satisfies the
conditions with respect to W ′.

Lemma 3.7. If there is a nonnegative factorization M = AW (of inner di-
mension r), then there is a choice of nonnegative A′,W ′ of inner dimension r and
functions σW ′ : [m] → C(A) and σA′ : [n] → R(W ′) such that (A,W,A′,W ′) and σW ′ ,
σA′ form a proper chain.
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Proof. The condition that there is some nonnegative W for which M = AW is
just the condition that for all i ∈ [m], Mi ∈ cone(A). Hence, for each vector Mi, we
can choose a minimal basis U ∈ C(A) using Claim 3.5. Then Mi ∈ cone(AU ) so there
is some nonnegative vector W ′

i supported on U such that AW ′
i = Mi and we can set

σW ′(i) = U . Repeating this procedure for each column Mi, results in a nonnegative
matrix W ′ that satisfies the condition M = AW ′ and for each i ∈ [m], by design
supp(W ′

i ) ⊂ σW ′ (i) and σW ′ (i) is a minimal basis with respect to A for Mi.
We can reuse the argument above, setting MT = (W ′T )AT and this interchanges

the roles of A and W . Hence we obtain a nonnegative matrix A′ which satisfies
M = A′W ′ and for each j ∈ [n], again by design, we have that supp(Aj) ⊂ σA′(j)
and σA′(j) is a minimal basis with respect to W for M j.

Definition 3.8. Let Π(A,U) (for U ∈ C(A)) denote the r × n linear transfor-
mation that is zero on all rows not in U (i.e., Π(A,U)j = �0 for j /∈ U) and restricted
to U is Π(A,U)U = (AU )

+ (where the + operation denotes the Moore–Penrose pseu-
doinverse).

Lemma 3.9. Let (A,W,A′,W ′) and σW ′ and σA′ form a proper chain. For
any index i ∈ [m], let Ui = σW ′(i) and for any index j ∈ [n] let Vj = σA′(j). Then
W ′

i = Π(A,Ui)Mi and A′j = M jΠ(W ′T , Vj)
T .

Notice that in the above lemma, the linear transformation that recovers the
columns of W ′ is based on column subsets of A, while the linear transformation
to recover the rows of A′ is based on the row subsets of W ′ (not W ).

Proof. Since (A,W,A′,W ′) and σW ′ and σA′ form a proper chain we have that
AW ′ = M . Also supp(W ′

i ) ⊂ Ui = σW ′ (i). Consider the quantity Π(A,Ui)Mi. For
any j /∈ Ui, (Π(A,Ui)Mi)j = 0. So consider

(Π(A,Ui)Mi)Ui = (AUi)
+AW ′

i = (AUi)
+AUi(W

′
i )Ui ,

where the last equality follows from the condition supp(W ′
i ) ⊂ Ui. Since Ui ∈ C(A)

we have that (AUi)
+AUi is the |Ui| × |Ui| identity matrix. Hence W ′

i = Π(A,Ui)Mi.
An identical argument with W ′ replaced with A′ and with A replaced with W ′T (and
i and Ui replaced with j and Vj), respectively, implies that A′j = M jΠ(W ′T , Vj)

T

too.
Note that there are at most |C(A)| ≤ 2r linear trasformations of the form Π(A,Ui)

and hence the columns ofW ′ can be recovered by a constant number of linear transfor-
mations of the column span of M , and similarly the rows of A′ can also be recovered.

The remaining technical issue is we need to demonstrate that there are not too
many (only polynomially many, for constant r) choice functions σW ′ and σA′ and that
we can enumerate over this set efficiently. In principle, even if say C(A) is just two sets,
there are exponentially many choices of which (of the two) linear transformations to
use for each column of M . However, when we use lexicographic ordering to tie break
(as in the definition of a minimal basis), the number of choice functions is polynomially
bounded. We will demonstrate that the choice function σW ′ : [m] → C(A) arising in
the definition of a proper chain can be embedded in a restricted type of geometric
partitioning of M which we call a simplicial partition.

3.2. General structure theorem: Simplicial partitions. Here, we establish
that the choice functions σW ′ and σA′ in a proper chain are combinatorially simple.
The choice function σW ′ can be regarded as a partition of the columns of M into
|C(A)| sets, and similarly the choice function σA′ is a partition of the rows of M into
R(W ′) sets. Here we define a geometric type of partitioning scheme which we call a
simplicial partition, which has the property that there are not too many simplicial
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partitions (by virtue of this class having small VC-dimension), and we show that
the partition functions σW ′ and σA′ arising in the definition of a proper chain are
realizable as (small) simplicial partitions.

Definition 3.10. A (k, s)-simplicial partition of the columns of M is generated
by a collection of k sets of s hyperplanes,

H1 = {h1
1, h

1
2, ...h

1
s},H2 = {h2

1, h
2
2, ...h

2
s}, ...Hk = {hk

1 , h
k
2 , ...h

k
s}.

Let Qi = {i′ s.t. for all j ∈ [s], hi
j · Mi′ ≥ 0}. Then this collection of sets of hyper-

planes results in the partition
• P1 = Q1,
• P2 = Q2 − P1,
• Pk = Qk − P1 − P2...− Pk−1,
• Pk+1 = [m]− P1 − P2...− Pk.

If rank(A) = s, we will be interested in an (
(
r
s

)
, s)-simplicial partition.

Lemma 3.11. Let (A,W,A′,W ′) and σW ′ and σA′ form a proper chain. Then the
partitions corresponding to σW ′ and to σA′ (of columns and rows of M , respectively)
are an (

(
r
s

)
, s)-simplicial partition and an (

(
r
t

)
, t)-simplicial partition, respectively,

where rank(A) = s and rank(W ′) = t.
Proof. Order the sets in C(A) according to the lexicographic ordering �s, so

that V1 ≺s V2 ≺s · · ·Vk for k = |C(A)|. Then for each j, let Hj be the rows of the
matrix (AVj )

+. Note that there are exactly rank(A) = s rows, hence this defines a
(k, s)-simplicial partition.

Claim 3.12. σW ′ (i) = j if and only if Mi ∈ Pj in the (k, s)-simplicial partition
generated by H1,H2, ...Hk.

Proof. Since (A,W,A′,W ′) and σW ′ and σA′ forms a proper chain, we have that
M = AW ′. Consider a column i and the corresponding set Vi = σW ′(i). Recall that Vj

is the jth set in C(A) according to the lexicographic ordering �s. Also from the defini-
tion of a proper chain Vi is a minimal basis for Mi with respect to A. Consider any set
Vj′ ∈ C(A) with j′ < j. Then from the definition of a minimal basis we must have that
Mi /∈ cone(AVj′ ). Since Vj′ ∈ C(A), we have that the transformation (AVj′ )(AVj′ )

+ is

a projection onto span(A) which contains span(M). Hence (AVj′ )(AVj′ )
+Mi = Mi,

but Mi /∈ cone(AVj′ ) so (AVj′ )
+Mi cannot be a nonnegative vector. Hence Mi is

not in Pj′ for any j′ < j. Furthermore, Mi is in Qj: Using Lemma 3.9 we have

Π(A, Vj)Mi = Π(A, Vj)AW
′
i = W ′

i ≥ �0 and so (AVj )
+Mi = (Π(A, Vj)Mi)Vj ≥ �0.

We can repeat the above replacing A with W ′T and W ′ with A′, and this implies
the lemma.

3.3. Enumerating simplicial partitions. Here we give an algorithm for enu-
merating all (k, s)-simplicial partitions (of, say, the columns of M) that runs in time
O(mks(r+1)). An important observation is that the problem of enumerating all sim-
plicial partitions can be reduced to enumerating all partitions that arise from a single
hyperplane. Indeed, we can overspecify a simplicial partition by specifying the par-
tition (of the columns of M) that results from each hyperplane in the set of ks total
hyperplanes that generates the simplicial partition. From this set of partitions, we
can recover exactly the simplicial partition.

A number of results are known in this domain, but surprisingly we are not aware
of any algorithm that enumerates all partitions of the columns of M (by a single
hyperplane) that runs in polynomial time (for dim(M) ≤ r and r is constant) with-
out some assumption on M . For example, the VC-dimension of a hyperplane in r

D
ow

nl
oa

de
d 

02
/0

6/
19

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONNEGATIVE MATRIX FACTORIZATION 1591

dimensions is r+1 and hence the Sauer–Shelah lemma implies that there are at most
O(mr+1) distinct partitions of the columns of M by a hyperplane. In fact, a classic
result of Harding [20] gives a tight upper bound of O(mr). Yet these bounds do not
yield an algorithm for efficiently enumerating this structured set of partitions without
checking all partitions of the data.

A recent result of Hwang and Rothblum [23] comes close to our intended appli-
cation. A separable partition into p parts is a partition of the columns of M into p
sets so that the convex hulls of these sets are disjoint. Setting p = 2, the number of
separable partitions is exactly the number of distinct hyperplane partitions. Under
the condition that M is in general position (i.e., there are no t columns of M lying
on a dimension t− 2 subspace, where t = rank(M) − 1), Hwang and Rothblum give
an algorithm for efficiently enumerating all distinct hyperplane partitions [23].

Here we give an improvement on this line of work, by removing any conditions
on M (although our algorithm will be slightly slower). The idea is to encode each
hyperplane partition by a choice of not too many data points. To do this, we will
define a slight generalization of a hyperplane partition that we will call a hyperplane
separation.

Definition 3.13. A hyperplane h defines a mapping (which we call a hyperplane
separation) from columns of M to {−1, 0, 1} depending on the sign of h ·Mi (where
the sign function is 1 for positive values, −1 for negative values and 0 for zero).

A hyperplane partition can be regarded as a mapping from columns of M to
{−1, 1}, where we adopt the convention that Mi such that h ◦Mi is mapped to 1.

Definition 3.14. A hyperplane partition (defined by h) is an extension of a
hyperplane separation (defined by g) if for all i, g(Mi) �= 0 ⇒ g(Mi) = h(Mi).

Lemma 3.15. Let rank(M) = s, then for any hyperplane partition (defined by
h), there is a hyperplane g that contains s affinely independent columns of M and for
which h (as a partition) is an extension of g (as a separation).

Proof. After an appropriate linear transformation (of the columns of M and the
hyperplanes), we can assume that M is full rank. If the h already contains s affinely
independent columns ofM , then we can choose g = h. If not we can perturb h in some
direction so that for any column with h(Mi) = 0, we maintain the invariant that Mi

is contained on the perturbed hyperplane h′. Since rank(M) = s this perturbation
has nonzero inner product with some column in M and so this hyperplane h′ will
eventually contain a new column from M (without changing the sign of h(Mi) for
any other column). We can continue this argument until the hyperplane contains s
affinely independent columns of M and by design on all remaining columns agrees in
sign with h.

Lemma 3.16. Let rank(M) = s. For any hyperplane h (which defines a parti-
tion), there is a collection of k ≤ s sets of (at most s) columns of M , S1, S2, ..Sk so
that any hyperplanes g1, g2, ..gk which contain S1, S2, ...Sk, respectively, satisfy for all
i, h(Mi) (as a partition) is equal to the value of gj(Mi), where j is the smallest index
for which gj(Mi) �= 0. Furthermore these subsets are nested: S1 ⊃ S2 ⊃ · · · ⊃ Sk.

Proof. We can apply Lemma 3.15 repeatedly. When we initially apply the lemma,
we obtain a hyperplane g1 that can be extended (as a separation) to the partition
corresponding to h. In the above function (defined implicitly in the lemma) this fixes
the partition of the columns except those contained in g1. So we can then choose M ′

to be the columns of M that are contained in g1, and recurse. If S2 is the largest set
of columns output from the recursive call, we can add columns of M contained in g1
to this set until we obtain a set of s+1 affinely independent columns contained in g1,
and we can output this set (as S1).
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Theorem 3.17. Let rank(M) = s. There is an algorithm that runs in time
O(ms(s+ 2)s) to enumerate all hyperplane partitions of the columns of M .

Proof. We can apply Lemma 3.16 and instead enumerate the sets of points
S1, S2, ...Ss. Since these sets are nested, we can enumerate all choices as follows:

• choose at most s columns corresponding to the set S1;
• initialize an active set T = S1;
• until T is empty either

– choose a column to be removed from the active set
– or indicate that the current active set represents the next set Si and

choose the sign of the corresponding hyperplane.
There are at most O(ms(s + 2)s) such choices, and for each choice we can then

run a linear program to determine if there is a corresponding hyperplane parti-
tion. (In fact, all partitions that result from the above procedure will indeed cor-
respond to a hyperplane partition.) The correctness of this algorithm follows from
Lemma 3.16.

This immediately implies the following.
Corollary 3.18. There is an algorithm that runs in time O(mks2)) that enumer-

ates a set of partitions of the columns of M that contains the set of all (k, s)-simplicial
partitions (of the columns of M).

3.4. Solving systems of polynomial inequalities. The results of Basu et al
[6] give an algorithm for finding a point in a semi-algebraic set defined by O(mn)
constraints on polynomials of total degree at most d, and f(r) variables in time
O((mnd)cf(r)). Using our structure theorem for NMF, we will re-cast the decision
problem of whether a nonnegative matrix M has nonnegative rank r as an existence
question for a semi-algebraic set.

Theorem 3.19. There is an algorithm for deciding if a n × m nonnegative
matrix M has nonnegative rank r that runs in time O((nm)O(r22r)). Furthermore,
we can compute a rational approximation to the solution up to accuracy δ in time
poly(L, (nm)O(r22r), log 1/δ).

We first prove the first part of this theorem using the algorithm of Basu, Pollack,
and Roy [6], and then we use the algorithm of Renegar [34] to compute a rational

approximation to the solution up to accuracy δ in time poly(L, (nm)O(r22r), log 1/δ).
Proof. Suppose there is such a factorization. Using Lemma 3.7, there is also a

proper chain. We can apply Lemma 3.11 and using the algorithm in Theorem 3.17
we can enumerate over a superset of simplicial partitions. Hence, at least one of
those partitions will result in the choice functions σW ′ and σA′ in the proper chain
decomposition for M = AW .

Using Lemma 3.9 there is a set of at most 2r linear transformations T1, T2, ...T2r

which recover columns of W ′ given columns of M , and similarly there is a set of at
most 2r linear transformations S1, S2, ...S2r which recover the rows of A′ given rows
of M . Note that these linear transformations are from the column span and row span
of M , respectively, and hence are from subspaces of dimension at most r. So apply a
linear transformation to columns of M and one to rows of M to to recover matrices
MC and MR, respectively (which are no longer necessarily nonnegative) but which
are of dimension r ×m and n × r, respectively. There will still be a collection of at
most 2r linear transformations from columns of MC to columns of W ′, and similarly
for MR and A′.

We will choose r2 variables for each linear transformation, so there are 2 ∗ r2 ∗ 2r
variables in total. Then we can write a set of m linear constraints to enforce that
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for each column of (MC)i, the transformation corresponding to σW ′(i) recovers a
nonnegative vector. Similarly we can define a set of n constraints based on rows in
MR.

Last we can define a set of constraints that enforce that we do recover a factor-
ization for M : For all i ∈ [m], j ∈ [n], let i′ = σW ′(i) and j′ = σA′(j). Then we
write the constraint (MC)

jSj′Ti′(MR)i = M j
i . This constraint has degree two in the

variables corresponding to the linear transformations. Lemma 3.7 implies that there
is some choice of these transformations that will satisfy these constraints (when we
formulate these constraints using the correct choice functions in the proper chain de-
composition). Furthermore, any set of transformations that satisfies these constraints
does define an NMF of inner dimension r for M .

And of course, if there is no inner dimension r nonnegative factorization, then all
calls to the algorithm of Basu, Pollack, and Roy [6] will fail and we can return that
there is no such factorization.

The result in Basu, Pollack, and Roy [6] is a quantifier elimination algorithm in
the Blum, Shub, and Smale (BSS) model of computation [10]. The BSS model is a
model for real number computation and it is natural to ask what is the bit complexity
of finding a rational approximation of the solutions. There has been a long line of
research on the decision problem for the first order theory of reals: Given a quantified
predicate over polynomial inequalities of reals, determine whether it is true or false.
What we need for our algorithm is actually a special case of this problem: Given a set
of polynomial inequalities over real variables, determine whether there exists a set of
values for the variables so that all polynomial inequalities are satisfied. In particular,
all variables in our problem are quantified by an existential quantifier and there are
no alternations. For this kind of problem Grigor’ev and Vorobjov [19] first gave a

singly exponential-time algorithm that runs in (nd)O(f(r)2), where n is the number
of polynomial inequalities, d is the maximum degree of the polynomials, and f(r) is

the number of variables. The bit complexity of the algorithm is poly(L, (nd)O(f(r)2)),
where L is the maximum length of the coefficients in the input. Moreover, their
algorithm also gives an upper bound of poly(L, (nd)O(f(r))) on the number of bits
required to represent the solutions. Renegar [34] gave a better algorithm that, for
the special case we are interested in, takes time (nd)O(f(r)). Using his algorithm
with binary search (with search range bounded by Grigor’ev and Vorobjov [19]),
we can find rational approximations to the solutions with accuracy up to δ in time
poly(L, (nm)O(f(r)), log 1/δ).

We note that our results on the SF problem are actually a special case of the
theorem above (because our structural lemma for simplicial factorization is a special
case of our general structure theorem).

Corollary 3.20. There is an algorithm for determining whether the nonnegative
rank of a nonnegative n × m matrix M equals the rank and this algorithm runs in
time O((nm)O(r2)).

Proof. If rank(M) = r, then we know that both A and W must be full rank.
Hence C(A) and R(W ) are both just the set {1, 2, ...r}. Hence we can circumvent the
simplicial partition machinery, and set up a system of polynomial constraints in at
most 2r2 variables.

4. Strong intractability of simplicial factorization. Here we prove that
there is no algorithm for computing a simplicial factorization of dimension r that
runs in (nm)o(r) time unless 3-SAT can be solved in 2o(n) time. Surprisingly, even
the NP -hardness of the problem was only proved quite recently by Vavasis [38]. That
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reduction is the inspiration for our result, though unfortunately we were unable to use
it directly to get low-dimensional instances. Instead we give a new reduction using
the d-SUM problem.

Definition 4.1 (d-SUM). In the d-SUM problem we are given a set of N values
{s1, s2, ...sN} each in the range [0, 1], and the goal is to determine if there is a set of
d numbers (not necessarily distinct) that sum to exactly d/2.

This definition for the d-SUM problem is slightly unconventional in that here
we allow repetition (i.e., the choice of d numbers need not be distinct). Patrascu
and Williams [33] recently proved that if d-SUM can be solved in No(d) time then
3-SAT has a subexponential time algorithm. In fact, in the instances constructed
in [33] we can allow repetition of numbers without affecting the reduction since in
these instances choosing any number more than once will never result in a sum that is
exactly d/2. Hence we can restate the results in [33] for our (slightly unconventional
definition for) d-SUM.

Theorem 4.2. If d < N0.99 and if d-SUM instances of N distinct numbers each
of O(d logN) bits can be solved in No(d) time then 3-SAT on n variables can be solved
in time 2o(n).

Given an instance of the d-SUM, we will reduce to an instance of the intermediate
simplex problem defined in [38].

Definition 4.3 (intermediate simplex). Given a polyhedron P = {x ∈

r−1 : Hx ≥ b}, where H is an n × (r − 1)-size matrix and b ∈ 
n such that
the matrix [H, b] has rank r and a set S of m points in 
r−1, the goal of the inter-
mediate simplex problem is to find a set of points T that form a simplex (i.e., T is a
set of r affinely independent points) each in P such that the convex hull of T contains
the points in S.

Vavasis [38] proved that intermediate simplex is equivalent to the simplicial fac-
torization problem.

Theorem 4.4 (see Vavasis [38]). There is a polynomial-time reduction from
intermediate simplex problem to simplicial factorization problem and vice versa and
furthermore both reductions preserve the value of r.

4.1. The gadget. Given the universe U = {s1, s2, . . . , sN} for the d-SUM prob-
lem, we construct a two dimensional Intermediate Simplex instance as shown in
Figure 1. We will show that the Intermediate Simplex instance has exactly N so-
lutions, each representing a choice of si. Later in the reduction we use d such gadgets
to represent the choice of d numbers in the set U .

Recall for a two-dimensional intermediate simplex problem, the input consists
of a polygon P (which is the hexagon ABCDEF in Figure 1) and a set of points
S = {I1, I2, . . . , I3N} inside P (which are the dots, except for M). A solution to this
two-dimensional intermediate simplex instance will be a triangle inside P such that
all the points in S are contained in the triangle (in Figure 1 ACE is a valid solution).

We first specify the polygon P for the intermediate simplex instance. The polygon
P is just the hexagon ABCDEF inscribed in a circle with center M . All angles in
the hexagon are 2π/3, the edges AB = CD = EF = ε, where ε is a small constant
depending on N , d that we determine later. The other 3 edges also have equal lengths,
BC = DE = FA.

We use y(A) and z(A) to denote the y and z coordinates for the point A (and
similarly for all other points in the gadget). The hexagon is placed so that y(A) =
y(B) = 0, y(D) = y(E) = 1.
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ε

1

A

B

C
D

E
F y

z

MI1

I2

I3N

Fig. 1. The gadget.

Now we specify the set S of 3N points for the intermediate simplex instance. To
get these points, first take N points in each of the 3 segements AB, CD, EF . On AB
these N points are called A1, A2, ..., AN , and |AAi| = εsi. Similarly we have points
Ci’s on CD and Ei’s on EF , |CCi| = |EEi| = εsi. Now we have N triangles AiCiEi

(the thin lines in Figure 1). We claim (see Lemma 4.5 below) that the intersection of
these triangles is a polygon with 3N vertices. The points in S are just the vertices of
this intersection.

Lemma 4.5. When ε < 1/50, the points {Ai}, {Ci}, {Ei} are on AB, CD,
EF , respectively, and AAi = CCi = EEi = εsi, the intersection of the N triangles
{AiCiEi} is a polygon with 3N vertices.

Proof. Since the intersection of N triangles AiCiEi is the intersection of 3N half-
planes, it has at most 3N vertices. Therefore we only need to prove every edge in
the triangles has a segment remaining in the intersection. Notice that the gadget is
symmetric with respect to rotations of 2π/3 around the center M . By symmetry we
only need to look at edges AiCi. The situation here is illustrated in Figure 2.

Since all the half-planes that come from triangles AiCiEi contain the center M ,
later when talking about half-planes we will only specify the boundary line. For
example, the half-plane with boundary AiCi and contains Ei (as well as M) is called
half-plane AiCi.

The two thick lines in Figure 2 are extensions of AB and CD, but now they are
rotated so that they are z = ±√

3y. The two thin lines are two possible lines AiCi

and AjCj . The differences between the y coordinates of Ai and Ci are the same for
all i (here normalized to 1) by the construction of the points Ai’s and Ci’s. Assume
the coordinates for Ai, Aj are (yi,−

√
3yi) and (yj,−

√
3yj), respectively. Then the

coordinates for the intersection is (yi + yj + 1,
√
3(1 + yi + yj + 2yiyj)). This means
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1596 S. ARORA, R. GE, R. KANNAN, AND A. MOITRA

Fig. 2. Proof of Lemma 4.5.

if we have N segments with y1 < y2 < · · · < yN , segment i will be the highest one
when y is in the range (yi−1 + yi + 1, yi + yi+1 + 1) (indeed, the lines with j > i have
higher slope and will win when y > yi + yj + 1 ≥ yi + yi+1 + 1; the lines with j < i
have lower slope and will win when y < yi + yj + 1 ≤ yi + yi−1 + 1).

We also want to make sure that all these intersection points are inside the half-
planes CiEi’s and EiAi’s. Since ε < 1/50, all the yi’s are within [−1/2 − 1/20,
−1/2 + 1/20]. Hence the intersection point is always close to the point (0,

√
3/2),

the distance is at most 1/5. At the same time, since ε is small, the distances of this
point (0,

√
3/2) to all the CiEi’s and EiAi’s are all larger than 1/4. Therefore all the

intersection points are inside the other 2N half-planes and the segments will indeed
remain in the intersection. The intersection has 3N edges and 3N vertices.

The intermediate simplex instance hasN obvious solutions: The trianglesAiCiEi,
each corresponds to a value si for the d-SUM problem. In the following lemma we
show that these are the only possible solutions.

Lemma 4.6. Let ε < 1/1000. If the solution of the intermediate simplex problem
is PQR, then PQR must be one of the AiCiEi’s.

Proof. Suppose PQR is a solution of the intermediate simplex problem, since M
is in the convex hull of {I1, I2, . . . , I3N}, it must be in PQR. Thus one of the angles
∠PMQ, ∠QMR, ∠RMP must be at least 2π/3 (their sum is 2π). Without loss of
generality we assume this angle is ∠PMQ and by symmetry assume P is either on
AB or BC. We shall show in either of the two cases, when P is not one of the Ai’s,
there will be some Ik that is not in the half-plane PQ (recall the half-planes we are
interested in always contain M so we don’t specify the direction).

When P is on AB, since ∠PMQ ≥ 2π/3, we have CQ ≥ AP (by symmetry when
CQ = AP the angle is exactly 2π/3). This means we can move Q to Q′ such that
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P

A

B

C
D

Q
P ’ Q’

Q’’ P

Q

R

Fig. 3. Proof of Lemma 4.6.

CQ′ = AP . The intersection of half-plane PQ′ and the hexagon ABCDEF is at least
as large as the intersection of half-plane PQ and the hexagon. However, if P is not
any of the points {Ai} (that is, |PQ′|/ε �∈ {s1, s2, ..., sN}), then PQ′ can be viewed
as AN+1CN+1 if we add sN+1 = |AP |/ε to the set U . By Lemma 4.5 introducing
PQ′ must increase the number of vertices. One of the original vertices Ik is not in
the hyperplane PQ′, and hence not in PQR. Therefore when P is on AB it must
coincide with one of the Ai’s, by symmetry PQR must be one of AiCiEi’s.

When P is on BC, there are two cases as shown in Figure 3.

First observe that if we take U ′ = U ∪ {1− s1, 1 − s2, . . . , 1− sN}, and generate
the set S = {I1, I2, . . . , I6N} according to U ′, then the gadget is further symmetric
with respect to flipping along the perpendicular bisector of BC. Now without loss of
generality BP ≤ BC/2. Since every Ik is now in the intersection of 2N triangles, in
particular they are also in the intersection of the original N triangles, it suffices to
show one of Ik (k ∈ [6N ]) is outside half-plane PQ.

The first case (left part of Figure 3) is when BP < ε. In this case we extend PQ to
get intersection on AB (P ′) and intersection on CD (Q′). Again since ∠PMQ ≥ 2π/3,
we have DQ ≥ BP . At the same time we know ∠DQQ′ ≥ ∠P ′PB, so DQ′ > BP ′.
Similarly to the previous case, we take Q′′ so that CQ′′ = AP ′. The intersection of
hyperplane P ′Q′′ and the hexagon ABCDEF is at least as large as the intersection of
half-plane PQ and the hexagon. When ε < 1/1000, we can check AP ′ < 2ε � 1/50,
therefore we can still view P ′Q′′ as some A2N+1C2N+1 for s2N+1 < 2. Now Lemma 4.5
shows there is some vertex Ik not in half-plane P ′Q′′ (and hence not in half-plane
PQ).

The final case (right part of Figure 3) is when BP ≥ ε. In this case we notice the
triangle with 3 edges AD, BE, CF (the shaded triangle in the figure) is contained
in every AiCiEi, thus it must also be in PQR. However, since BC/2 ≥ BP ≥
ε, we know AR ≤ ε and DQ ≤ ε. In this case PQR does not even contain the
center M .
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1598 S. ARORA, R. GE, R. KANNAN, AND A. MOITRA

4.2. The reduction. Suppose we are given an instance of the d-SUM problem
with N values {s1, s2, ...sN}. We will give a reduction to an instance of intermediate
simplex in dimension r − 1 = 3d+ 1.

To encode the choice of d numbers in the set {s1, s2, ..., sN}, we use d gadgets
defined in section 4.1. The final solution of the intermediate simplex instance we
constructed will include solutions to each gadget. As the solution of a gadget always
corresponds to a number in {s1, s2, ..., sN} (Lemma 4.6) we can decode the solution
and get d numbers, and we use an extra dimension w that “computes” the sum of
these numbers and ensures the sum is equal to d/2.

We use three variables {xi, yi, zi} for the ith gadget.
Variables 1. We will use 3d+ 1 variables: sets {xi, yi, zi} for i ∈ [d] and w.
Constraints 1 (box). For all i ∈ [d], xi, yi ∈ [0, 1], zi ∈ [0, 2], and also

w ∈ [0, 1].
Definition 4.7. Let G ⊂ 
2 be the hexagon ABCDEF in the two-dimensional

gadget given in section 4.1.Let H ⊂ 
3 be the set

conv({(xi, yi, zi) ∈ 
3|(yi, zi) ∈ G, xi = 1},�0).
H is a tilted cone that has a hexagonal base G and has an apex at the origin.
Definition 4.8. Let R be a 7× 3 matrix and b ∈ 
7 so that {x|Rx ≥ b} = H.
We will use these gadgets to define (some of the) constraints on the polyhedron

P in an instance of intermediate simplex.
Constraints 2 (gadget). For each i ∈ [d], R(xi, yi, zi) ≥ b.
Hence when restricted to dimensions xi, yi, zi the ith gadget G is on the plane

xi = 1.
We hope that in a gadget, if we choose three points corresponding to the triangle

for some value si, that of these three points only the point on the AB line will have
a nonzero value for w and that this value will be si. The points on the lines CD or
EF will hopefully have a value close to zero. We add constraints to enforce these
conditions:

Constraints 3 (CE). For all i ∈ [d], w ≤ 1− yi + (1− xi).
These constraints make sure that points on CD or EF cannot have large w value.
Recall that we use z(A) to denote the z coordinate ofA in the gadget in section 4.1.

Constraints 4 (AB). For all i ∈ [d], w ∈
[
(zi−z(A)xi)

ε ± (10ε yi + (1− xi))
]
.

Theses constraints make sure that points on AB have values in {s1, s2, ..., sN}.
The AB and CE constraints all have the property that when xi < 1 (i.e., the

corresponding point is off of the gadget on the plane xi = 1) then these constraints
gradually become relaxed.

To make sure the gadget still works, we don’t want the extra constraints on w to
rule out some possible values for xi, yi, zi’s. Indeed we show the following claim.

Claim 4.9. For all points in (xi, yi, zi) ∈ H, there is some choice of w ∈ [0, 1] so
that xi, yi, zi, and w satisfy the CE and AB constraints.

The proof is by observing that constraints AB have almost no effect when y > 0
and constraints CE have no effect when y = 0.

Constraints 1 to 4 define a polyhedron P in (3d+1)-dimensional space and further-
more the set of constraints that define P have full rank (in fact even the inequalities
in the box constraints have full rank). Thus this polyhedron is a valid polyhedron for
the intermediate simplex problem.

Next we specify the points in S for the intermediate simplex problem(each of
which will be contained in the polyhedron P ). Let Ik (for k ∈ [3N ]) be the set S in
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the gadget in section 4.1. As before, let z(Ik) and y(Ik) be the z and y coordinates
of Ik, respectively.

Definition 4.10 (w-max(Ik)). Let w-max(Ik) be the maximum possible w-value
of any point I with xi = 1, yi = y(Ik), zi = z(Ik), and xj , yj, zj = 0 for all j �= i so
that I is still contained in P .

Definition 4.11 (O,W, Iik, Q). The set S of points for the intermediate simplex
problem is the following.

O point: For all i ∈ [d], xi, yi, zi = 0 and w = 0.
W point: For all i ∈ [d], xi, yi, zi = 0 and w = 1.
Iik points: For each i ∈ [d], for each k ∈ [3N ], set xi = 1/4, yi = 1/4y(Ik),

zi = 1/4z(Ik), and for j �= i set xj , yj , zj = 0. Also set w to be the 1/4× w-
max(Ik).

Q point: For each i ∈ [d], xi = 1/d, yi = y(M)/d, zi = z(M)/d, and w = 1/6.

This completes the reduction of 3-SUM to intermediate simplex, and next we
establish the completeness and soundness of this reduction.

4.3. Completeness and soundness. The completeness part is straight for-
ward: for the ith gadget we just select the triangle that corresponds to ski .

Lemma 4.12. If there is a set {sk1 , sk2 , ...skd
} of d values (not necessarily dis-

tinct) such that
∑

i∈[d] ski = d/2 then there is a solution to the corresponding inter-
mediate simplex problem.

Proof. We will choose a set of 3d + 2 points T : We will include the O and W
points, and for each ski , we will choose the triangle corresponding to the value ski in
the ith gadget. Recall the triangle is AkiCkiEki in the gadget defined in section 4.1.
The points we choose have xi = 1 and yi, zi equal to the corresponding point in the
gadget. We will set w to be ski for the point on the line AB and we will set w to be
zero for the other two points not contained in the line AB. The rest of the dimensions
are all set to 0.

Next we prove that the convex hull of this set of points T contains all the points in
S: The points O and W are clearly contained in the convex hull of T (and are in fact
in T !). Next consider some point Iik in S corresponding to some intersection point Ik
in the gadget G. Since Ik is in the convex hull of the triangle corresponding to ski in
the gadget G, there is a convex combination of the these three points Aki , Cki , Eki in
T (which we call J) so that 1/4J matches Iik on all coordinates except possibly the w-
coordinate. Furthermore the point J has some value in the coordinate corresponding
to w and this must be at most the corresponding value in Iik (because we chose the
w-value in Iik to be 1/4 × w-max(Ik)). Hence we can distribute the remaining 3/4
weight among the O and W points to recover Iik exactly on all coordinates.

Last, we observe that if we equally weight all points in T (except O and W ) we

recover the point Q. In particular, the w coordinate of Q should be 1
3d

∑d
i=1 ski =

1/6.

Next we prove soundness for our reduction. Suppose the solution is T , which is a
set of 3d+ 2 points in the polyhedron P and the convex hull of points in T contains
all the O, W , Iik, Q points (in Definition 4.11).

Claim 4.13. The points O and W must be in the set T .

Proof. The points O and W are vertices of the polyhedron P and hence cannot
be expressed as a convex combination of any other set of points in P .

Now we want to prove the rest of the 3d points in set T are partitioned into d
triples, each triple belongs to one gadget. Set T ′ = T − {O} − {W}.
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Definition 4.14. For i ∈ [d], let

T ′
i = {Z ∈ T ′|j �= i ⇒ xj(Z), yj(Z), zj(Z) = 0 and one of xi(Z), yi(Z), zi(Z) �= 0}.

Claim 4.15. The sets T ′
i partition T ′ and each contain exactly 3 nodes.

Proof. The sets T ′
i are disjoint, and additionally each set T ′

i must contain at least
3 nodes (otherwise the convex hull of T ′

i even restricted to xi, yi, zi cannot contain
the points Iik). This implies the claim.

Recall the gadget in section 4.1 is a two-dimensional object, but it is represented
as a three-dimensional cone in our construction. We would like to apply Lemma 4.6
to points on the plane xi = 1 (in this plane the coordinates yi,zi act the same as y, z
in the gadget).

Definition 4.16. For each point Z ∈ T ′
i , let ext(Z) ∈ 
3 be the intersection

of the line connecting the origin and (xi(Z), yi(Z), zi(Z)) with the xi = 1 base of the
set {(xi, yi, zi)|R(xi, yi, zi) ≥ b}. Let ext(T ′

i ) be the pointwise ext operation applied to
each point in T ′

i .

Since the points Iik are in the affine hull of T ′
i when restricted to xi, yi, zi , we

know ext(Iik) must be in the convex hull of ext(T ′
i ). Using Lemma 4.6 in section 4.1,

we get the following.

Corollary 4.17. ext(T ′
i ) must correspond to some triangle AkiCkiEki for some

value ski .

Now we know how to decode the solution T and get the numbers ski . We will
abuse notation and call the 3 points in T ′

i , Aki , Cki , Eki (they were used to denote
the corresponding points in the two-dimensional gadget in section 4.1).We still want
to make sure the w coordinate correctly computes the sum of these numbers. As a
first step we want to show that the xi of all points in T ′

i must be 1 (we need this
because the constraints AB and CE are only strict when xi = 1).

Lemma 4.18. For each point Z ∈ T ′
i , xi(Z) = 1.

Proof. Suppose, for the sake of contradiction, that xi(Z) < 1 (for Z ∈ T ′
i ). Then

consider the point Q. Since
∑

i∈[d] xi(Q) = 1, and for any point in T
∑

i∈[d] xi ≤ 1,
there is no convex combination of points in T that places nonzero weight on Z and
equals Q.

Let T ′′
i be T ′

i\{Z}; we observe that the points in T ′′
i are the only points in T

that have any contribution to (xi, yi, zi) when we want to represent Q (using a convex
combination). For now we restrict our attention to these three dimensions.When try-
ing to represent Q we must have 1/d weight in the set T ′′

i (because of the contribution
in the xi coordinate). The yi, zi coordinates of Q are y(M)/d, z(M)/d, respectively.
This means if we take the projection to the yi, zi plane, M must be in the convex hull
of T ′′

i . However that is impossible because no two points in AkCkEk contain M in
their convex hull. This contradiction implies the Lemma.

Lemma 4.19. Any convex combination of points in T that equals the point Q
must place equal weight on all points in T ′.

Proof. Using Lemma 4.18, we conclude that the total weight on points in T ′
i is

exactly 1/d, and there is a unique convex combination of the points T ′
i (restricted to

yi, zi) that recover the point M which is the 1/3, 1/3, 1/3 combination. This implies
the lemma.

Now we are ready to compute the w value of the point Q and show the sum of
ski is indeed d/2.
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Lemma 4.20 (soundness). When ε < N−Cd for some large enough constant C,
if there is a solution to the intermediate simplex instance, then there is a choice of d
values that sum up to exactly d/2.

Proof. As we showed in previous lemmas, the solution to the intermediate simplex
problem must contain O, W , and for each gadget i the solution has 3 points T ′

i that
correspond to one of the solutions of the gadget. Suppose for gadget i the triangle we
choose is AkiCkiEki . By constraints AB we know w(Aki ) = ski ; by constraints CE
we know w(Cki ) ≤ ε and w(Eki ) ≤ ε.

By Lemma 4.19 there is only one way to represent Q, and

w(Q) =
1

3d

d∑
i=1

[w(Aki ) + w(Cki ) + w(Eki )] = 1/6.

Then
∑d

i=1 ski =
∑d

i=1 w(Aki ) = d
2 − ∑d

i=1[w(Cki ) + w(Eki )]. Since w(Cki ) and

w(Eki )’s are small, we have
∑d

i=1 ski ∈ [d/2 − 2dε, d/2]. However the numbers only
have O(d logN) bits and ε is so small, the only valid value in the range is d/2. Hence

the sum
∑d

i=1 ski must be equal to d/2.

5. Fully efficient factorization under separability. Earlier, we gave algo-
rithms for NMF, and presented evidence that no (nm)o(r)-time algorithm exists for
determining if a matrix M has nonnegative rank at most r. Here we consider con-
ditions on the input that allow the factorization to be found in time polynomial in
n, m, and r. (In section 5.1, we give a noise-tolerant version of this algorithm.) To
the best of our knowledge this is the first example of an algorithm (that runs in time
poly(n,m, r)) and provably works under a nontrivial condition on the input. Donoho
and Stodden [14] in a widely cited paper identified sufficient conditions for the factor-
ization to be unique (motivated by applications of NMF to a database of images) but
gave no algorithm for this task. We give an algorithm that runs in time poly(n,m, r)
and assumes only one of their conditions is met (separability). We note that this
separability condition is quite natural in its own right, since it is usually satisfied [8]
by model parameters fitted to various generative models (e.g., LDA [9] in information
retrieval).

Definition 5.1 (separability). A nonnegative factorization M = AW is called
separable if for each i there is some row f(i) of A that has a single nonzero entry and
this entry is in the ith column.

Let us understand this condition at an intuitive level in the context of clustering
documents by topic, which was discussed in the introduction. Recall that there a
column of M corresponds to a document. Each column of A represents a topic and
its entries specify the probability that a word occurs in that topic. The NMF thus
“explains” the ith document as AWi where the column vector Wi has (nonnegative)
coordinates summing to one—in other words, Wi represents a convex combination of
topics. In practice, the total number of words n may number in the thousands or tens
of thousands, and the number of topics in the dozens. Thus it is not unusual to find
factorizations in which each topic is flagged by a word that appears only in that topic
and not in the other topics [8]. The separability condition asserts that this happens
for every topic.2

For simplicity we assume without loss of generality that the rows ofM are normal-
ized to have unit �1-norm. After normalizing M , we can still normalize W (while pre-

2More realistically, the word may appear in other topics only with negligible property instead of
zero probability. This is allowed in our noise-tolerant algorithm later.
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serving the factorization) by rewriting the factorization as M = AW = (AD)(D−1W )
for some r × r nonnegative matrix D. By setting Di,i =

∥∥W i
∥∥
1
the rows of D−1W

will all have l1-norm 1. When rows of M and W are all normalized the rows of A
must also have unit �1-norm because

1 =
∥∥M i

∥∥
1
=

∥∥∥∥∥∥
r∑

j=1

Ai,jW
j

∥∥∥∥∥∥
1

=
r∑

j=1

Ai,j

∥∥W j
∥∥
1
=

r∑
j=1

Ai,j .

The third equality uses the nonnegativity of W . Notice that after this normal-
ization, if a row of A has a unique nonzero entry (the rows in separability), that
particular entry must be one.

We also assume W is a simplicial matrix defined as below.
Definition 5.2 (simplicial matrix). A nonnegative matrix W is simplicial if no

row in W can be represented in the convex hull of the remaining rows in W .
The next lemma shows that without loss of generality we may assume W is

simplicial.
Lemma 5.3. If a nonnegative matrix M has a separable factorization AW of

inner dimension at most r then there is one in which W is simplicial.
Proof. Suppose W is not simplicial, and let the jth row W j be in the convex hull

of the remaining rows. Then we can represent W j = �uTW , where �u is a nonnegative
vector with |�u|1 = 1 and the jth coordinate is 0.

Now modify A as follows. For each row Aj′ in A that has a nonzero jth coordinate,

we zero out the jth coordinate and add Aj′
j �u to the row Aj′ . At the end the matrix

is still nonnegative but whose jth column is all zeros. So delete the jth column and
let the resulting n× (r− 1) matrix be A′. Let W ′ be the matrix obtained by deleting
the jth row of W . Then by construction we have M = A′W ′. Now we claim A′ is
separable.

Since A was originally separable, for each column index i there is some row, say
the f(i)th row, that has a nonzero entry in the ith column and zeros everywhere else.
If i �= j then by definition the above operation does not change the f(i)th row of A.
If i = j the jth index is deleted at the end. In either case the final matrix A′ satisfies
the separability condition.

Repeating the above operation for all violations of the simplicial condition we end
with a separable factorization of M (again with inner dimension at most r), where W
is simplicial.

Theorem 5.4. There is an algorithm that runs in time polynomial in n, m, and
r and given a matrix M outputs a separable factorization with inner dimension at
most r (if one exists).

Proof. We can apply Lemma 5.3 and assume without loss of generality that
there is a factorization M = AW , where A is separable and W is simplicial. The
separability condition implies that every row of W appears among the rows of M .
Thus W is hiding in plain sight in M ; we now show how to find it.

Say a row M j is a loner if (ignoring other rows that are copies of M j) it is not in
the convex hull of the remaining rows. The simplicial condition implies that the rows
of M that correspond to rows of W are loners.

Claim 5.5. A row M j is a loner iff M j is equal to some row W i

Proof. Suppose (for contradiction) that a row in M j is not a loner but it is equal
to some row W i. Then there is a set S of rows of M so that M j is in their convex hull
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and furthermore for all j′ ∈ S, M j′ is not equal to M j . Thus there is a nonnegative
vector u ∈ 
n that is 0 at the jth coordinate and positive on indices in S such that
uTM = M j .

Hence uTAW = M j = W i, but uTA must have unit �1-norm (because ‖u‖1 = 1,
all rows of A have unit �1-norm, and are all nonnegative); also uTA is nonzero at
position j′. Consequently W i is in the convex hull of the other rows of W , which
yields a contradiction.

Conversely if a row M j is not equal to any row in W , we conclude that M j is in
the convex hull of the rows of W . Each row of W appears as a row of A (due to the
separability condition). Hence M j is not a loner because M j is in the convex hull of
rows of M that are equivalent to M j itself.

Using linear programming, we can determine which rows M j are loners. Due to
separability there will be exactly r different loner rows, each corresponding to one
of the W i. Thus we are able to recover W ′ that is equal to W after permutation
over rows. We can compute a nonnegative A′ such that A′W ′ = M , and such a
solution A′ is necessarily separable (since it is just equal to A after permutation over
columns).

5.1. Adding noise. In any practical setting the data matrix M will not have an
exact NMF of low inner dimension since its entries are invariably subject to noise. Here
we consider how to extend our separability-based algorithm to work in the presence
of noise. We assume that the input matrix M ′ is obtained by perturbing each row of
M by adding a vector of �1-norm at most ε, where M has a separable factorization of
inner dimension r. Alternatively,

∥∥M ′i −M i
∥∥
1
≤ ε for all i. Notice that the case in

which the separability condition is only approximately satisfied is a subcase of this:
If for each column there is some row in which that column’s entry is at least 1 − ε
and the sum of the other row entries is less than ε then the matrix M ′ will satisfy the
condition stated above. (Note that M,A,W have been scaled as discussed above.)

Our algorithm will require one more condition, namely, we require the unknown
matrix W to be “robustly” simplicial instead of just simplicial.

Definition 5.6 (α-robust simplicial). We call W α-robust simplicial if no row
in W has �1 distance smaller than α to the convex hull of the remaining rows in W .
(Here all rows have unit �1-norm.)

Recall from Lemma 5.3 that the simplicial condition can be assumed without
loss of generality under separability. In general the α-robust simplicial condition
does not follow from separability. However, any reasonable generative model would
surely posit that the matrix W —whose columns after all represent distributions—
satisfies the condition above. For instance, if columns of W are picked randomly
from the unit �1 ball then after normalization α is more than 1/10. Regardless of
whether or not one self-identifies as a Bayesian, it seems reasonable that any suitably
generic way of picking column vectors would tend to satisfy the α-robust-simplicial
property.

Theorem 5.7. Suppose M = AW , where A is separable and W is α-robust
simplicial. Let ε satisfy 20ε/α+ 13ε < α. Then there is a polynomial-time algorithm
that given M ′ such that for all rows

∥∥M ′i −M i
∥∥
1
< ε, finds an NMF A′W ′ of the

same inner dimension such that the �1 norm of each row of M ′ − A′W ′ is at most
5ε/α+ 4ε.

Proof. Separability implies that for any column index i there is a row f(i) in A
whose only nonzero entry is in the ith column. Then Mf(i) = W i and consequently∥∥M ′f(i) −W i

∥∥
1
< ε. Let us call these rows M ′f(i) for all i canonical rows.
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Similarly to Theorem 5.4, we will show every row is close to the convex hull of
canonical rows. On the other hand, if we remove rows that are close to a canonical
row, then the canonical row will be far from the convex hull of other rows.

From the above description the following claim is clear since the rows of M can
be expressed as a convex combination of W i’s.

Claim 5.8. Every row M ′j has �1-distance at most 2ε to the convex hull of
canonical rows.

Proof. Since M j can be represented as M j =
∑r

k=1 Aj,kM
f(k), we have

∥∥∥∥∥M ′j −
r∑

k=1

Aj,kM
′f(k)

∥∥∥∥∥
1

≤ ∥∥M ′j −M j
∥∥
1
+

∥∥∥∥∥M j −
r∑

k=1

Aj,kM
f(k)

∥∥∥∥∥
1

+

∥∥∥∥∥
r∑

k=1

Aj,k(M
f(k) −M ′f(k))

∥∥∥∥∥
1

≤ ∥∥M ′j −M j
∥∥
1
+ 0 +

r∑
k=1

Aj,k

∥∥∥Mf(k) −M ′f(k)
∥∥∥
1

≤ ε+

(
r∑

k=1

Aj,k

)
ε

= 2ε.

Here we are just using triangle inequalities and the fact that rows of A have
�1-norm 1.

Next, we show how to find the canonical rows. For a row M ′j, we call it a robust
loner if upon ignoring rows whose �1-distance to M ′j is less than d = 5ε/α+ 2ε, the
�1 distance of M ′j to the convex hull of the remaining rows is more than 2ε. Note
that we can identify robust-loner rows using linear programming.

The following two claims establish that a row of M ′j is a robust loner if and only
if it is close to some row W i.

Claim 5.9. If M ′j has distance more than d+ ε to all of the W i’s, then it cannot
be a robust loner.

Proof. Such an M ′j has distance at least d to each of the canonical rows. The
previous claim shows M ′j is close to the convex hull of the canonical rows and thus
by definition it cannot be a robust loner.

Claim 5.10. All canonical rows are robust loners.

Proof. Since
∥∥M ′f(i) −W i

∥∥
1
≤ ε, when we check if M ′f(i) is a robust loner (using

linear programming), we leave out of consideration all rows that have �1-distance
at most 5ε/α + ε to W i. In particular, this omits any row M ′j such that M j =∑r

k=1 Aj,kW
k and Aj,i ≥ 1− 5ε/α. All remaining rows have Aj,i ≤ 1− 5ε/α.

Suppose the point in conv(M j : j is a remaining row) that is closest to Mf(i) can
be represented by

∑m
t=1 ctM

t =
∑r

k=1 akW
k (where

∑m
t=1 ct = 1 and ct ≥ 0), then

we know ai =
∑m

t=1 ctAj,i ≤ 1− 5ε/α.D
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The distance between Mf(i) and conv(M j : j is a remaining row) is therefore
bounded by

∥∥∥∥∥Mf(i) −
m∑
t=1

ctM
t

∥∥∥∥∥
1

=

∥∥∥∥∥∥(1− ai)W
i −

∑
k∈[r],k �=i

akW
k

∥∥∥∥∥∥
1

= (1− ai)

∥∥∥∥∥∥W i −
∑

k∈[r],k �=i

ak
1− ai

W k

∥∥∥∥∥∥
1

≥ 5ε

α
· α = 5ε.

The inequality follows from α-robust-simplicial property, because the vector inside
the �1-norm is the difference between Wi and a vector in the convex hull of other
columns.

Since rows of M ′ are close to M , let
∑m

t=1 c
′
tM

′t be the closest point of M ′f(i) in
conv(M ′j : j is a remaining row), then we must have

∥∥∥∥∥M ′f(i) −
m∑
t=1

c′tM
′t
∥∥∥∥∥
1

≥
∥∥∥∥∥Mf(i) −

m∑
t=1

c′tM
t

∥∥∥∥∥
1

−
∥∥∥M ′f(i) −Mf(i)

∥∥∥
1
−

m∑
t=1

c′t
∥∥M ′t −M t

∥∥
1

≥ 5ε− ε − ε

= 3ε.

Therefore M ′f(i) is a robust loner.
The previous claim implies that each robust-loner row is within �1-distance d+ ε

to some W i and, conversely, for every W i there is at least one robust-loner row
that is close to it. Since the �1-distances between W i’s are at least 4(d + ε), we
can apply distance-based clustering on the robust-loner rows: Place two robust-loner
rows into the same cluster if and only if these rows are within �1-distance at most
2(d + ε). Clearly two robust loners corresponding to the same W i have to be in the
same cluster because their distance is smaller than 2(d + ε). On the other hand, the
distance between any two robust loners corresponding to different W i’s is more than
4(d+ ε)− 2(d+ ε) = 2(d+ ε); they will never be in the same cluster.

Therefore we will obtain r clusters, one corresponding to each of the W i’s. Choose
one row from each of the clusters (call the row that is close to W i M ′g(i)), and using
a similar argument to Claim 5.8, we have∥∥∥∥∥M ′j −

r∑
k=1

Aj,kM
′g(k)

∥∥∥∥∥
1

≤ ∥∥M ′j −M j
∥∥
1
+

∥∥∥∥∥M j −
r∑

k=1

Aj,kW
k

∥∥∥∥∥
1

+

∥∥∥∥∥
r∑

k=1

Aj,k(W
k −M ′g(k))

∥∥∥∥∥
1

≤ ∥∥M ′j −M j
∥∥
1
+ 0 +

r∑
k=1

Aj,k

∥∥∥W k −M ′g(k)
∥∥∥
1

≤ ε+

(
r∑

k=1

Aj,k

)
(d+ ε)

= d+ 2ε.
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Which means every row of M ′ is within d+ 2ε = 5ε/α+ 4ε to the convex hull of
the rows we selected. Therefore these rows form a nonnegative W ′ and we can find
A′ so that

∥∥M ′j − (A′W ′)j
∥∥
1
≤ 5ε/α+ 4ε for all j.

6. Approximate NMF. Here we consider the case in which the given matrix
does not have an exact low-rank NMF but rather can be approximated by a nonneg-
ative factorization with small inner dimension. We refer to this as approximate NMF.
Unlike the algorithm in Theorem 5.7, the algorithm here works with general NMF:
We do not make any assumptions on matrices A and W . Throughout this section we
will use ‖‖F to denote the Froebenius norm, ‖‖2 to denote the spectral norm, and ‖‖
applied to a vector will denote the standard Euclidean norm.

Theorem 6.1. Let M be an n × m nonnegative matrix such that there is a
factorization AW satisfying ‖M −AW‖F ≤ ε ‖M‖F , where A and W are nonnegative
and have inner dimension r. There is an algorithm that computes A′ and W ′ satisfying

‖M −A′W ′‖F ≤ O(ε1/2r1/4) ‖M‖F
in time 2poly(r log(1/ε))poly(n,m).

Note that the matrix M need not have low rank, but we will be able to assume
M has rank at most r without loss of generality: Let M ′ be the best rank at most
r approximation (in terms of Frobenius norm) to M . This can be computed using a
truncated SVD (see, e.g., [18]). Since A and W have inner dimension r, we get the
following.

Claim 6.2. ‖M ′ −M‖F ≤ ‖M −AW‖F .
Throughout this section, we will assume that the input matrixM has rank at most

r—since otherwise we can compute M ′ and solve the problem for M ′. Then using the
triangle inequality, any good approximation to M ′ will also be a good approximation
to M .

Throughout this section, we will use the notation At to denote the tth column of A
and W t to denote the tth row ofW . Note that W t is a row vector so we will frequently
use AtW

t to denote an outer product. Next, we apply a simple renormalization that
will allow us to state the main steps in our algorithm in a more friendly notation.

Lemma 6.3. We can assume without loss of generality that for all t∥∥W t
∥∥ = 1 ,(6.1)

‖At‖ ≤ (1 + ε) ‖M‖F ,(6.2)

and furthermore ‖A‖F ≤ (1 + ε) ‖M‖F .
Proof. We can write AW =

∑r
t=1 AtW

t. So we may scale At,W
t to ensure that

‖W t‖ = 1. Next, since A and W are nonnegative we have ‖AW‖F ≥ ‖AtW
t‖F =

‖At‖ ‖W t‖ and ‖AW‖F ≤ (1 + ε) ‖M‖F and this implies the first condition in the
lemma.

Next we observe

‖AW‖2F =

n∑
i=1

m∑
j=1

[ r∑
t=1

(AtW
t)i,j

]2
≥

r∑
t=1

n∑
i=1

m∑
j=1

[AtW
t]2i,j = ‖A‖2F ,

where the inequality follows because all entries in A and W are nonnegative, and the
last equality follows because ‖W t‖ = 1.

Note that this lemma immediately implies that ‖W‖F ≤ √
r.
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The intuition behind our algorithm is to decompose the unknown matrix W as
the sum of two parts: W = W0 +W1. The first part W0 is responsible for how good
AW is as an approximation to M (i.e., ‖M −AW0‖F is small) but could be negative;
the second part W1 has little effect on the approximation but is important in ensuring
the sum W0 + W1 is nonnegative. The algorithm will find good approximations to
W0,W1.

What are W0,W1? Since removing W1 has little effect on how good AW is as
an approximation to M , this matrix should be roughly the projection of W onto the
“less significant” singular vectors of A. Namely, let the SVD of A be

A =

r∑
t=1

σtutv
T
t ,(6.3)

and suppose that σ1 ≥ σ2 · · · · ≥ σr . Let t0 be the largest t for which |σt| ≥ δ ‖M‖F
(where δ is a constant that is polynomially related to r and ε and will be specified
later). Then set

W0 =

t0∑
t=1

(vtv
T
t )W, W1 =

r∑
t=t0+1

(vtv
T
t )W.(6.4)

Lemma 6.4. ‖M −AW0‖F ≤ ε ‖M‖F + δ
√
r ‖M‖F .

Proof. By the triangle inequality ‖M −AW0‖F ≤ ‖M −AW‖F + ‖AW1‖F . Also
AW1 =

∑r
t=t0+1 σt(utv

T
t )W , so we have

‖AW1‖F =

∥∥∥∥∥
r∑

t=t0+1

σt(utv
T
t )W

∥∥∥∥∥
F

≤
∥∥∥∥∥

r∑
t=t0+1

σt(utv
T
t )

∥∥∥∥∥
2

‖W‖F ≤ δ ‖M‖F
√
r,

where the last inequality follows because ‖W‖F ≤ √
r and the spectral norm of∑r

t=t0+1(utv
T
t ) is one.

Next, we establish a lemma that will be useful when searching for (an approxi-
mation to) W0.

Lemma 6.5. There is an r ×m matrix W ′
0 such that each row is in the span of

the rows of M and which satisfies ‖W ′
0 −W0‖F ≤ 2ε/δ.

Proof. Consider the matrix A+ =
∑t0

t=1
1
σt
vtu

T
t . Thus A+ is a pseudoinverse of

the truncated SVD of A. Note that W0 = A+AW and the spectral norm ‖A+‖2 is
at most 1/(δ ‖M‖F ). Then we can choose W ′

0 = A+M . Clearly, each row of W ′
0 is in

the span of the rows of M . Furthermore, we have

‖W ′
0−W0‖F =

∥∥A+(M −AW )
∥∥
F
≤ ∥∥A+

∥∥
2
‖M −AW‖F ≤ 1

δ ‖M‖F
·2ε ‖M‖F ≤ 2ε

δ
.

Lemma 6.6. There is an algorithm that in time 2poly(r log(1/ε))poly(n,m) finds
W ′′

0 ,W
′
1, and A′ such that W ′′

0 + W ′
1 ≥ 0, A′ ≥ 0, and ‖M −A′(W ′′

0 +W ′
1)‖F ≤

O( εδ ‖A‖F + ε ‖M‖F + δ
√
r ‖M‖F ).

Proof. We use exhaustive enumeration to find a close approximation to the matrix
W ′

0 of Lemma 6.5, and then we use convex programming to find W ′
1, A

′.
The exhaustive enumeration is simple: Try all vectors that lie in some ε1-net

in the span of the rows of M , where ε1 = ε/δ . Such an ε1-net is easily enumer-
ated in the provided time since the row vectors are smaller than ‖W‖F =

√
r and
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their span is r-dimensional. Contained in this net there must be a W ′′
0 such that

‖A+M −W ′′
0 ‖F ≤ ε1. Using Lemma 6.5, ‖W0 −W ′

0‖2 ≤ 2ε/δ, so the triangle in-
equality implies ‖W0 −W ′′

0 ‖F ≤ 2ε/δ + ε1 ≤ 4ε/δ.
Next, we give a method to find suitable substitutes W ′

1, A
′ for W1, A, respectively,

so that W ′
0 +W ′

1 ≥ 0 and A′(W ′
0 +W ′

1) is a good approximation to M .
Let us assume we know the vectors vi appearing in the SVD expression (6.3) and

‖A‖F . This is easy to guarantee since we can enumerate over all choices of the vi’s
(which are unit vectors in 
r) using a suitable ε2-net, where ε2 = min{ ε

δr , 0.1}. Also,‖A‖F is a scalar value that can be easily guessed within multiplicative factor 1.01.
Let W ′

1 = Z be the optimal solution to the following convex program:

min ‖A‖2F
t0∑
t=1

∥∥vTi Z∥∥2 + δ2 ‖M‖2F
r∑

t=t0+1

∥∥vTi Z∥∥2(6.5)

s.t. W ′′
0 + Z ≥ 0.(6.6)

This optimization problem is convex since the constraints are linear and the ob-
jective function is quadratic but convex. (In fact this optimization problem can be
separated into m smaller convex programs because the constraints between different
columns of W ′

1 are independent.)
When the vectors we enumerated (denoted as {v′i}) are close enough to the true

values {vi}, that is, when
∑r

i=1 ‖v′i − vi‖2 ≤ min{ ε2

δ2r , 0.01}, the value of the objective
function after substituting v by v′ can only change by at mostO( ε

2

δ2 ‖A‖2F+rδ2 ‖M‖2F ).
From now on we work with the true values of {vi}. The claim below and arguments
after will still be true although the vectors are not exact.

Claim 6.7. The optimal value of this convex program is at most

O( ε
2

δ2 ‖A‖2F + rδ2 ‖M‖2F ).
Proof. We prove that W ′

1 = W −W ′′
0 = (W0 −W ′′

0 ) +W1 is a feasible solution
and that the objective value of this solution is the value claimed in the lemma.

Since W1 =
∑r

t=t0+1(vtv
T
t )W only contributes to the second term of the objective

function in (6.5), we can upper bound the objective as

‖W0 −W ′′
0 ‖2F ‖A‖2F + (‖W0 −W ′′

0 ‖F + ‖W1‖F )2δ2 ‖M‖2F .

The proof is completed because ‖W0 −W ′′
0 ‖F = O( εδ ) and ‖W1‖F ≤ ‖W‖F

=
√
r.
After solving the convex program, we obtain a candidateW ′

1. Let W
′ = W ′′

0 +W ′
1.

To get the rightA′ (sinceW ′ is fixed) we can find the A′ that minimizes ‖M − A′W ′‖2F
by solving a least-squares problem. Clearly such an A′ satisfies ‖M −A′(W ′′

0 +W ′
1)‖F

≤ ‖M −A(W ′′
0 +W ′

1)‖F and the latter quantity is bounded by ‖M −AW0‖F
+ ‖A(W0 −W ′′

0 )‖F + ‖AW ′
1‖F .

Lemma 6.4 bounds the first term and Lemma 6.5 bounds the second term. The
square of the last term is bounded by the objective function of the convex pro-
gram.

Finally, by choosing δ =
√
ε

r1/4
we getA′,W ′ = W ′′

0 +W ′
1 such that ‖M −A′W ′‖F ≤

O(ε1/2r1/4) ‖M‖F .
7. Concluding remarks. Here, we initiated a rigorous study of NMF. Our

hardness result rules out significant improvements over our worst-case results for
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fixed inner dimension r. We believe that our poly(m,n, r)-time algorithm for finding
separable factorizations may point the way for future work. What other plausible
conditions can one impose on the factors in real-life applications? We also hope our
work promotes further theoretical study of nonnegative rank.

This work is part of a broader agenda of bringing greater rigor to the analysis
of algorithms used in machine learning. Currently, heuristic approaches are popular
because the solution concepts are believed to be intractable. Our results, for example,
our algorithm for NMF under the separability condition, raise hope that sometimes
the solution concepts may not be intractable after all.

Appendix. Extended discussion. Here we explain an application of NMF
in detail. Perhaps the best approach is to contrast the NMF problem with a more
well-known matrix factorization, the SVD: An n × m matrix M can be written as
M =

∑
i σiuiv

T
i , where the set {ui}i and the set {vi}i are orthonormal and σ1 ≥

σ2 · · · · ≥ σr > 0 (see, e.g., [18]). In a number of applications, we imagine that the
columns of M represent examples and the rows of M represent observed variables.
In the context of information retrieval one often forms M as a term-by-document
matrix, where the (i, j)th entry in M is the frequency of occurrence of the ith term in
the jth document in the database. The SVD of M (e.g., in latent semantic indexing
(LSI) [13]) is often interpreted as a method to extract “topics” in the database: The
set of vectors {ui}i (in a truncated SVD) is the subspace that contains the maximum
variance of the documents, and projecting columns of M (i.e., documents) onto this
basis is interpreted as a decomposition of each document into constituent topics.
Documents can then be compared based on an inner-product in this space.

In some sense, the decomposition into topics generated via SVD is inconsistent
with our intuitive notion of what a topic is. The vectors {ui}i have both positive and
negative values—these vectors are orthogonal. For example, imagine some documents
are about cars and some others are about the weather. These topics would both be
negatively correlated with mentioning the word “elephant,” i.e., documents about
either topic are unlikely to use this word. What this means is that when we compute
the similarity of a pair of documents, the documents will be judged to be more similar
if both omit the word elephant. But this is not consistent with our intuitive model,
and would lead to spurious latent relationships. We would expect similarity to be
based on positive occurrences only.

Hofmann introduced a related approach (probabilistic LSI (PLSI) [22]) in which
each document is normalized to be a distribution on words, and the goal is to com-
pute a small set of r topics (which are each distributions on words) and represent each
document as a distribution on topics. This is equivalent (after an appropriate renor-
malization) to computing a nonnegative factorization of the term-by-document matrix
M into AW , where the columns of A represent a set of r topics and each column of W
expresses the corresponding document as a distribution on topics. The advantage of
requiring this factorization to be nonnegative is that in Hofmann’s PLSI documents
are judged to be similar based on words that they both contain. In LSI, documents
can also be judged to be similar based on words they both omit. Arguably, Hofmann’s
model is more consistent with our intuition and maybe this helps explain why (com-
putational issues aside) a nonnegative factorization is, in many cases, preferred over
an unrestricted one.

Acknowledgments. We thank David Blei and Saugata Basu for useful discus-
sions.
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