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Abstract

In this paper, we define the symmetric hyperdeterminant, eigenvalues and E-eigenvalues of a real
supersymmetric tensor. We show that eigenvalues are roots of a one-dimensional polynomial, and
when the order of the tensor is even, E-eigenvalues are roots of another one-dimensional polynomial.
These two one-dimensional polynomials are associated with the symmetric hyperdeterminant. We
call them the characteristic polynomial and the E-characteristic polynomial of that supersymmetric
tenor. Real eigenvalues (E-eigenvalues) with real eigenvectors (E-eigenvectors) are called
H-eigenvalues (Z-eigenvalues).n&h the order of the supersymmetric tensor is even, H-eigenvalues
(Z-eigenvalues) exist and the supersymmetric tensor is positive definite if and only if all of its
H-eigenvalues (Z-eigealues) are positive. Amth-order n-dimensonal supersymmetric tensor
wherem is even has exactip(m — 1)1 eigenvalues, and the number of its E-eigenvalues is
strictly less tham(m — 1)"~1 whenm > 4. We show that the product of all the eigenvalues is
equal to the value of the symmetric hyperdeterminant, while the sum of all the eigenvalues is equal
to the sum of the diagonal elements ofttsapersymmetric tensor, multiplied kyn — 1)"~1. The
n(m—1)"~1 eigenvalues are distributedrrdisks inC. Thecenters and radii of thesedisks are the
diagonal elements, and the sums of the absolute values of the corresponding off-diagonal elements,
of that supersymmetric tensor. On the other hand, E-eigenvalues are invariant under orthogonal
transfomations.
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1. Introduction

A realmth-ordern-dimensional tensoA consists oh™ real entries:

A im €R,
whereij =1,...,nforj =1,..., m. The tesorA s called supersymmetric if its entries
are invariant under any permutation of their indicksf(dis ard Reglia, 2002).

The tensorA defines aimth-degree homogeneous polynomialx) € R[X, ..., Xn],
X=(X1,...,Xn):
n
f(x) = AxM:= Z AipimXig o Xigs (1)
ig,mim=1

wherex™ can be regarded as anth-order n-dimensional rank-one tensor with entries
Xi, - - - Xip, (Kofidis ard Regalia, 2009, and Ax™ is the tensor product ofA and x™.
Clearly, if A is not supersymmetric, we may repladédy a supersymmetric tensérsuch
that

f(x) = Ax™ = Ax™.

We denote this supersymmetric tens@ras sym@).

In 1845, Cayley initiated thestly of hyperdeterminant€@ayley, 1845. It was assumed
that hyperdeterminants would play a role for tensors like determinants for matrices. But
this study was largely abandoned for 150 years until the boBklfand et al. 1999
appeared.

Recently, motivated by the study of positive definitenessfgk) defined in (),

Qi (2004 introduced the concepts of H-eigenvalues and Z-eigenvalues of an even-order
real supersymmetric tenséx.

When m is ewen, the positive definiteness of such a homogeneous polynomial
form f(x) plays an important role in thetability study of nonlinear autonomous
systems via Lyapunov’s direct method in automatic contréinderson et al. 1975
Bose an Kamt 1974 Bose and Mwcomb 1974 Hsu andMeyer, 1968. We say that a
supersymmetric tensoA is positive definite if f (x) defined by 1) is positive ddinite.
Resarchers in automatic control studied the conditions of such positive definiteness
intensively @Anderson et al. 1975 Bose ad Kamt 1974 Bose and Modaressl976
Bose and Mwcomh 1974 Fu, 1998 Hasan and Hasarll996 Hsu andVieyer, 1968
Jury and Mansouy 1981 Ku, 1965 Wang and Qi 2005. For n < 3, the positive
definiteness of such a homogeneous polynomial form can be checked by a method based
on the $urm theorem Bose and Modares4976. Forn > 3 andm > 4, this issue is a
hard problem in mathematics.

For a\ectorx € R", we usex; to denote its components, art" to denote a vector in
R" suchthat
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for all i. By the tensor produc@i and Teg 2003, Ax™1 for a vectorx € R" denotes a
vector inR", whosei th component is

n

m*

i2,....im=1

Qi (2009 called a real number an H-eigenvalue of A if it and a nonzero real vector
are solutions of the following homogeneous polynomial equation:

AxM—1 — jxIm=11 (2

and called the solutiox an H-eigenvector of A associated with the H-eigenvalue
Qi (20049 also cdled a realnumberi and a real vectox € R" a Z-eigenvalue of A and
aZ-eigenvector of A associated with the Z-eigenvalue@espectively, if they are solutions
of the fdlowing system:

Ax™1 = Jx
{ xTx = 1. ®)

It was proved inQi (2009 that H-eigenvlues and Z-eigenvalues exist for an even-
order real supersymmetric tensér and A is positive definite if and only if all of its
H-eigenvalues (Z-eigenuads) are positive. Thus, the smallest H-eigenvalue and the
smallest Z-eigavalueof an even-order supersymmetric tengoare important indicators
of positive definiteness oA. Whenn is very small, we may use&) and @) to calculate all
H-eigenvalues (&igenvalues) ofA, then judge whetheA is positive déinite or not.

In general,Qi (2009 gave ®veral computable upper and lower bounds of the smallest
Z-eigenvalue and H-eigenvalue Af and presented a procedure for improving these upper
bounds.

For a sipersymmetric tensoA, we define its symmetric hyperdeterminant, denoted
by de(A), as an irreducible polynomial inA;, . i.,, which vanishes wherever there is
anx € C",x # 0, such thatf (x) = 0 andits gradientV f (x) = 0. Notethat when
m = 2 this definition coincides with that of the determinant of a symmetric matrix, but
in general it is different from the hyperdeteinant introduced by Cayley. The symmetric
hyperdeterminant oA is actually the resultant of the systevinf (x) = 0. As the theory
of the resitant (Cox et al, 1998 D’Andrea and Dickenstejr2001, Gelfand et al. 1994
Sturmfels 2002 becomes more developed, this definition becomes more usable, as shown
in our paper.

We extendhe Kronecker symbol to the caserofindices:

P 1, ifig=---=im,
't.Im =1 9 otherwise.

We call anmth-ordern-dimensional tensor th@th unit tensor if its entries are;, i, for

i1,...,im = 1,...,n, anddenote it byl . To specify the sign and scale of the symmetric

hyperdeterminant, we may let def = 1. Suppose than is even. It was observed in

Qi (2009 that he H-eigenvalues ofA are roots of the following one-dimensional

polynomial ofi:

d(h) = det(A—Al). (4)
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The one-dimensional polynomial was c#led the characteristic polynomial of A.

Qi (2009 attributed “Z-eigenvalues” t&Zhou (2009 as Zhou (2004 suggested to the
author the definition3).

The discussion of H-eigenvalues and Z-eigenvalues is restricted for real numbers with
real eigenvectors. This is because of the feediscussing the positive definiteness. When
m = 2, this restriction is unnecessary, as a real symmetric matrix has only real eigenvalues
with real eigenvectors. This does not extend to the high order cases. This restriction
obstructsthe view of the full mathematical structure of eigenvalues of a supersymmetric
tensr.

The behaviours of H-eigenvalues are sdo to those of eigenvalues of matrices
in a certain sense. For example, the H-eigenvalues of a diagonal even-order real
supersymmetric tensor are exactly its diagonal elements. The H-eigenvalues have a
Gershgorin-type theorem. These two properties do not hold for Z-eigenvalues.

In this paper, we extend H-eigenvalues and Z-eigenvalues to the complex case. This
enables us to know the full mathematicalusture of eigenvalues of a supersymmetric
tensr.

Throughout this paper, we assume thmn > 2, andA is anmth-ordern-dimensional
real supersymmetric tensor. In the next section, we discuss some properties of the
symmetric hyperdeterminant. While most of them can be easily derived from the contents
of Gelfand et al(19949), the proof ofProposition 4s nontrivial, and it relies on the theory
of the resiltant (Cox et al, 1998. Proposition 4s critical for thediscussion inSection 3

Since he behaviours of H-eigenvalues are sdo to eigenvalues of matrices in a
certain sense, we call a numbere C an eigenvalue of A if it and a nonzero vector
x € C" are solutions of the homogeneous polynomial equatn gnd we call the
solutionx aneigenvector of A associated with the eigenvaluaeOn theother hand, since
the definition B) is associated with the Eucl@hn norm, we call a number € C an
E-eigenvalue of A if it and a nonzero vectox € C" are solutions of the polynomial
equation systenm}, and we call the solutior anE-eigenvector of A associated with the
eigenvalue..

In Section 3we show hat a number i€ is an eigenvalue oA if andonly if it is a root
of the characteristic polynomial. We shav that A has exactlyn(m — 1)1 eigenvalues,
the product of all the eigenvalues & is equal to detA), and the am of all the eigenvalues
of Ais

(m _ 1)n—1

times the sum of the diagonal elementgoie showhat whermm s even, an E-eigenvalue
of A is a root of another one-dimensional polynomial associated wWith\Ve call that
one-dimensional polynomial the E-characteristic polynomiaAofWe show hat when
m > 4, the number of E-eigenvalues &f counted with multiplicity, is strictly less than
n(m— 11,

In Section 4 we give a femula for calculatig an eigenvalu@ using its eigenvectax
if 2?21 me # 0, and a formula for calculating an E-eigenvaluesing its E-eigenvector

x if Z?:l sz # 0. We prove that two eigenvectoxsandy associated with two distinct
eigenvalueg andyu are linearly independent. Whemis even, we prove thak has at least
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two distinct H-eigenvalues iA is not a multiple ofl . We also pove therehat whenm is
even, a necessary condition for positive semidefinitenegsisfthat detA) > 0.

In Section 5 we stidy the dstribution of eigenvalues and H-eigenvalues. We show
that eigenvalues are distributed rindisks in C. The centers and radii of these disks
are the diagonal elements, and the sums of the absolute values of the corresponding off-
diagonal elements, oh. Whenm is even, the largest (smallest) H-eigenvalue is always in
the rightmost (leftmost) component of the union of théntervals intersected by these
disks with the real axis. This gives a lower bound and a new upper bound for the smallest
H-eigenvalue, which is useful in judging the positive definiteness @i, 2004. We give
an example fom = 4 andn = 3 there for judging the positive definiteness Afand
constructing a formula for ded) by calculatirg all the eigenvalues oA.

We prove that E-eigenvalues are invariant under orthogonal transformat8atiion 6

Some oncluding remarks are given Bection 7

2. Propertiesof the symmetric hyperdeter minant
We now summarize some properties of the symmetric hyperdeterminahts of
Proposition 1. The symmetric hyperdeterminant of Aet(A), is the resultant of
Ax™1 =,

and is a homogeneous polynomial in the entries of A, with the degreeném — 1)"1.
The degree of A in det(A) is not greater thar(m — -1,

Proof. According to ourdefinition, detA) is the resultant off (x) andV f (x), wheref is
defined by {). SinceA is supersymmetric,

Vx) =mAx"™ 1L

We see thatf (x) = 0 if AX™1 = 0. Hence, detA) is the resultant ofAX™ 1 = 0.

The second and the third conclusions now follow from Proposition 1.1 of Chapter 13
of Gelfand et al.(1994, and the fact thatAi i only occursin the ith equation of
Ax™1l=0 0O

Corollary 1. For any real number a,
detaA) = a%det A),
where d= n(m — 1)" 1.

Proposition 2. If we permute some indices of A, the value of its symmetric
hyperdeterminant will be invariant.

Proof. This follows from the supersymmetry & and our definition of the symmetric
hyperdeterminant. [J
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Proposition 3. If A is diagonal, then

n
_1\n—1
deiA) =[] Ai(j?.,}) .

i=1
In general this will be a term oflet(A).

Proof. Assume thatA is diagonal. By our definition, def) should be proportional to
the product of the powers of its diagonal elements. Byposition 2 the degree of each
diagonal element in this product should be the samePByosition 1the degree of each
diagonal element in this product should @me — 1)"~1. Since detl) = 1, the coefficient
of the product is 1. The first conclusion follows. Since the formula of Aetvhen A is
diagonal can be obtained by letting all thé-dfagonal elements be zero in the formula of
det(A) in the general case while lroposition ldet(A) is ahomogeneous polynomial in
the enties of A in the general case, the second conclusion follovis.

Proposition 4. In det(A), except for the term

n
(m-1n-1
[TAT
i=1

as stated inProposition3, the tdal degree with respect to 1A 1, Ao,
not greater than

3oy seees

nm-— 1"t -2

Proof. DenoteF (x) := Ax™ 1,

Suppose that the conclusion is not true. TherPIgposition land Proposition 1.1 of
Chapter 13 ofGelfand et al.(1994, without loss of generality, we may assume that in
det(A), thereis aterm

n-1
m-1"1 \(m-1pn-1-1
c l—[ A|(| Aé ..... n) Aniis. ..im>» (5)
i=1
whereén i,....i,, = 0, andc is anonzero real number.

In the following, we need the knowledge on resultants in Section 4, Chapter 3, of
Cox et al.(1998.

Letd =n(m—1) —n+ 1. Forx = (X1, ..., Xn), letx® = x{*---x3" € R[X1, .. ., Xn]
wherea = (a1, ..., an), o1, . .., an are nonnegative integers. Dengi¢ = > 1 ; .
Let

S={x*:]la|=d}, N=]S],
S ={x*eS: xf‘_l dividesx?},

S={x*eS\S: xg‘_l dividesx“},

S = {x¥ € S\US : ™ dividesx*}.

By Section 4, @apter 3, ofCox et al.(1998, {S1, ..., S} is a partition ofS.
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Consider tle equations
x?/x™ 1. F =0, forallx* € S,

fori = 1,...,n. Regarding the monomials of total degreeas unknowns, we get a
system ofN linear equations ifN unknowns. Denote its coefficient matrix By, and
let D = det(My).

Letx* € S Then here is a uniqué suchthatx® € §. ThenA;__; is the coefficient
of x* in x"‘/xim*l - Fi = 0. Thus, by some permutation, we may let the diagonal elements
of Mp, be the diagonal elements éfwhile the dff-diagonal elements dfl,, do not involve
diagonal elements oA.

Hence he term of D, which has the highest total degree with respectAiQ_ 1,

A2,...,25 DERN) An....,n IS

ﬁ Ai‘,s...‘,i' (6)

By Exerise 4.3 in Chapter 3 afox et al.(1998, |S\| = (m — 1)"~1. By Proposition 4.6
in Chapter 3 ofCox et al.(1999 as well as supersymmetry &,

D, = det(A) - h, (7)

whereh is an extraneous factor, which is a polynomial with coefficiehts i, 1 <ij <
n—1forj=1,...,m Lethg be the monomial oh, whichhas the highest total degree
of A1_1,..., An—1...n-1. By Propositions Jand3 as well as §) and (7),

ey

T AIS - (-1t
ho = ]_[ AT ) (8)

i=1
In (7), the product of §) andhg is

n-1
c[TAS AR T Ania..cim: (9)
i=1
The total degree oAy, 1, ..., An,..nOf thistermisN — 1.
Now, suppose the product of a term in d&) and a term irh is proportional to 9).

Since a term of déf\) with the highest total degree & 1,..., An—1,.n—1 Ccan have
the factor

— n-1

[TAT

i=1
andhg is the term inh with the highest total degree @11, ..., An—1..._n—1 as shown

in (8), compamg with (9), the term inh must behg. Sinceh andhg does not involve



L. Qi / Journal of Symbolic Computation 40 (2005) 1302—-1324 1309

....im With atleast one ofi1, . . ., im} equal ton, the termin det A) must be the terms).
This implies that inD, expressed as the product of d&j andh as in (7), the term 9)
cannot be canceled by other products of terms ofeandh.

On the aher hand, the diagonal elements W, are A1 1,..., An....n, While the
off-diagonal elements oM, do not involve Aq n. By the properties of
deterninants, any term oDy, is either the product of all of its diagonal elements, or a
product at least missing two diagonal elements, i.e., there does not exist a tBymfof
which the total degree &1, 1, ..., An,_..niS N — 1. This contradicts the existence of the
term 9). This proves the proposition.C]

.....

.....

Letn = 2. Then we may denote the distinct entriesAcdis

a=~A.11 aa=A~A1.12 ..., am= A2 22

By Proposition land the Sylvester Formula (Page 4003#Ifand et al(1994), we have
the following proposition.

Proposition 5. If n = 2, then vith the notation abovedet(A) is equal to the following
2(m — 1)-dimensional determinant:

R (mfl)al (mil)az (mié)amfz am-1 0 0 0

o @ ("a o (FE)ws (RHwe s 0 0

°o 0 o % ("Ma (MY - (M3)anz ana
ag (mfl)az (m£1)63 (m:%)am_l am 0 0 o |’
0 a1 (mil)az (m:%)am_g (m:%)am_l am 0 0

°o 0 o 2 ("Ma (MY)a - (M3)am1 am

where

m—-1)  (m-—1)!
( i )_i!(m—l—i)!'

With some computatin, we have the following explicit formula for de&%) and¢ (i)
whenm = 4 andn = 2.

Corollary 2. Whenm=4and n= 2,
det(A) = aja; — 64ajal — 27a3a3 — 27ajas — 18a%asaZ
+ 36a%a2aZ + 8lapajas — S4apadal — Sda’adas — 12a%a1a3a’
— BagajaZas + Sdasayadas + Sdagaiazal
+ 108021383 + 108a3arazas — 180apayasazas (10)
and
$() = (20 — 1)(as — 1)° — 64aja3 — 27(ag — 1)ag — 27af(as — 1)
— 18(ap — 1)%a3(as — »)? + 36a%a3a3 + 81(ag — A)az(as — A)
— 54(ap — A)aga3 — 54afa3(as — 1) — 12(a0 — A)?aras(ay — 1)°
—6(ap — M)aZad(as — 1) + 54(ag — 1)%axa3(as — A)



1310 L. Qi / Journal of Symbolic Computation 40 (2005) 1302-1324

+54(a0 — 1)afag(as — 1)? + 108(a0 — A)aaqas + 108aazag(as — A)
— 180(ap — A)a1asaz(as — A). (11)

3. Thecharacteristic polynomial and the E-characteristic polynomial

We may denote the sum of the diagonal elementsAofs t(A). We call those
eigenvaluedN-eigenvalues of A if they are not H-eigenvalues, i.e., an N-eigenvalue is
an eigenvalue which has no real eigenvesta¥e call the eigenvectors associated with
N-eigenvalues N-eigenvectors.

We now pove the maintieorem of this paper.

Theorem 1. Wehave the following conclusions on eigenvalues of A:

(&) Anumbern. € Cis an eigenalue of A if and only if it is a root of the characteristic
polynomialg.

(b) The number of eigenvalues of A is ¢ n(m — 1)"~1. Their product is equal to
det(A).

(c) If A is diagonal, then A has n H-eigenvalues, which are its diagonal elements,
with corresponding unit vectors as their H-eigenvectors. Each of these H-eigenvalues is
of multiplicity (m — 1)"~1, and A has no N-eigenvalues.

(d) The sunof all the eigenvalues of A is

(m— 1" Hr(A).

Proof. (a) According to our definition of the symmetric hyperdeterminart) = O if
and only if there is a nonzero vectore C" suchthat

FX)=(A-ah)x™=0
andVF(x) = 0. But
VF(X) =mA—21Dhx™t=m (Axm—l _ )\X[m—l]) .

ThenVF(x) = 0 is equivalent to R), while F(x) = 0 is equivalent to

n
AxX™ = A Z X",
i—1

which is aconsequence of}. The conclusion follows.

(b) By the knowledge of the symmetric hyperdeterminant, the degreg isfd =
n(m — 1)"1. By (4) and Corollary 1, the leading coefficient of, i.e., the coefficient
of 29, is

(-1)4det(1) = (=19 £ 0.
The first conclusion of (b) follows. The leading coefficientgois (—1)¢. The @nstant
term of ¢ is de{ A). The seond conclusion of (b) then follows from the relation between

roots and coefficients of a one-dimensional polynomial.
(c) This follows from @), (b) of this theorem, anBroposition 3
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(d) By Proposition 4and the structure @f (1) = detf A— A1), the tam ofAd-1ingp(1),
whered = n(m — 1)1, is in the term

I jm-an
A i—A B .
i=1

Thus, the coefficient of this termis
—(m-=1"1tr(A).

Since he coefficient of the termd in ¢ (1) is 1, the conclusion follows from the relation
between roots and coefficients of a one-dimensional polynomial.

Examplel. Letm = 4 andn = 2. Assume thatA1111 = A2222 = 1, A1112 = A1121 =
A1211= Az111=a # O and alother A, i, i5,i, = 0. Then from ), we may diectly find
that A has four H-eigenvalues and two N-eigenvalues: a double H-eigenvalge., = 1

with an H-eigenvectox® = (0,1)T, an H-eignvalueis = 1 + (27)%a with an

H-eigenvectox® = ((3)7, 1)T, an H-eig@nvalueis = 1 — (27)7a with an H-eigenvector

x@ = ((3)711, —1)T, an N-eig@nvaluers = 1+ (27)iav/—1 with an N-eigenvector

x® = ((3)%, V=1, and aN-eigenvalue.s = 1 — (27)3ay/—1 with an N-eigenvector

x® — ((3)7, —/—1)T. We see tht the total number of eigenvalues is
d=nm-1"1=6,

the product of all the eigenvalues is-1 27a%, and the am of all the eigenvalues is 6. On
the othethand, by 10), we have

det(A) = 1— 27a*

This is equal to the product of all the eigenvalues. Also
(m—1)""tr(A) = 6,

which is equal to the sum of all the eigenvalues. BY)( we also have
¢ = (L =021 -n*—27a%,

which hassix roots; fori = 1, ..., 6 as ndicated above.

Corollary 3. Suppose that B= a(A + bl), where aand b are two real numbers. Then
is an eigenalue (H-eigenvalue) of B if and only if = a(A + b) and A is an eigavalue
(H-eigenvalue) of A. In this case, they have the same eigenvectors.

We may userheorem {b) to calculate the symmetric hyperdeterminant. We may also
use this property to construct the formulas for the symmetric hyperdeterminant for some
sparse tensors. [Bection 5we give an example fiothis whenm = 4 andn = 3.

We hae a conjeatire on eigewalues:

Conjecturel. The number of linearly independerigenvectors associated with an
eigenvalue. is not greater than the multiplicity of.
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Assume thaim is even and letn = 2. As we sid in the introduction, in this case,
E-eigenvalues are roots of another one-dimensional polynomial associatedl, itk we
call that one-dimensional polynomial the E-characteristic polynomi@.dfet I, be the
n x n unit matrix. To define the E-characteristic polynomial, we need to study a special
mth-ordern-dimensional tensolr'z, whose(i, i2, ..., Iim) entry is defined as

8iiBigig *  * Oimy_1im-

The tenson'2 can be regarded as the tensor produdtwdfit matriceslo, ..., I2. It isnot
supersymmetric wheh> 2. Letlg = sym(l'z). We call the one-dimensional polynomial
¥, defined by

¥ (1) = det(A— Alg),
the E-char acteristic polynomial of A.
Proposition 6. If| > 2, then
detlg) = 0.
Proof. Letx; = 1,xp = +/—1, % =0fori =3,...,n. Then we se that
lex™ = 1x"1=0
whenl > 2. Hence, Ois an eigenvaluekéf By Theorem {b), we have the conclusion.[]

We say thatA is regular if either A is not singular, orA is singular but there is no
eigenvectok associated with the zero eigenvaluefosuchthatx = 0 and

n
x? =0.
Theorem 2. Assume that m is even and s 2I. We have the following conclusions on
E-eigenvalues of A:
(a) An E-eigenvalue of A is a root of the E-characteristic polynorfialf A is regular,
then a conplex number is an E-eigenvalue of A if and only if it is a rootjof

(b) When I> 2, thenumber of E-eigenvalues #fis stictly less than o= n(m—1)"1,

Proof. (a) According to our definition of the symmetric hyperdetermingr@) = O if
and only if there is a nonzero vectore C" suchthat

|
n
GX) = (A—Alp)x™ = (A= Al)x™ = AX™ — (Zx?) =0
i=1

andVG(x) = 0. We have

N I-1
VG(x) = m | Ax™ ! — ax (Z x,2> . (12)
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Then @) implies thatVG(x) = 0, while G(x) = 0 is equivalent to

|
n
AX™ = ) (Z x,2) ,
i1

which is also a ensequence of3]. The first conclusion follows. Suppose now this
regular. If

n
x2 =0
i1

in (12), thenVG(x) = 0 implies Ax™1 = 0, which imgies that A is not regular, a
contradiction. Hence,

ixf;«éo

in (12). By scaling x, we seethat VG(x) = 0 implies (3) in this case. The second
conclusion follows.

(b) By the knowledge of the symmetric hyperdeterminant, the degrgeisfat most
d = n(m — 1)1, But the oefficient of thedth-degee term ofy is de(lg), which is
zero, according t&roposition 6 Herce, the actual degree ¢f is strictly less tham. The
conclusion follows. [

We hawe a conjeatre on E-eignvalues:
Conjecture2. When | > 2, the number of E-eigenvaluesf A is stictly less than
d=nm-1"1-1
4. More propertiesof eigenvalues and E-eigenvalues

We have thedllowing theorem.

Theorem 3. Suppose that x is an eigenvector associated with an eigenvaltid. If

n
D6 #0, (13)
i=1
then

A m

A= (14)
>ox"
i=1

On the other hand, if X is an E-eigenvector associated with an E-eigenvalud, then

A= Ax™, (15)
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Proof. By (2), we have

T n
AxM = (x””‘”) X=x (Z xim> :
i=1
If (13) holds, then we haveld). We may provel5) from (3) diredly. [

For eigenectors of two distinct eigenvalues 8f we have the follwing theorem.

Theorem 4. Suppose that and . are two distinct eigenvalues of A, u, and x and y
are two eigenvectors associated witketh. Then x and y are linearly independent.

Proof. Suppose thak andy are linearly dependent. Thenandy are proportional, since
both of them are nonzero vectors. Sin@ i homogeneous, we see thatis also an

eigenvector ofA associated withe. Sincex # 0, there exists suchthatx; # 0. Consider

theith equation of 2); we have

m-—1 m—1 m—1
[Ax ],:)\xi =uX .

Sincex; # 0, this implies that. = u, contradicting our assumption.]

Theorem 5. Assume that m is even. The following conclusions hold for A:

(a) A always has H-eigenvalues. A is positive definite (positive semidefinite) if and only
if all of its H-eigenvalues are positive (nonnegative).

(b) A dways has Z-eigenvalues. A is positive definite (positive semidefinite) if and only
if all of its Z-eigenvalues are positive (nonnegative).

(c)If Ais amultiple of I, then A has a d-multiple H-eigenvalue, where a\(m—1)"—1.
If Alisnota multiple of I, then A has at least two distinct H-eigenvalues.

Proof. (a) We see that?) is the optimality condition of

n
max{Axm : Z xM=1x¢e R”} (16)
i—1
and
n
min:Axm:inmzl,xeR“}. (17)
i—1

As the feasible set is compact and the objective function is continuous, the global

maximizer and minimizer alwe exig. This shows thatd) always las real solutions, i.e.,

A always has H-eigenvalues. Sindeés positive definite (positiveemidefinit¢ if and only

if the optimal value of 17) is positive (nonnegative), we have the second conclusion of (a).
(b) The proof of (b) is similar to the proof of (a), as long as we repla&egdnd (L7) by

n
max{Axm : inz =1xe R”}
=)
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and
n
min!Axm : inz =1,xeR"}.
i—1

(c) The first conclusion follows fronTheorem {c). Suppose thafA has only one
H-eigenvaluel. Since @) is the optimality condition of 16) and (7), this implies that
foranyx € R", (2) holds for that. Considertheith equation of 2). Letting xj = &;; for
j=1,...,n, we have

Aii=AX

Only lettingx; = 1 and comining with the above, we have

n
D AigesinXiy+ Xig =0
in,...im=1
Siin,.im
for anyx satisfyingx; = 1. Thisimplies that
Ailiy....im = ABiin,...ims
foranyi,io, ..., im, i.e, Ais a multiple ofl . This ammpletes the proof. [

Example2. Letm = 4 andn = 2. Assume thatA1111 = 1, A1122 = A1221 = A1212 =
A2121= A2211= A2112= %, A2222= 1 andotherAil,iz,i&i‘l = 0. Then Q) becomes

3 2 3
X3 + X1X5 = AX3,
2 3 3
X7X2 + X5 = AXS.

Solving it, we find thatA has four H-eigenvalues:y = A = 1 with H-eigenvectors
x®D = (1,07, x@ = 0,17, 23 = x4 = 2 with H-eigenvectorx® = (1,17,
x® = (1,-1)7, and a double zero N-eigenvalug = i¢ = O with N-eigenvectors
x® = @1, /=17, x@ = 1, —/=1)T. Herce, A is positive definite but singular in the
sense of Cayley.

Itis seerthatif A is an N-eigenvalue ofA andx is an eigenvector associated withthen
2 is also an N-eigenvalue ok andx is an eigenvector associated with This indicates
that N-eigenvalues appear in pairs. Furthermore, the product of a conjugate pair of nonzero
N-eigenvalues is always positive. Hence, the sign of Alets the same ashe sign of the
product of all H-eigenvalues and zero N-eigenvalues if there are any. Thus, we have the
following proposition.

Proposition 7. Assume that m is even. If A is positive semidefinite, de&m®) > 0. If A
is positive definite, then eithelet(A) > 0 or A has some zero N-eigenvalues.

It is easy to see that all of positive seniidée supersymmetritensrs of the same
order and dimension form a closed convex conePByposition 7the tasors are positive
definite in the interior of this convex cone and on some boundary part of this cone.
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In (1), if we let some (bunot all) x; be zero, then we have a lower degree homogeneous
polynomial, which defines a lower order supersymmetric tensor. We call such a lower order
supersymmetric tensor principal supersymmetric sub-tensor of A. If A is positive
definte (semidefinite), then all of its principal supersymmetric sub-tensors are positive
definte (semidefinite). ByProposition 7we have the following further proposition.

Proposition 8. Assume that m is even. If A is positive semidefinite, then the symmetric
hyperdeterminants of all of its principal supersymmetric sub-tensors are nonnegative.

Note that the converse &froposition 8s not true ingeneral. For example, a necessary
and sufficient condition for positive definiteness in the aase 4 andn = 2 can be found
in Jury and Mansour(1981). For positive semidefiniteness, we may take the closed hull
form of the condition given idury and Mansour(1981), which is much more complicated
than the condition ifProposition 8

5. Distribution of the eigenvalues
The following is a theorem on the distribution of the eigenvalue&.of

Theorem 6. (a) The eigenvalues of A lie in the union of n disk€inThese n dkshave
the dagonal elements of the supersymmetric tensor as their centers, and the sums of the
absolute values of the off-diagonal elements as their radii.

(b) If one of these n disks idgjoint with the other n— 1 disks, then there are exactly
(m — 1)"1 eigenvalues which lie in this disk, and when m is even there is at least one
H-eigenvalue which lies in this disk.

(c) If k of these n disks are connectiedt digoint with the other n— k disks, hen there
are exactly km—1)"~1 eigenvalues which lie in the union of these k disks. Moreover when
m is e/en at least one H-eigenvalue lies in the real interval intersected by this union on the
real axis if one of the following three conditions holds:

() k isodd;

(ii) k is even and the other i k disks are ontte left side of this union;

(iii) k is even and the other r k disks are ontte right side of this union.

Proof. (a) Suppose that is an eigenvalue oA with eigenvectox. Assume that

[Xi| = max [Xj].
j=1,..,n

Consider theth equation of 2). We have

n

A—a X"t = > AlipinXip Xip-

i2,...,|m=l
Sijin,...im=0

This implies that

n

o 2 : o Xip Xim § : o
A —a il < ‘AI,Iz,...,Im‘ o —| = ‘AI,Iz,...,Im .
i9,enim=1 Xi Xi i9,enim=1
Siin,....im=0 Siin,.im=0
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This gives us the desired result. Note thandx may be non-real here.

(b) This is a special case of (c) wikh= 1.

(c) Let D be anmth-ordern-dimensional diagonal tensor whose diagonal elements are
the same sithose ofA. Let

A(e) = D +e(A—- D),
fore € [0, 1]. ThenA(0) = D andA(1) = A. Let
P (M) = det(A(e) — Al).

Theng, is aone-dimensional monic polynomial whose coefficients are polynomials of
Then the roots ofp. are continuous functions af. Let ¢ vary from 0 to 1. By (a) of
this theorem and’heorem {c), we have the first conclusion of (c). (i) kfis odd, then
k(m — 1)"1is also odd. Whem is even, since N-eigenvals@par in pairs, there is at
least oneH -eigenvalue in the union. (i) Consider

n
max!A(e)xm : inm =1 xe R”} .
i—1

Its global minimizersx(e¢) are continuous with respect ¢o But
Ae) = Ax(e)™

is an H-eigenvalue. It should stay in the rightmost component of the intersection of the real
axis and the union of the disks. This proves (ii). The proof of (iii) is similar, by changing
“min” to “max”. O

Whenmis even,Theorem gives a lower bound and a new upper bound for the smallest
H-eigenvalue, which is useful in judging the positive definitenesa @i, 2004.

Example3. Letm = 4 andn = 3. Assume thatA1111 = 2, A2222 = 3, Az33z3 = 5,
A1123 = A1132 = A1213 = A1312 = A1231 = A1321 = A2113 = As112 = Az131 =
Az121= Az311= Asz11= § and otherA;  , i;i, = 0.

If a = 0, thenA is diagonal. ByTheorem {c), A has three distinct nine-multiple
H-eigenvaluesi; = 2, A2 = 3 andis = 5, with H-eigenvectors® = (1,0,0)7,
x@ =(0,1,07,x® = (0,0, 1)7, respectively.

Assume thah # 0. By Theorem 6the egenvalues ofA lie in the following three disks:

1. Ball 1,with its center at 2 and radius&.

2. Ball 2,with its center at 3 and radiya].

3. Ball 3,with its center at 5 and radiua|.

There are three cases @& O:

@0< |al < % ThenA is diagonally dominated@i, 2004. In each disk there are 9
eigenvalues, and there are at least one H-eigenval2e-i8|a|, 2+2|a|],one H-eigenvalue
in [3— |al, 3+ |a|] and one H-eigenvalue i — |a|, 5+ |a|]. Ais positive definite.

(b) % < lal < % There are 18 eignvalues in the union of the first two disks, 9
eigenvalues in the third disk. Theare atéast one H-eigenvalue {2 — 2|a|, 3 + |a|]
and one H-eigenvalue ib — |a|, 5+ |a|]. Ais positive definite.
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(c) lal = % There are 27 eignvalues in the union of these three disks. Byeorem 5
there are at least two H-eigenvalued™ 2|al, 5 + |a|]. If |a] < 1, thenA is positive
definite. If |a] = 1, thenA is positive semidefinite and may be positive definitéalf> 1,
no conclusion can be made on positive definiteneds lof Theorem 6

We may useZ) to calculate the eigenvalues 8f Now (2) becomes

2x3 + 2axqxoxz = AX3,
3x3 + axxz = Ax3, (18)
5x3 + ax?xp = AXS.
Cancellingx. from the first two equations ofLg), we have
X3x3 = axgxs (ng - xf) :
Cancelling). from the first and the third equations dfg), we have
33x3 = axixo (2x§ - x4) )
Cancellingxz from these two equations, we have
4
33 <2x§1 - xf) = 2x9x33 — a*xPx, (Zxé1 - xf) : (19)

We have a five-multiple rootx; = 0 and a sigle rootxo = 0.

If x, = 0 andx; # 0, thenxz = 0 by (18). By (18), we haver; = 2. We may let
X1 =1.

If x3 = 0 andxy # 0, thenxz = 0 by (18). By (18), we haver, = 3. We may let
X2 = 1.

If x1 = 0 andxg # 0, thenx, = 0 by (18). By (18), we haverz = 5. We may let
X3 =1.

Thus, whera # 0, A always has a single H-eigenvalig = 2 with an H-eigenvector
(1,0,0)7, a five-multiple H-eigenvalue., = 3 with an H-eigenvectorO, 1, 07, and a
five-multiple H-eigenvalugz = 5 with an H-eigenvecto(0, 0, 1)".

We now asume thaky # 0 andxy # 0. Lett = % ands = t%. Without loss of
generality, we may assume tha = 1. Then (9) becomes

23— 4
a4_3( S)

= Gs— b (20)
We have
t3
X2 =t and x3= a(T—l)' (21)
By (18) and 1), we have
A=2 22)

S= 20 -3
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Substituting 22) to (20), we have
n(A) = —22%0.—3)(A -5 —4a*=0.

By (21) andt* = s, weknow that each root of is a four-multiple eigenvalue and double
H-eigenalue of A. By this and the relations between roots and coefficients,offe may

conclude thatA is positive definite ifal < (15)711, positive sendefinte if |a| = (15)711, not
positive sendefinte if |a| > (15)?11, and

det(A) = 2 x 15° x (60— 4a*)%.

It is not difficult to generalize this result to a general case wharg1 = b, Agzoo =
C, Aszzz = d, A1123 = A1132 = A1213 = Aizi2 = A1231 = A1321 = Ac113 = As112 =
A2131= Ag121= Az311= Asz211= § and otherA_ , i;i, = 0. We may derive a formula
for def(A) as
det(A) = b x (cd)® x (b%cd — 4a*)?,

and a formula fogp (1) as
d() = (b= A)(c—1)5(d — 1)° [(b — 02— a)(d =) — 4a4]4.

We find thatA is positive definite in the interior of the following region:

1
2 4
<a7b10’d>eR4:bzo,czo,dzo,|a|5(b:d) ,

positive semidefinite on the boundary of the above region, and not positive semidefinite
out of that region.
Furthemore, we see that the surhall the eigenvalues oA is

(m—1)"tr(A) = 9(b +c+d).
From this examm, we have four further conjectures on eigenvalues:
Conjecture3. A has at least n H-eigenvalues.
Conjecture4. A has n linearly independent eigenvectors.
Conjecture5. A has n linearly independent H-eigenvectors.

Conjecture6. If k of then disks in Theorenb are connected but disint with the other
n — k disks, thenttere are at least k H-eigenvalues in the interval intersected by the union
of these k disks ith the real axis.

Certainly, Conjecture 6is stronger thanConjecture 3 while Conjecture 5is stronger
thanConjecture 4
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6. Orthogonal similarity

Theorem 2c) and Theorem 6do not apply to E-eigenvalues and Z-eigenvalues. In
particular, a diagonal supersymmetric tendanay have more than Z-eigenvalues.

Example4. Letm = 4 andn = 2. Assume thatA1111 = 3, A1122 = A1221 = A1212 =
A2121= A2211= A2112= a, A2222= 1 al’]dOtheI’Ail,i2_,i3_,i4 = 0. Then 6) is

X2 (3%3 + 3ax1x3) = x1 (3axexz + x3)
24 w2 _ (23)
X{+ x5 =1
We see thax, = 0 isits solution. Otherwise, the first equation @8} gives us
334+ 3at=t (3at2 + 1) ,
ie.,
t ((3a 341 3a) —0, (24)

which always has a real rogt = 0. Whena > 1 ora < % (24) has two more real double
rootsts = ,/32=1 andt, = —t3. Subdituting them to

X2+ x3=1
and
A= Ax* = 3x{ + 6axx3 + x3,

we find thatA always has two Z-eigenvaluesi = 3 with a Z-eigenvector® = e =
(1, 0)T andaz = 1 with a Z-eigenvector® = €@ = (0, 1)T. Whena > 1ora < 3, A
has one more double Z-eigenvalue:

3(93 - 6a? - 3a+2)
2(3a — 2)2

with Z-eigenvector

T
<@ \/3a—1\/3a—3
6a—4'V6a—4
T
@ _ \/3a—1_\/3a—3
6a—4’ 6a—4
1

We see thewhena > 1 ora < % ¥ (a) = 9a° — 6a® — 3a+ 2 hasonly one real root—T

A3z =

and

Whena < —7, A3 < 0. Thisimplies thatA is not positive definite in that case. When
a>— f’ Alis positive definite. Notice that when= 0, A is a dagonal symmetric tensor.
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But in thatcase, beside the two Z-eigenvalugsandi,, which are its diagonal elements,
A has an additional Z-eigenvalug = %, which isthe smallest Zigenvalue ofA.

In fact, we have the following proposition.

Proposition 9. Suppose that A is a diagonal supersymmetric tensor with diagonal
elements @ ..., a,. Let

Ji={i:q <0}, Ih={i:q >0}

If at least one of g and } has more than one element, then A has more than n
Z-eigenvalues. In this case, beside the n Z-eigenvalues which are the diagonal elements
of A, foreachJx C J with |Xk| > 2, k=1, 2,

m-2
2

= (-Df | ———
= (@)

ey
is a Z-eigenvalue of A, with a Z-eigenvector x defined by
=L _
X = { (%)mf ., fori e J,
0, otherwise.

This proposition may be proved by definitions directly. We omit its proof.

Example 4andProposition Yeveal the dark side of E-eigesilues (Zeigervalues). One
may think of giving up E-eigenvalues (Z-eigenvalues). However, in the remaining part of
this section, we will show the bright side of E-eigenvalues. This is an orthogonal similarity,
which eigenvales do not have whem > 4.

Let P = (pij) be ann x n real matrix. DefineB = P™ A as armth-ordern-dimensional
tensor with its entries as

n
Biim = D Piair* PinimAlps o

150 Jm=1

Proposition 10. B = P™MA ddined above is also a supersymmetric tensor.

Proof. Let{ik,, ..., Ik,} ={i1,-..,im}. Then
n
Biy,im = D_  Piit PinimAinoim
J1ses jm=1
= Z Piky iy " Pl jkm Alkg o Jkm = Bikg veoeibm
Jkl~---~,jkm—1

This proves the proposition.[d

Proposition 11. Let P = (pjj ) be an nxn real nonsingular matrix. Let Q= (gjj) = p-1,
If B = PMA, then A= Q"B.
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Proof. Let the entries o€ = Q™B beCj, m- Then

.....

n
Cipoin = D Gizj1 " Gimnim Bjr. o jm

150 jm=1
n n
= ) Qiljl---CIimjm< > pjlkl---pjmkmAkl,...,m>
j15esjm=1 ki,....km=1
n
s (qu) (35 i) At
Ki,....km=1 jm=1
n
= Z Sizky " * Simkm Akg,. ok = Ai,im-
Ki,....km=

This proves the proposition.[

If P isa real orthogonal matrix anB = P™A, thenA = (PT)™MB. In thiscase, we say
that A andB areorthogonally similar.

Theorem 7. If supersymmetric tensors A and B are orthogonally similar, then they have
the same E-eigenvalues. In particular, if-B PMA, A is an E-eigevalue of A and x is an
E-eigenvector of A associated withwhere P is an nx n real orthogonal matrix, thei

is alsoan E-eigenvalue of B and ¥y Px is an E-eigenvector of B associated with

Proof. Suppose thaB = PMA, A is an E-eigenvalue of andx is an E-eigenvector of\
associated witi, whereP = (pjj) is ann x n real orthogonal matrix. Ley = Px. Then
x=Ply,yly=x"x=1andfori;=1,...,n

12,..., im=
Hence, forjy =1, ...,n,
n n
AYjp =4 Z PjaiyXiy = Z Piai1 ()“Xil)
i1=1 i1=1
n
= Z Pjaiy ( Z AipimXip - "Xm>
ii=1  \ig,..., im=1
= Z Pisix ( Z Ai;..., (Z szlzsz) : (Z melmme>)
i2,...,im= jm=1
n n
- Z ( Z Pisis =« * Pimim Alir.... im) Yiz* Yim
j2:-~-,jm= il ,,,,, im=

Il
oy
=
E)
=
N
=
3
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This shows that. is also an E-eigenvalue @& andy = Px is an E-eigenvector oB
associated with.. This pioves the theorem.[d

7. Concluding remarks

In this paper, we defined the symmetric hyperdeterminant, eigenvalues and eigenvectors
of a real supersymmetric tensr anddiscussed their properties. We see that they have a
clear harmonic structure, with a close link with the positive definiteness issue. The more
we know about them, the more capable we are of solving the positive definiteness issue.
We have also e six conjectures for further exploration.

Assume thain is even. Whem andm are small, by the theory of resultan@dx et al,

1998 D’Andrea and Dickenstein2001;, Gelfand et al. 1994 Sturmfels 2002 or the
theory of bracket algebraCpx etal, 1998 Sturmfels 1993, it is possble to have

the formula for the symmetric hyperdeterminant, and hence to find the characteristic
polynomial¢. We may find he smallest real root a@f. If it is positive, thenA is positive
definite. If it is not positive and is of odd multiplicity, thed is not positive definite.
Otherwise, we may try to find whether has a nonpositive root of odd multiplicity. If
there is such @aoot, thenA is not positive definite. IfA has no nonpositive roots of odd
multiplicity, but has some nonpositive roots afea multiplicity, then we reed to identify
whether hese roots are H-eigenvalues or N-eigenvalue&,ah order to find whetheA

is positive definiteor not. This gives an approach for the positive definiteness issue but
further exploration of this aspect is also needed.

Actually, we should not confine the applications of eigenvalues and E-eigenvalues
to the positive definitenessdue. For theositive definiteness issue, only the smallest
H-eigenvalue and the smallest Z-eigenvalieiaportant. If we considethe classification
and properties of higher order curves (foe= 2) and surfaces (far = 3) defined by

f(x)= Ax" =1,

then the other H-eigenvalues and Z-eigeaealmay also play roles. Also, because of the
orthogonal similarity, Z-eigenvalues may play a more important role here. This will be our
further research topic.
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