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Abstract

In this paper, we define the symmetric hyperdeterminant, eigenvalues and E-eigenvalues of a real
supersymmetric tensor. We show that eigenvalues are roots of a one-dimensional polynomial, and
when the order of the tensor is even, E-eigenvalues are roots of another one-dimensional polynomial.
These two one-dimensional polynomials are associated with the symmetric hyperdeterminant. We
call them the characteristic polynomial and the E-characteristic polynomial of that supersymmetric
tensor. Real eigenvalues (E-eigenvalues) with real eigenvectors (E-eigenvectors) are called
H-eigenvalues (Z-eigenvalues). When the order of the supersymmetric tensor is even, H-eigenvalues
(Z-eigenvalues) exist and the supersymmetric tensor is positive definite if and only if all of its
H-eigenvalues (Z-eigenvalues) are positive. Anmth-order n-dimensional supersymmetric tensor
where m is even has exactlyn(m − 1)n−1 eigenvalues, and the number of its E-eigenvalues is
strictly less thann(m − 1)n−1 when m ≥ 4. We show that the product of all the eigenvalues is
equal to the value of the symmetric hyperdeterminant, while the sum of all the eigenvalues is equal
to the sum of the diagonal elements of that supersymmetric tensor, multiplied by(m − 1)n−1. The
n(m−1)n−1 eigenvalues are distributed inn disks inC. Thecenters and radii of thesen disks are the
diagonal elements, and the sums of the absolute values of the corresponding off-diagonal elements,
of that supersymmetric tensor. On the other hand, E-eigenvalues are invariant under orthogonal
transformations.
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1. Introduction

A realmth-ordern-dimensional tensorA consists ofnm real entries:

Ai1,...,im ∈ R,

wherei j = 1, . . . ,n for j = 1, . . . ,m. The tensorA is called supersymmetric if its entries
are invariant under any permutation of their indices (Kofidis and Regalia, 2002).

The tensorA defines anmth-degree homogeneous polynomialf (x) ∈ R[x1, . . . , xn],
x = (x1, . . . , xn):

f (x) ≡ Axm :=
n∑

i1,...,im=1

Ai1,...,imxi1 · · · xim, (1)

wherexm can be regarded as anmth-order n-dimensional rank-one tensor with entries
xi1 · · · xim (Kofidis and Regalia, 2002), and Axm is the tensor product ofA and xm.
Clearly, if A is not supersymmetric, we may replaceA by a supersymmetric tensorĀ such
that

f (x) ≡ Āxm ≡ Axm.

We denote this supersymmetric tensorĀ as sym(A).
In 1845, Cayley initiated the study of hyperdeterminants (Cayley, 1845). It was assumed

that hyperdeterminants would play a role for tensors like determinants for matrices. But
this study was largely abandoned for 150 years until the book (Gelfand et al., 1994)
appeared.

Recently, motivated by the study of positive definiteness off (x) defined in (1),
Qi (2004) introduced the concepts of H-eigenvalues and Z-eigenvalues of an even-order
real supersymmetric tensorA.

When m is even, the positive definiteness of such a homogeneous polynomial
form f (x) plays an important role in the stability study of nonlinear autonomous
systems via Lyapunov’s direct method in automatic control (Anderson et al., 1975;
Bose and Kamt, 1974; Bose and Newcomb, 1974; Hsu andMeyer, 1968). We say that a
supersymmetric tensorA is positive definite if f (x) defined by (1) is positive definite.
Researchers in automatic control studied the conditions of such positive definiteness
intensively (Anderson et al., 1975; Bose and Kamt, 1974; Bose and Modaress, 1976;
Bose and Newcomb, 1974; Fu, 1998; Hasan and Hasan, 1996; Hsu andMeyer, 1968;
Jury and Mansour, 1981; Ku, 1965; Wang and Qi, 2005). For n ≤ 3, the positive
definiteness of such a homogeneous polynomial form can be checked by a method based
on the Sturm theorem (Bose and Modaress, 1976). For n ≥ 3 andm ≥ 4, this issue is a
hard problem in mathematics.

For a vectorx ∈ Rn, we usexi to denote its components, andx[m] to denote a vector in
Rn suchthat

x[m]
i = xm

i
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for all i . By the tensor product (Qi and Teo, 2003), Axm−1 for a vectorx ∈ Rn denotes a
vector inRn, whosei th component is

n∑
i2,...,im=1

Ai,i2,...,imxi2 · · · xim.

Qi (2004) called a real numberλ an H-eigenvalue of A if it and a nonzero real vectorx
are solutions of the following homogeneous polynomial equation:

Axm−1 = λx[m−1], (2)

and called the solutionx an H-eigenvector of A associated with the H-eigenvalueλ.
Qi (2004) also called a realnumberλ and a real vectorx ∈ Rn a Z-eigenvalue of A and
aZ-eigenvector of A associated with the Z-eigenvalueλ respectively, if they are solutions
of the following system:{

Axm−1 = λx
xTx = 1.

(3)

It was proved inQi (2004) that H-eigenvalues and Z-eigenvalues exist for an even-
order real supersymmetric tensorA, and A is positive definite if and only if all of its
H-eigenvalues (Z-eigenvalues) are positive. Thus, the smallest H-eigenvalue and the
smallest Z-eigenvalueof an even-order supersymmetric tensorA are important indicators
of positive definiteness ofA. Whenn is very small, we may use (2) and (3) to calculate all
H-eigenvalues (Z-eigenvalues) ofA, then judge whetherA is positive definite or not.
In general,Qi (2004) gave several computable upper and lower bounds of the smallest
Z-eigenvalue and H-eigenvalue ofA, and presented a procedure for improving these upper
bounds.

For a supersymmetric tensorA, we define its symmetric hyperdeterminant, denoted
by det(A), as an irreducible polynomial inAi1,...,im, which vanishes wherever there is
an x ∈ Cn, x �= 0, such thatf (x) = 0 andits gradient∇ f (x) = 0. Notethat when
m = 2 this definition coincides with that of the determinant of a symmetric matrix, but
in general it is different from the hyperdeterminant introduced by Cayley. The symmetric
hyperdeterminant ofA is actually the resultant of the system∇ f (x) = 0. As the theory
of the resultant (Cox et al., 1998; D’Andrea and Dickenstein, 2001; Gelfand et al., 1994;
Sturmfels, 2002) becomes more developed, this definition becomes more usable, as shown
in our paper.

We extendthe Kronecker symbol to the case ofm indices:

δi1,...,im =
{

1, if i1 = · · · = im,
0, otherwise.

Wecall anmth-ordern-dimensional tensor themth unit tensor if its entries areδi1,...,im for
i1, . . . , im = 1, . . . ,n, anddenote it byI . To specify the sign and scale of the symmetric
hyperdeterminant, we may let det(I ) = 1. Suppose thatm is even. It was observed in
Qi (2004) that the H-eigenvalues ofA are roots of the following one-dimensional
polynomial ofλ:

φ(λ) = det(A − λI ). (4)
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The one-dimensional polynomialφ was called the characteristic polynomial of A.
Qi (2004) attributed “Z-eigenvalues” toZhou (2004) as Zhou (2004) suggested to the
author the definition (3).

The discussion of H-eigenvalues and Z-eigenvalues is restricted for real numbers with
real eigenvectors. This is because of the needfor discussing the positive definiteness. When
m = 2, this restriction is unnecessary, as a real symmetric matrix has only real eigenvalues
with real eigenvectors. This does not extend to the high order cases. This restriction
obstructsthe view of the full mathematical structure of eigenvalues of a supersymmetric
tensor.

The behaviours of H-eigenvalues are closer to those of eigenvalues of matrices
in a certain sense. For example, the H-eigenvalues of a diagonal even-order real
supersymmetric tensor are exactly its diagonal elements. The H-eigenvalues have a
Gershgorin-type theorem. These two properties do not hold for Z-eigenvalues.

In this paper, we extend H-eigenvalues and Z-eigenvalues to the complex case. This
enables us to know the full mathematical structure of eigenvalues of a supersymmetric
tensor.

Throughout this paper, we assume thatm,n ≥ 2, andA is anmth-ordern-dimensional
real supersymmetric tensor. In the next section, we discuss some properties of the
symmetric hyperdeterminant. While most of them can be easily derived from the contents
of Gelfand et al.(1994), the proof ofProposition 4is nontrivial, and it relies on the theory
of the resultant (Cox et al., 1998). Proposition 4is critical for thediscussion inSection 3.

Since the behaviours of H-eigenvalues are closer to eigenvalues of matrices in a
certain sense, we call a numberλ ∈ C an eigenvalue of A if it and a nonzero vector
x ∈ Cn are solutions of the homogeneous polynomial equation (2), and we call the
solutionx aneigenvector of A associated with the eigenvalueλ. On theother hand, since
the definition (3) is associated with the Euclidean norm, we call a numberλ ∈ C an
E-eigenvalue of A if it and a nonzero vectorx ∈ Cn are solutions of the polynomial
equation system (3), and we call the solutionx anE-eigenvector of A associated with the
eigenvalueλ.

In Section 3, we show that a number inC is an eigenvalue ofA if andonly if it is a root
of the characteristic polynomialφ. We show that A has exactlyn(m − 1)n−1 eigenvalues,
the product of all the eigenvalues ofA is equal to det(A), and the sum of all the eigenvalues
of A is

(m − 1)n−1

times the sum of the diagonal elements ofA. We show that whenm is even, an E-eigenvalue
of A is a root of another one-dimensional polynomial associated withA. We call that
one-dimensional polynomial the E-characteristic polynomial ofA. We show that when
m ≥ 4, the number of E-eigenvalues ofA, counted with multiplicity, is strictly less than
n(m − 1)n−1.

In Section 4, we give a formula for calculating an eigenvalueλ using its eigenvectorx
if
∑n

j =1 xm
j �= 0, and a formula for calculating an E-eigenvalueλ using its E-eigenvector

x if
∑n

j =1 x2
j �= 0. We prove that two eigenvectorsx and y associated with two distinct

eigenvaluesλ andµ are linearly independent. Whenm is even, we prove thatA has at least
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two distinct H-eigenvalues ifA is not a multiple ofI . We also prove there that whenm is
even, a necessary condition for positive semidefiniteness ofA is that det(A) ≥ 0.

In Section 5, we study the distribution of eigenvalues and H-eigenvalues. We show
that eigenvalues are distributed inn disks in C. The centers and radii of thesen disks
are the diagonal elements, and the sums of the absolute values of the corresponding off-
diagonal elements, ofA. Whenm is even, the largest (smallest) H-eigenvalue is always in
the rightmost (leftmost) component of the union of then intervals intersected by thesen
disks with the real axis. This gives a lower bound and a new upper bound for the smallest
H-eigenvalue, which is useful in judging the positive definiteness ofA (Qi, 2004). We give
an example form = 4 andn = 3 there for judging the positive definiteness ofA and
constructing a formula for det(A) by calculating all the eigenvalues ofA.

Weprove that E-eigenvalues are invariant under orthogonal transformation inSection 6.
Some concluding remarks are given inSection 7.

2. Properties of the symmetric hyperdeterminant

We now summarize some properties of the symmetric hyperdeterminants ofA.

Proposition 1. The symmetric hyperdeterminant of A,det(A), is the resultant of

Axm−1 = 0,

and is a homogeneous polynomial in the entries of A, with the degree d= n(m − 1)n−1.
The degree of Ai,...,i in det(A) is not greater than(m − 1)n−1.

Proof. According to ourdefinition, det(A) is the resultant off (x) and∇ f (x), where f is
defined by (1). SinceA is supersymmetric,

∇ f (x) ≡ m Axm−1.

We see thatf (x) = 0 if Axm−1 = 0. Hence, det(A) is the resultant ofAxm−1 = 0.
The second and the third conclusions now follow from Proposition 1.1 of Chapter 13
of Gelfand et al.(1994), and the fact thatAi,...,i only occursin the i th equation of
Axm−1 = 0. �

Corollary 1. For any real number a,

det(a A) = addet(A),

where d= n(m − 1)n−1.

Proposition 2. If we permute some indices of A, the value of its symmetric
hyperdeterminant will be invariant.

Proof. This follows from the supersymmetry ofA and our definition of the symmetric
hyperdeterminant. �



L. Qi / Journal of Symbolic Computation 40 (2005) 1302–1324 1307

Proposition 3. If A is diagonal, then

det(A) =
n∏

i=1

A(m−1)n−1

i,...,i .

In general,this will be a term ofdet(A).

Proof. Assume thatA is diagonal. By our definition, det(A) should be proportional to
the product of the powers of its diagonal elements. ByProposition 2, the degree of each
diagonal element in this product should be the same. ByProposition 1, the degree of each
diagonal element in this product should be(m − 1)n−1. Since det(I ) = 1, the coefficient
of the product is 1. The first conclusion follows. Since the formula of det(A) when A is
diagonal can be obtained by letting all the off-diagonal elements be zero in the formula of
det(A) in the general case while byProposition 1det(A) is a homogeneous polynomial in
the entries of A in the general case, the second conclusion follows.�

Proposition 4. In det(A), except for the term

n∏
i=1

A(m−1)n−1

i,...,i

as stated inProposition3, the total degree with respect to A1,...,1, A2,...,2, . . . , An,...,n is
not greater than

n(m − 1)n−1 − 2.

Proof. DenoteF(x) := Axm−1.
Suppose that the conclusion is not true. Then byProposition 1and Proposition 1.1 of

Chapter 13 ofGelfand et al.(1994), without loss of generality, we may assume that in
det(A), there is a term

c
n−1∏
i=1

A(m−1)n−1

i,...,i A(m−1)n−1−1
n,...,n An,i2,...,im, (5)

whereδn,i2,...,im = 0, andc is anonzero real number.
In the following, we need the knowledge on resultants in Section 4, Chapter 3, of

Cox et al.(1998).
Let d̄ = n(m− 1)− n + 1. Forx = (x1, . . . , xn), let xα = xα1

1 · · · xαn
n ∈ R[x1, . . . , xn]

whereα = (α1, . . . , αn), α1, . . . , αn are nonnegative integers. Denote|α| = ∑n
i=1 αi .

Let

S = {xα : |α| = d̄}, N = |S|,
S1 = {xα ∈ S : xm−1

1 dividesxα},
S2 = {xα ∈ S\ S1 : xm−1

2 dividesxα},
· · ·
Sn = {xα ∈ S\ ∪n−1

i=1 Si : xm−1
n dividesxα}.

By Section 4, Chapter 3, ofCox et al.(1998), {S1, . . . , Sn} is a partition ofS.
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Consider the equations

xα/xm−1
i · Fi = 0, for all xα ∈ Si ,

for i = 1, . . . ,n. Regarding the monomials of total degreēd as unknowns, we get a
system ofN linear equations inN unknowns. Denote its coefficient matrix byMn and
let Dn = det(Mn).

Let xα ∈ S. Then there is a uniquei suchthat xα ∈ Si . ThenAi,...,i is the coefficient
of xα in xα/xm−1

i · Fi = 0. Thus, by some permutation, we may let the diagonal elements
of Mn be the diagonal elements ofA while the off-diagonal elements ofMn do not involve
diagonal elements ofA.

Hence the term of Dn which has the highest total degree with respect toA1,...,1,
A2,...,2, . . . , An,...,n is

n∏
i=1

A|Si |
i,...,i . (6)

By Exercise 4.3 in Chapter 3 ofCox et al.(1998), |Sn| = (m − 1)n−1. By Proposition 4.6
in Chapter 3 ofCox et al.(1998) as well as supersymmetry ofA,

Dn = det(A) · h, (7)

whereh is an extraneous factor, which is a polynomial with coefficientsAi1,...,im , 1 ≤ i j ≤
n − 1 for j = 1, . . . ,m. Let h0 be the monomial ofh, whichhas the highest total degree
of A1,...,1, . . . , An−1,...,n−1. By Propositions 1and3 as well as (6) and (7),

n∏
i=1

A|Si |
i,...,i = h0

n∏
i=1

A(m−1)n−1

i,...,i ,

i.e.,

h0 =
n−1∏
i=1

A|Si |−(m−1)n−1

i,...,i . (8)

In (7), the product of (5) andh0 is

c
n−1∏
i=1

A|Si |
i,...,i A|Sn|−1

n,...,n An,i2,...,im. (9)

The total degree ofA1,...,1, . . . , An,...,n of this term isN − 1.
Now, suppose the product of a term in det(A) and a term inh is proportional to (9).

Since a term of det(A) with the highest total degree ofA1,...,1, . . . , An−1,...,n−1 can have
the factor

n−1∏
i=1

A(m−1)n−1

i,...,i

andh0 is the term inh with the highest total degree ofA1,...,1, . . . , An−1,...,n−1 as shown
in (8), comparing with (9), the term inh must beh0. Sinceh andh0 does not involve
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Ai1,...,im with at least one of{i1, . . . , im} equal ton, the termin det(A)must be the term (5).
This implies that inDn expressed as the product of det(A) andh as in (7), the term (9)
cannot be canceled by other products of terms of det(A) andh.

On the other hand, the diagonal elements ofMn are A1,...,1, . . . , An,...,n, while the
off-diagonal elements ofMn do not involve A1,...,1, . . . , An,...,n. By the properties of
determinants, any term ofDn is either the product of all of its diagonal elements, or a
product at least missing two diagonal elements, i.e., there does not exist a term ofDn, for
which the total degree ofA1,...,1, . . . , An,...,n is N −1. This contradicts the existence of the
term (9). This proves the proposition.�

Let n = 2. Then we may denote the distinct entries ofA as

a0 = A1,...,1,1, a1 = A1,...,1,2, . . . , am = A2,...,2,2.

By Proposition 1and the Sylvester Formula (Page 400 ofGelfand et al.(1994)), we have
the following proposition.

Proposition 5. If n = 2, then with the notation above,det(A) is equal to the following
2(m − 1)-dimensional determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣

a0

(
m−1

1

)
a1

(
m−1

2

)
a2 · · ·

(
m−1
m−2

)
am−2 am−1 0 0 · · · 0

0 a0

(
m−1

1

)
a1 · · ·

(
m−1
m−3

)
am−3

(
m−1
m−2

)
am−2 am−1 0 · · · 0

· · · · · · · · · · · · · ·
0 0 0 · · · a0

(
m−1

1

)
a1

(
m−1

2

)
a2 ·

(
m−1
m−2

)
am−2 am−1

a1

(
m−1

1

)
a2

(
m−1

2

)
a3 · · ·

(
m−1
m−2

)
am−1 am 0 0 · · · 0

0 a1

(
m−1

1

)
a2 · · ·

(
m−1
m−3

)
am−2

(
m−1
m−2

)
am−1 am 0 · · · 0

· · · · · · · · · · · · · ·
0 0 0 · · · a1

(
m−1

1

)
a2

(
m−1

2

)
a3 ·

(
m−1
m−2

)
am−1 am

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where(
m − 1

i

)
= (m − 1)!

i !(m − 1 − i )! .

With some computation, we have the following explicit formula for det(A) andφ(λ)
whenm = 4 andn = 2.

Corollary 2. When m= 4 and n= 2,

det(A) = a3
0a3

4 − 64a3
1a3

3 − 27a2
0a4

3 − 27a4
1a2

4 − 18a2
0a2

2a2
4

+ 36a2
1a2

2a2
3 + 81a0a4

2a4 − 54a0a3
2a2

3 − 54a2
1a3

2a4 − 12a2
0a1a3a2

4

− 6a0a2
1a2

3a4 + 54a2
0a2a2

3a4 + 54a0a2
1a2a2

4

+ 108a0a1a2a3
3 + 108a3

1a2a3a4 − 180a0a1a2
2a3a4 (10)

and

φ(λ) = (a0 − λ)3(a4 − λ)3 − 64a3
1a3

3 − 27(a0 − λ)2a4
3 − 27a4

1(a4 − λ)2

− 18(a0 − λ)2a2
2(a4 − λ)2 + 36a2

1a2
2a2

3 + 81(a0 − λ)a4
2(a4 − λ)

− 54(a0 − λ)a3
2a2

3 − 54a2
1a3

2(a4 − λ)− 12(a0 − λ)2a1a3(a4 − λ)2

− 6(a0 − λ)a2
1a2

3(a4 − λ)+ 54(a0 − λ)2a2a2
3(a4 − λ)
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+ 54(a0 − λ)a2
1a2(a4 − λ)2 + 108(a0 − λ)a1a2a3

3 + 108a3
1a2a3(a4 − λ)

− 180(a0 − λ)a1a2
2a3(a4 − λ). (11)

3. The characteristic polynomial and the E-characteristic polynomial

We may denote the sum of the diagonal elements ofA as tr(A). We call those
eigenvaluesN-eigenvalues of A if they are not H-eigenvalues, i.e., an N-eigenvalue is
an eigenvalue which has no real eigenvectors. Wecall the eigenvectors associated with
N-eigenvalues N-eigenvectors.

We now prove the main theorem of this paper.

Theorem 1. Wehave the following conclusions on eigenvalues of A:
(a) A numberλ ∈ C is an eigenvalue of A if and only if it is a root of the characteristic

polynomialφ.
(b) Thenumber of eigenvalues of A is d= n(m − 1)n−1. Their product is equal to

det(A).
(c) If A is diagonal, then A has n H-eigenvalues, which are its diagonal elements,

with corresponding unit vectors as their H-eigenvectors. Each of these H-eigenvalues is
of multiplicity (m − 1)n−1, and A has no N-eigenvalues.

(d) The sumof all the eigenvalues of A is

(m − 1)n−1tr(A).

Proof. (a) According to our definition of the symmetric hyperdeterminant,φ(λ) = 0 if
and only if there is a nonzero vectorx ∈ Cn suchthat

F(x) ≡ (A − λI )xm = 0

and∇F(x) = 0. But

∇F(x) = m(A − λI )xm−1 = m
(

Axm−1 − λx[m−1]) .
Then∇F(x) = 0 is equivalent to (2), while F(x) = 0 is equivalent to

Axm = λ

n∑
i=1

xm
i ,

which is aconsequence of (2). The conclusion follows.
(b) By the knowledge of the symmetric hyperdeterminant, the degree ofφ is d =

n(m − 1)n−1. By (4) and Corollary 1, the leading coefficient ofφ, i.e., the coefficient
of λd, is

(−1)ddet(I ) = (−1)d �= 0.

The first conclusion of (b) follows. The leading coefficient ofφ is (−1)d. The constant
term ofφ is det(A). The second conclusion of (b) then follows from the relation between
roots and coefficients of a one-dimensional polynomial.

(c) This follows from (2), (b) of this theorem, andProposition 3.
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(d) By Proposition 4and the structure ofφ(λ) = det(A−λI ), the term ofλd−1 in φ(λ),
whered = n(m − 1)n−1, is in the term

n∏
i=1

(
Ai,...,i − λ

)(m−1)n−1
.

Thus, the coefficient of this term is

−(m − 1)n−1tr(A).

Since the coefficient of the termλd in φ(λ) is 1, the conclusion follows from the relation
between roots and coefficients of a one-dimensional polynomial.�

Example 1. Let m = 4 andn = 2. Assume thatA1111 = A2222 = 1, A1112 = A1121 =
A1211 = A2111 = a �= 0 and all other Ai1,i2,i3,i4 = 0. Then from (2), we may directly find
that A has four H-eigenvalues and two N-eigenvalues: a double H-eigenvalueλ1 = λ2 = 1

with an H-eigenvectorx(1) = (0,1)T, an H-eigenvalueλ3 = 1 + (27)
1
4 a with an

H-eigenvectorx(3) = ((3)
1
4 ,1)T, an H-eigenvalueλ4 = 1− (27)

1
4 a with an H-eigenvector

x(4) = ((3)
1
4 ,−1)T, an N-eigenvalueλ5 = 1 + (27)

1
4 a

√−1 with an N-eigenvector

x(5) = ((3)
1
4 ,

√−1)T, and anN-eigenvalueλ6 = 1 − (27)
1
4 a

√−1 with an N-eigenvector

x(6) = ((3)
1
4 ,−√−1)T. We see that the total number of eigenvalues is

d = n(m − 1)n−1 = 6,

the product of all the eigenvalues is 1− 27a4, and the sum of all the eigenvalues is 6. On
the otherhand, by (10), we have

det(A) = 1 − 27a4.

This is equal to the product of all the eigenvalues. Also

(m − 1)n−1tr(A) = 6,

which is equal to the sum of all the eigenvalues. By (11), we also have

φ(λ) = (1 − λ)2[(1 − λ)4 − 27a4],
which hassix rootsλi for i = 1, . . . ,6 as indicated above.

Corollary 3. Suppose that B= a(A + bI ), where aand b are two real numbers. Thenµ
is an eigenvalue (H-eigenvalue) of B if and only ifµ = a(λ + b) andλ is an eigenvalue
(H-eigenvalue) of A. In this case, they have the same eigenvectors.

We may useTheorem 1(b) to calculate the symmetric hyperdeterminant. We may also
use this property to construct the formulas for the symmetric hyperdeterminant for some
sparse tensors. InSection 5, we give an example for this whenm = 4 andn = 3.

We have a conjecture on eigenvalues:

Conjecture 1. The number of linearly independenteigenvectors associated with an
eigenvalueλ is not greater than the multiplicity ofλ.
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Assume thatm is even and letm = 2l . As we said in the introduction, in this case,
E-eigenvalues are roots of another one-dimensional polynomial associated withA, and we
call that one-dimensional polynomial the E-characteristic polynomial ofA. Let I2 be the
n × n unit matrix. To define the E-characteristic polynomial, we need to study a special
mth-ordern-dimensional tensorI l

2, whose(i1, i2, . . . , im) entry is defined as

δi1i2δi3i4 · · · δim−1im .

The tensorI l
2 can be regarded as the tensor product ofl unit matricesI2, . . . , I2. It is not

supersymmetric whenl ≥ 2. Let IE = sym(I l
2). We call the one-dimensional polynomial

ψ, defined by

ψ(λ) = det(A − λIE),

theE-characteristic polynomial of A.

Proposition 6. If l ≥ 2, then

det(IE) = 0.

Proof. Let x1 = 1, x2 = √−1, xi = 0 for i = 3, . . . ,n. Then we see that

IExm−1 ≡ I l
2xm−1 = 0

whenl ≥ 2. Hence, 0 is an eigenvalue ofI l
2. By Theorem 1(b), we have the conclusion.�

We say thatA is regular if either A is not singular, orA is singular but there is no
eigenvectorx associated with the zero eigenvalue ofA suchthatx �= 0 and

n∑
i=1

x2
i = 0.

Theorem 2. Assume that m is even and m= 2l. We have the following conclusions on
E-eigenvalues of A:

(a)An E-eigenvalue of A is a root of the E-characteristic polynomialψ. If A is regular,
then a complex number is an E-eigenvalue of A if and only if it is a root ofψ.

(b) When l≥ 2, thenumber of E-eigenvalues ofA is strictly less than d= n(m−1)n−1.

Proof. (a) According to our definition of the symmetric hyperdeterminant,ψ(λ) = 0 if
and only if there is a nonzero vectorx ∈ Cn suchthat

G(x) ≡ (A − λIE)x
m ≡ (A − λI l

2)x
m = Axm − λ

(
n∑

i=1

x2
i

)l

= 0

and∇G(x) = 0. We have

∇G(x) = m


Axm−1 − λx

(
n∑

i=1

x2
i

)l−1

 . (12)
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Then (3) implies that∇G(x) = 0, while G(x) = 0 is equivalent to

Axm = λ

(
n∑

i=1

x2
i

)l

,

which is also a consequence of (3). The first conclusion follows. Suppose now thatA is
regular. If

n∑
i=1

x2
i = 0

in (12), then∇G(x) = 0 implies Axm−1 = 0, which implies that A is not regular, a
contradiction. Hence,

n∑
i=1

x2
i �= 0

in (12). By scaling x, we seethat ∇G(x) = 0 implies (3) in this case. The second
conclusion follows.

(b) By the knowledge of the symmetric hyperdeterminant, the degree ofψ is at most
d = n(m − 1)n−1. But the coefficient of thedth-degree term ofψ is det(IE), which is
zero, according toProposition 6. Hence, the actual degree ofψ is strictly less thand. The
conclusion follows. �

We have a conjecture on E-eigenvalues:

Conjecture 2. When l ≥ 2, the number of E-eigenvaluesof A is strictly less than
d = n(m − 1)n−1 − 1.

4. More properties of eigenvalues and E-eigenvalues

We have the following theorem.

Theorem 3. Suppose that x is an eigenvector associated with an eigenvalueλ of A. If

n∑
i=1

xm
i �= 0, (13)

then

λ = Axm

n∑
i=1

xm
i

. (14)

On the other hand, if x is an E-eigenvector associated with an E-eigenvalueλ of A, then

λ = Axm. (15)
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Proof. By (2), we have

Axm = λ
(

x[m−1])T
x = λ

(
n∑

i=1

xm
i

)
.

If (13) holds, then we have (14). We may prove (15) from (3) directly. �

For eigenvectors of two distinct eigenvalues ofA, we have the following theorem.

Theorem 4. Suppose thatλ andµ are two distinct eigenvalues of A,λ �= µ, and x and y
are two eigenvectors associated with them. Then x and y are linearly independent.

Proof. Suppose thatx andy are linearly dependent. Thenx andy are proportional, since
both of them are nonzero vectors. Since (2) is homogeneous, we see thatx is also an
eigenvector ofA associated withµ. Sincex �= 0, there existsi suchthatxi �= 0. Consider
the i th equation of (2); we have[

Axm−1
]

i
= λxm−1

i = µxm−1
i .

Sincexi �= 0, this implies thatλ = µ, contradicting our assumption.�

Theorem 5. Assume that m is even. The following conclusions hold for A:
(a) A always has H-eigenvalues. A is positive definite (positive semidefinite) if and only

if all of its H-eigenvalues are positive (nonnegative).
(b) A always has Z-eigenvalues. A is positive definite (positive semidefinite) if and only

if all of its Z-eigenvalues are positive (nonnegative).
(c) If A is amultiple of I , then A has a d-multiple H-eigenvalue, where d= n(m−1)n−1.

If A isnota multiple of I , then A has at least two distinct H-eigenvalues.

Proof. (a) We see that (2) is the optimality condition of

max

{
Axm :

n∑
i=1

xm
i = 1, x ∈ Rn

}
(16)

and

min

{
Axm :

n∑
i=1

xm
i = 1, x ∈ Rn

}
. (17)

As the feasible set is compact and the objective function is continuous, the global
maximizer and minimizer always exist. This shows that (2) always has real solutions, i.e.,
A always has H-eigenvalues. SinceA is positive definite (positivesemidefinite) if andonly
if the optimal value of (17) ispositive (nonnegative), we have the second conclusion of (a).

(b) The proof of (b) is similar to the proof of (a), as long as we replace (16) and (17) by

max

{
Axm :

n∑
i=1

x2
i = 1, x ∈ Rn

}
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and

min

{
Axm :

n∑
i=1

x2
i = 1, x ∈ Rn

}
.

(c) The first conclusion follows fromTheorem 1(c). Suppose thatA has only one
H-eigenvalueλ. Since (2) is the optimality condition of (16) and (17), this implies that
for anyx ∈ Rn, (2) holds for thatλ. Considerthe i th equation of (2). Letting x j = δi j for
j = 1, . . . ,n, we have

Ai,...,i = λ.

Only lettingxi = 1 and combining with the above, we have

n∑
i2,...,im=1
δi,i2 ,...,im

Ai,i2,...,im xi2 · · · xim = 0

for anyx satisfyingxi = 1. Thisimplies that

Ai,i2,...,im = λδi,i2,...,im,

for anyi , i2, . . . , im, i.e., A is a multiple ofI . This completes the proof. �

Example 2. Let m = 4 andn = 2. Assume thatA1111 = 1, A1122 = A1221 = A1212 =
A2121= A2211= A2112= 1

3, A2222= 1 andotherAi1,i2,i3,i4 = 0. Then (2) becomes{
x3

1 + x1x2
2 = λx3

1,

x2
1x2 + x3

2 = λx3
2.

Solving it, we find thatA has four H-eigenvalues:λ1 = λ2 = 1 with H-eigenvectors
x(1) = (1,0)T, x(2) = (0,1)T, λ3 = λ4 = 2 with H-eigenvectorsx(3) = (1,1)T,
x(4) = (1,−1)T, and a double zero N-eigenvalueλ5 = λ6 = 0 with N-eigenvectors
x(5) = (1,

√−1)T, x(2) = (1,−√−1)T. Hence, A is positive definite but singular in the
sense of Cayley.

It is seenthat ifλ is an N-eigenvalue ofA andx is an eigenvector associated withλ, then
λ̄ is also an N-eigenvalue ofA and x̄ is an eigenvector associated withλ̄. This indicates
that N-eigenvalues appear in pairs. Furthermore, the product of a conjugate pair of nonzero
N-eigenvalues is always positive. Hence, the sign of det(A) is the same as the sign of the
product of all H-eigenvalues and zero N-eigenvalues if there are any. Thus, we have the
following proposition.

Proposition 7. Assume that m is even. If A is positive semidefinite, thendet(A) ≥ 0. If A
is positive definite, then eitherdet(A) > 0 or A has some zero N-eigenvalues.

It is easy to see that all of positive semidefinite supersymmetrictensors of the same
order and dimension form a closed convex cone. ByProposition 7, the tensors are positive
definite in the interior of this convex cone and on some boundary part of this cone.
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In (1), if we let some (but not all) xi be zero, then we have a lower degree homogeneous
polynomial, which defines a lower order supersymmetric tensor. We call such a lower order
supersymmetric tensor aprincipal supersymmetric sub-tensor of A. If A is positive
definite (semidefinite), then all of its principal supersymmetric sub-tensors are positive
definite (semidefinite). ByProposition 7, we have the following further proposition.

Proposition 8. Assume that m is even. If A is positive semidefinite, then the symmetric
hyperdeterminants of all of its principal supersymmetric sub-tensors are nonnegative.

Note that the converse ofProposition 8is not true ingeneral. For example, a necessary
and sufficient condition for positive definiteness in the casem = 4 andn = 2 can be found
in Jury and Mansour(1981). For positive semidefiniteness, we may take the closed hull
form of the condition given inJury and Mansour(1981), which is much more complicated
than the condition inProposition 8.

5. Distribution of the eigenvalues

The following is a theorem on the distribution of the eigenvalues ofA.

Theorem 6. (a) The eigenvalues of A lie in the union of n disks inC. These n diskshave
the diagonal elements of the supersymmetric tensor as their centers, and the sums of the
absolute values of the off-diagonal elements as their radii.

(b) If one of these n disks is disjoint with the other n− 1 disks, then there are exactly
(m − 1)n−1 eigenvalues which lie in this disk, and when m is even there is at least one
H-eigenvalue which lies in this disk.

(c) If k of these n disks are connectedbut disjoint with the other n− k disks, then there
are exactly k(m−1)n−1 eigenvalues which lie in the union of these k disks. Moreover when
m is even at least one H-eigenvalue lies in the real interval intersected by this union on the
real axis if one of the following three conditions holds:

(i) k isodd;
(ii) k is even and the other n− k disks are on the left side of this union;
(iii) k is even and the other n− k disks are on the right side of this union.

Proof. (a) Suppose thatλ is an eigenvalue ofA with eigenvectorx. Assume that

|xi | = max
j =1,...,n

|x j |.

Consider thei th equation of (2). We have

(λ− ai,...,i )x
m−1
i =

n∑
i2,...,im=1
δi,i2 ,...,im

=0

Ai,i2,...,im xi2 · · · xim.

This implies that

|λ− ai,...,i | ≤
n∑

i2,...,im=1
δi,i2 ,...,im

=0

∣∣Ai,i2,...,im

∣∣ · ∣∣∣∣xi2

xi

∣∣∣∣ · · ·
∣∣∣∣xim

xi

∣∣∣∣ ≤
n∑

i2,...,im=1
δi,i2 ,...,im

=0

∣∣Ai,i2,...,im

∣∣ .
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This gives us the desired result. Note thatλ andx may be non-real here.
(b) This is a special case of (c) withk = 1.
(c) Let D be anmth-ordern-dimensional diagonal tensor whose diagonal elements are

the same as those ofA. Let

A(ε) = D + ε(A − D),

for ε ∈ [0,1]. ThenA(0) = D andA(1) = A. Let

φε(λ) = det(A(ε)− λI ).

Thenφε is a one-dimensional monic polynomial whose coefficients are polynomials ofε.
Then the roots ofφε are continuous functions ofε. Let ε vary from 0 to 1. By (a) of
this theorem andTheorem 1(c), we have the first conclusion of (c). (i) Ifk is odd, then
k(m − 1)n−1 is also odd. Whenm is even, since N-eigenvalues appear in pairs, there is at
least oneH -eigenvalue in the union. (ii) Consider

max

{
A(ε)xm :

n∑
i=1

xm
i = 1, x ∈ Rn

}
.

Its global minimizersx(ε) are continuous with respect toε. But

λ(ε) = A(x(ε))m

is an H-eigenvalue. It should stay in the rightmost component of the intersection of the real
axis and the union of then disks. This proves (ii). The proof of (iii) is similar, by changing
“min” to “max”. �

Whenm is even,Theorem 6gives a lower bound and a new upper bound for the smallest
H-eigenvalue, which is useful in judging the positive definiteness ofA (Qi, 2004).

Example 3. Let m = 4 andn = 3. Assume thatA1111 = 2, A2222 = 3, A3333 = 5,
A1123 = A1132 = A1213 = A1312 = A1231 = A1321 = A2113 = A3112 = A2131 =
A3121= A2311= A3211= a

3 and otherAi1,i2,i3,i4 = 0.
If a = 0, then A is diagonal. ByTheorem 1(c), A has three distinct nine-multiple

H-eigenvalues,λ1 = 2, λ2 = 3 andλ3 = 5, with H-eigenvectorsx(1) = (1,0,0)T,
x(2) = (0,1,0)T, x(3) = (0,0,1)T, respectively.

Assume thata �= 0. ByTheorem 6, the eigenvalues ofA lie in the following three disks:
1. Ball 1,with its center at 2 and radius 2|a|.
2. Ball 2,with its center at 3 and radius|a|.
3. Ball 3,with its center at 5 and radius|a|.
There are three cases fora �= 0:
(a) 0< |a| < 1

3. ThenA is diagonally dominated (Qi, 2004). In each disk there are 9
eigenvalues, and there are at least one H-eigenvalue in[2−2|a|,2+2|a|],one H-eigenvalue
in [3 − |a|,3 + |a|] and one H-eigenvalue in[5 − |a|,5 + |a|]. A is positive definite.

(b) 1
3 ≤ |a| < 2

3. There are 18 eigenvalues in the union of the first two disks, 9
eigenvalues in the third disk. There are at least one H-eigenvalue in[2 − 2|a|,3 + |a|]
and one H-eigenvalue in[5 − |a|,5 + |a|]. A is positive definite.
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(c) |a| ≥ 2
3. There are 27 eigenvalues in the union of these three disks. ByTheorem 5,

there are at least two H-eigenvalues in[2 − 2|a|,5 + |a|]. If |a| < 1, thenA is positive
definite. If |a| = 1, thenA is positive semidefinite and may be positive definite. If|a| > 1,
no conclusion can be made on positive definiteness ofA by Theorem 6.

We may use (2) to calculate the eigenvalues ofA. Now (2) becomes


2x3
1 + 2ax1x2x3 = λx3

1,

3x3
2 + ax2

1x3 = λx3
2,

5x3
3 + ax2

1x2 = λx3
3.

(18)

Cancellingλ from the first two equations of (18), we have

x3
1x3

2 = ax1x3

(
2x4

2 − x4
1

)
.

Cancellingλ from the first and the third equations of (18), we have

3x3
1x3

3 = ax1x2

(
2x4

3 − x4
1

)
.

Cancellingx3 from these two equations, we have

3x9
1x9

2

(
2x4

2 − x4
1

)
= 2x9

1x13
2 − a4x5

1x2

(
2x4

2 − x4
1

)4
. (19)

We havea five-multiple root x1 = 0 and a single rootx2 = 0.
If x2 = 0 andx1 �= 0, thenx3 = 0 by (18). By (18), we haveλ1 = 2. We may let

x1 = 1.
If x1 = 0 andx2 �= 0, thenx3 = 0 by (18). By (18), we haveλ2 = 3. We may let

x2 = 1.
If x1 = 0 andx3 �= 0, thenx2 = 0 by (18). By (18), we haveλ3 = 5. We may let

x3 = 1.
Thus, whena �= 0, A always has a single H-eigenvalueλ1 = 2 with an H-eigenvector

(1,0,0)T, a five-multiple H-eigenvalueλ2 = 3 with an H-eigenvector(0,1,0)T, and a
five-multiple H-eigenvalueλ3 = 5 with an H-eigenvector(0,0,1)T.

We now assume thatx1 �= 0 andx2 �= 0. Let t = x2
x1

ands = t4. Without loss of
generality, we may assume thatx1 = 1. Then (19) becomes

a4 = s2(3 − 4s)

(2s − 1)4
. (20)

We have

x2 = t and x3 = t3

a
(
2t4 − 1

) . (21)

By (18) and (21), we have

s = λ− 2

2(λ− 3)
. (22)
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Substituting (22) to (20), we have

η(λ) := (λ− 2)2(λ− 3)(λ− 5)− 4a4 = 0.

By (21) andt4 = s, weknow that each root ofη is a four-multiple eigenvalue and double
H-eigenvalue of A. By this and the relations between roots and coefficients ofη, we may

conclude thatA is positive definite if|a| < (15)
1
4 , positive semidefinite if |a| = (15)

1
4 , not

positive semidefinite if |a| > (15)
1
4 , and

det(A) = 2 × 155 × (60− 4a4)4.

It is not difficult to generalize this result to a general case whereA1111 = b, A2222 =
c, A3333 = d, A1123 = A1132 = A1213 = A1312 = A1231 = A1321 = A2113 = A3112 =
A2131 = A3121 = A2311 = A3211 = a

3 and otherAi1,i2,i3,i4 = 0. We may derive a formula
for det(A) as

det(A) = b × (cd)5 × (b2cd − 4a4)4,

and a formula forφ(λ) as

φ(λ) = (b − λ)(c − λ)5(d − λ)5
[
(b − λ)2(c − λ)(d − λ)− 4a4

]4
.

We find thatA is positive definite in the interior of the following region:
(a,b, c,d) ∈ R4 : b ≥ 0, c ≥ 0,d ≥ 0, |a| ≤

(
b2cd

4

) 1
4


 ,

positive semidefinite on the boundary of the above region, and not positive semidefinite
out of that region.

Furthermore, we see that the sum of all the eigenvalues ofA is

(m − 1)n−1tr(A) = 9(b + c + d).

From this example, we have four further conjectures on eigenvalues:

Conjecture 3. A has at least n H-eigenvalues.

Conjecture 4. A has n linearly independent eigenvectors.

Conjecture 5. A has n linearly independent H-eigenvectors.

Conjecture 6. If k of then disks in Theorem6 are connected but disjoint with the other
n − k disks, then there are at least k H-eigenvalues in the interval intersected by the union
of these k disks with the real axis.

Certainly,Conjecture 6is stronger thanConjecture 3, while Conjecture 5is stronger
thanConjecture 4.
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6. Orthogonal similarity

Theorem 2(c) and Theorem 6do not apply to E-eigenvalues and Z-eigenvalues. In
particular, a diagonal supersymmetric tensorA may have more thann Z-eigenvalues.

Example 4. Let m = 4 andn = 2. Assume thatA1111 = 3, A1122 = A1221 = A1212 =
A2121= A2211= A2112= a, A2222= 1 andotherAi1,i2,i3,i4 = 0. Then (3) is{

x2
(
3x3

1 + 3ax1x2
2

) = x1
(
3ax2

1x2 + x3
2

)
x2

1 + x2
2 = 1.

(23)

We see thatx2 = 0 is its solution. Otherwise, the first equation of (23) gives us

3t3 + 3at = t
(
3at2 + 1

)
,

i.e.,

t
(
(3a − 3)t2 + 1 − 3a

)
= 0, (24)

which always has a real roott2 = 0. Whena > 1 ora < 1
3, (24) has two more real double

rootst3 =
√

3a−1
3a−3 andt4 = −t3. Substituting them to

x2
1 + x2

2 = 1

and

λ = Ax4 = 3x4
1 + 6ax2

1x2
2 + x4

2,

we find thatA always has two Z-eigenvalues:λ1 = 3 with a Z-eigenvectorx(1) = e(1) =
(1,0)T andλ2 = 1 with a Z-eigenvectorx(2) = e(2) = (0,1)T. Whena > 1 or a < 1

3, A
has one more double Z-eigenvalue:

λ3 = 3
(
9a3 − 6a2 − 3a + 2

)
2(3a − 2)2

with Z-eigenvector

x(3) =
(√

3a − 1

6a − 4
,

√
3a − 3

6a − 4

)T

and

x(4) =
(√

3a − 1

6a − 4
,−
√

3a − 3

6a − 4

)T

.

We see that whena > 1 ora < 1
3,ψ(a) = 9a3−6a2−3a+2 hasonly one real root− 1√

3
.

Whena ≤ − 1√
3
, λ3 ≤ 0. This implies thatA is not positive definite in that case. When

a > − 1√
3
, A is positive definite. Notice that whena = 0, A is a diagonal symmetric tensor.
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But in thatcase, beside the two Z-eigenvaluesλ1 andλ2, which are its diagonal elements,
A has an additional Z-eigenvalueλ3 = 3

4, which isthe smallest Z-eigenvalue ofA.

In fact, we have the following proposition.

Proposition 9. Suppose that A is a diagonal supersymmetric tensor with diagonal
elements a1, . . . ,an. Let

J1 = {i : ai < 0}, J2 = {i : ai > 0}.
If at least one of J1 and J2 has more than one element, then A has more than n
Z-eigenvalues. In this case, beside the n Z-eigenvalues which are the diagonal elements
of A, for eachJ̄k ⊆ Jk with | J̄k| ≥ 2, k = 1,2,

λ = (−1)k




1∑
i∈ J̄k

(
1

|ai |
) 2

m−2




m−2
2

is a Z-eigenvalue of A, with a Z-eigenvector x defined by

xi =
{(

λ
ai

) 1
m−2

, for i ∈ J̄k,

0, otherwise.

This proposition may be proved by definitions directly. We omit its proof.
Example 4andProposition 9reveal the dark side of E-eigenvalues (Z-eigenvalues). One

may think of giving up E-eigenvalues (Z-eigenvalues). However, in the remaining part of
this section, we will show the bright side of E-eigenvalues. This is an orthogonal similarity,
which eigenvalues do not have whenm ≥ 4.

Let P = (pi j ) be ann×n real matrix. DefineB = Pm A as anmth-ordern-dimensional
tensor with its entries as

Bi1,...,im =
n∑

j1,..., jm=1

pi1 j1 · · · pim jm Aj1,..., jm.

Proposition 10. B = PmA defined above is also a supersymmetric tensor.

Proof. Let {i k1, . . . , i km} = {i1, . . . , im}. Then

Bi1,...,im =
n∑

j1,..., jm=1

pi1 j1 · · · pim jm Aj1,..., jm

=
∑

jk1 ,..., jkm=1

pik1 jk1
· · · pikm jkm

Ajk1,..., jkm
= Bik1 ,...,ikm

.

This proves the proposition.�

Proposition 11. Let P = (pi j ) be an n×n real nonsingular matrix. Let Q= (qi j ) = P−1.
If B = PmA, then A= QmB.
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Proof. Let the entries ofC = QmB beCi1,...,im . Then

Ci1,...,im =
n∑

j1,..., jm=1

qi1 j1 · · · qim jm Bj1,..., jm

=
n∑

j1,..., jm=1

qi1 j1 · · · qim jm

(
n∑

k1,...,km=1

pj1k1 · · · pjmkm Ak1,...,km

)

=
n∑

k1,...,km=1

(
n∑

j1=1

qi1 j1 pj1k1

)
· · ·
(

n∑
jm=1

qim jm pjmkm

)
Ak1,...,km

=
n∑

k1,...,km=1

δi1k1 · · · δimkm Ak1,...,km = Ai1,...,im.

This proves the proposition.�

If P is a real orthogonal matrix andB = PmA, thenA = (PT)mB. In thiscase, we say
that A andB areorthogonally similar.

Theorem 7. If supersymmetric tensors A and B are orthogonally similar, then they have
the same E-eigenvalues. In particular, if B= PmA, λ is an E-eigenvalue of A and x is an
E-eigenvector of A associated withλ, where P is an n× n real orthogonal matrix, thenλ
is alsoan E-eigenvalue of B and y= Px is an E-eigenvector of B associated withλ.

Proof. Suppose thatB = PmA, λ is an E-eigenvalue ofA andx is an E-eigenvector ofA
associated withλ, whereP = (pi j ) is ann × n real orthogonal matrix. Lety = Px. Then
x = PTy, yTy = xTx = 1 and fori1 = 1, . . . ,n,

n∑
i2,...,im=1

Ai1,...,im xi2 · · · xim = λxi1 .

Hence, forj1 = 1, . . . ,n,

λyj1 = λ

n∑
i1=1

pj1i1xi1 =
n∑

i1=1

pj1i1

(
λxi1

)

=
n∑

i1=1

pj1i1

(
n∑

i2,...,im=1

Ai1,...,imxi2 · · · xim

)

=
n∑

i1=1

pj1i1

(
n∑

i2,...,im=1

Ai1,...,im

(
n∑

j2=1

pj2i2 yj2

)
· · ·
(

n∑
jm=1

pjmim yjm

))

=
n∑

j2,..., jm=1

(
n∑

i1,...,im=1

pj1i1 · · · pjmim Ai1,...,im

)
yj2 · · · yjm

=
n∑

j2,..., jm=1

Bj1,..., jm yj2 · · · yjm.
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This shows thatλ is also an E-eigenvalue ofB and y = Px is an E-eigenvector ofB
associated withλ. This proves the theorem.�

7. Concluding remarks

In this paper, we defined the symmetric hyperdeterminant, eigenvalues and eigenvectors
of a real supersymmetric tensorA, anddiscussed their properties. We see that they have a
clear harmonic structure, with a close link with the positive definiteness issue. The more
we know about them, the more capable we are of solving the positive definiteness issue.
We have also made six conjectures for further exploration.

Assume thatm is even. Whenn andm are small, by the theory of resultants (Cox et al.,
1998; D’Andrea and Dickenstein, 2001; Gelfand et al., 1994; Sturmfels, 2002) or the
theory of bracket algebra (Cox et al., 1998; Sturmfels, 1993), it is possible to have
the formula for the symmetric hyperdeterminant, and hence to find the characteristic
polynomialφ. We may find the smallest real root ofφ. If it is positive, thenA is positive
definite. If it is not positive and is of odd multiplicity, thenA is not positive definite.
Otherwise, we may try to find whetherφ has a nonpositive root of odd multiplicity. If
there is such aroot, thenA is not positive definite. IfA has no nonpositive roots of odd
multiplicity, but has some nonpositive roots of even multiplicity, then we need to identify
whether these roots are H-eigenvalues or N-eigenvalues ofA, in order to find whetherA
is positive definiteor not. This gives an approach for the positive definiteness issue but
further exploration of this aspect is also needed.

Actually, we should not confine the applications of eigenvalues and E-eigenvalues
to the positive definiteness issue. For thepositive definiteness issue, only the smallest
H-eigenvalue and the smallest Z-eigenvalue are important. If we considerthe classification
and properties of higher order curves (forn = 2) and surfaces (forn = 3) defined by

f (x) ≡ Axm = 1,

then the other H-eigenvalues and Z-eigenvalues may also play roles. Also, because of the
orthogonal similarity, Z-eigenvalues may play a more important role here. This will be our
further research topic.
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