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ABSTRACT order2 tensor), the constrained variational approach generalizes

We propose a theory of eigenvalues, eigenvectors, singular valuesin @ Straight-forward manner — one simply replaces the bilinear
and singular vectors for tensors based on a constrained variationaf”n(:t!OnaIXT Ay (resp. quadratic fornx™ Ax) by the multilinear
approach much like the Rayleigh quotient for symmetric matrix functional (resp. homogeneous polynomial) associated with a ten-
eigenvalues. These notions are particularly useful in generalizingSOr (rféSp. symmetric tensor) of order The constrained critical
certain areas where the spectral theory of matrices has tradition-alues/points then yield a notion of singular values/vectors (resp.
ally played an important role. For illustration, we will discuss a €igenvalues/vectors) for ordértensors.

multilinear generalization of the Perron-Frobenius theorem. Animportant point of distinction between the ordeand order-

k cases is in the choice of norm for the constraints. At first glance,
it may appear that we should retain tienorm. However, the crit-
icality conditions so obtained are no longeale invarianf(ie. the
property thatx. in (1) or (u., v.) in (2) may be replaced byx.

or (avue, v ) without affecting the validity of the equations). To

1. INTRODUCTION

It is well known that the eigenvalues and eigenvectors of a sym-

metric matrix A are the critical values and critical points of its ) ) . -
Rayleigh quotientx™ Ax/||x|2, or equivalently, the critical val-  Preserve the scale invariance of eigenvectors and singular vectors

2
ues and points of the quadratic fosah Ax constrained to vectors fgf tensors of ordekz 2 3, thel®-norm must be replaced by the
with unit 2-norm, {x | [|x|l2 = 1}. If L : R" x R — R is the 1”-norm (wherek is the order of the tensor),

associated Lagrangian with Lagrange multipher

) Ixlle = (Jaa|® + - + |zal ).
L(x,\) =xTAx — A\(||x|lz — 1),
then the vanishing oW L at a critical point(x¢, A\c) € R™ x R The consideration of eigenvalues and singular values with respect
yields the familiar defining condition for eigenpairs to [’-norms wherep # 2 is prompted by recent works [1, 2] of
Choulakian, who studied such notions for matrices.
Axe = AeXe. ) Nevertheless, we shall not insist on having scale invariance.

Note that this approach does not workiifis nonsymmetric — the In_stead, we will define eigenpairs and singula_r pairs _of tensors

critical points ofL would in general be different from the solutions ~ With respect to any’-norm ( > 1) as they can be interesting even

of (1). whenp # k. For example, whep = 2, our defining equations for
Alittle less widely known is an analogous variational approach singular values/vectors (6) become the equations obtained in the

to the singular values and singular vectors of a matrig R™<", best rankt approximations of tensors studied by Comon [3] and

with x Ay /|||, ||y ||, assuming the role of the Rayleigh quotient. de Lathauwer et. al. [4]. For the special case of symmetric tensors,

The associated Lagrangian functién: R™ x R” x R — R is our equations for eigenvalues/vectors fo= 2 andp = k define

now respectively, the Z-eigenvalues/vectors and H-eigenvalues/vectors

in the soon-to-appear paper [5] of Qi. For simplicity, we will re-
strict our study to integer-valuedin this paper.

We thank Gunnar Carlsson, Pierre Comon, Lieven de Lath-
auwer, Vin de Silva, and Gene Golub for helpful discussions. We
Ayc/llyellz = oexe/||Xell2,  ATxc/|[%cll2 = ocye/|lyell2, would also like to thank Liqun Qi for sending us an advanced copy
of his very relevant preprint.

L(x,y,0) =x"Ay = o(|x]l2[lyll2 = 1).
L is continuously differentiable for non-zesgy. The first order
condition yields

at a critical point(xc, y.,o0c) € R™ x R" x R. Writing u. =
Xc/||xell2 @andve = yo/|lyc||2, we get the familiar

) 2. TENSORS AND MULTILINEAR FUNCTIONALS

Av, = ocue, ATu. = o.ve.
7

Although it is not immediately clear how the usual definitions A k-array of real numbers representing an ordéensor will be
of eigenvalues and singular values via (1) and (2) may be gen-denoted byd = [aj,.-5.] € R¥ >4 Just as an ordex-

eralized to tensors of orddr > 3 (a matrix is regarded as an  tensor (ie. matrix) may be multiplied on the left and right by a
This work appeared inProceedings of the IEEE International Work- pa”: of m_at_rlces (of cpnststent dlmer_13|0ns), an oricle_ensor may

shop on Computational Advances in Multi-Sensor Adaptive Processing be ‘multiplied onk sides’ by k matrices. Tha:ovarlantlmultl-

(CAMSAP '05), 1 (2005), pp. 129-132. linear matrix multiplicationof A by matricesM; = [m'") ] €

Jii1




R4 My = [mF) ] € R%**k is defined by 3. SINGULAR VALUES AND SINGULAR VECTORS

Jkik

A(My, ..., My) == Let A € R %% Then A defines a multilinear functional
o h A:RY x ... x R% — Rvia (3). Let us equifR% with thelPi-
[[Z X Z * ajl-v-j,cmgﬂl mg’zikﬂ € ROV, norm, ||-|lp,, ¢ = 1, ..., k. We will define the singular values and
=t k=t singular vectors of4 as the critical values and critical points of
This operation arises from the way a multiinear functional trans- A(x1, - -, %k)/[|X1lp, -~ Xk |5, suitably normalized. Taking
forms under compositions with linear maps. In particular, the mul- @ constrained variational approach, welletR* x - -- x R* x
tilinear functional associated with a tensdre R < and R — Rbe
its gradient may be succinctly expressed via covariant multilinear
multiplication: L(x1,...,Xk,0) =
A(xa, - xk) = o(([xallpy - lI%kllp, — 1)
d dp ) ’ P1 Pk
A(xl,...,xk)zz_l Zk ajl.”jkz;-i)---x;i% (3)
J1=1 Jr=1 - . . . . .
L is continuously differentiable whex; # 0,7 = 1,...,k. The
Vi A, oo %) = ARy o Xim1s Lag X, - X)- vanishing of the gradient,
Note that we have slightly abused notations by usintp denote VL = (Va,L,..., Vs, L,VoL) = (0,...,0,0)

both the tensor and its associated multilinear functional.
An order% tensor[ay, ...;, ] € R™**" is calledsymmetric gives

if @5,y = @1y fOF @NY permutations € &. The A(lay,X2,X3, ..., X) = 0pp, —1(X1),
homogeneous polynomial associated with a symmetric tetiser A B
[aj,-..;,] and its gradient can again be conveniently expressed as (x1, Lag, X3, -+, Xk) = 0Ppy—1(X2), ©)
A(X,...,X) = Z _ Z _ Ajy-gTgy " Ty (4)
Jji=1 Je=1
A(Xl,Xg7 ey Xp—1, Idk) = O'Lppkfl(xk),
VA(x,...,x) =kA(In,x,...,X). . ) . o
at a critical point(x1, . . ., xx, o). As in the derivation of (2), one

Observe that for a symmetric tensér gets also the unit norm condition

A(ln, %x,%X,...,%x) = A(X, [n,%X,...,X) = Ix1llpy =+ = [xkllpp = 1.

= AKX In). (5) The unit vectork; ando in (6), will be called themodes singular

vector i = 1,..., k, andsingular valueof A respectively. Note

The preceding discussion is entirely algebraic but we will now : ; .
P 9 yalg that the mode-singular vectors are simply the orderequivalent

introduce norms on the respective spaces. ||:gt, be a norm

onR%, i = 1,...,k. Then thenorm (cf. [6]) of the multilinear of_ left- and right-sin_gular vectors for ord@r (a matrix has two
functional A : R% x - --x R% — R induced Y- lars - - - Ik ‘sides’ or modes while an ordériensor has:). .
is defined as We will use the namé?* Pk -singular values/vectors if we
wish to emphasize the dependence of these notiors|pn, i =
14 — sup |A(x1,...,%xk)] 1,..., k. _If p1 = --- = pp = p, then we will use Fhe shqrter
HLoe @k %1y - 1%k llag namel?-singular values/vectors. Two particular choicepafill
be of interest to usp = 2 andp = k — both of which reduce to
where the supremum is taken over all non-zefoe R%, i = the matrix case wheh = 2 (not so for other choices gf). The
1,..., k. We will be interested in the case where fh.,’s arel”- former yields
norms. Recall that fot < p < oo, thel”-norm is a continuously
differentiable function ofiR™\{0}. Forx = [z1,...,z,]T € R", A(X1,. ., Xiy L, Xig1, -, Xk) = 0%, 1=1,...,k,
we will write
xP = [af, ..., 2l]T while the latter yields a homogeneous system of equations that is
. . . . invariant under scaling ofx, ..., xx). In fact, whenk is even,
(ie. takingpth power coordinatewise) and thelP-singular values/vectors are solutions to
op(x) :=[sgn(z1)a], ... sgn(zn)zh] Ao X0 L X1, ox0) = oxE L i= 1,k
where . ) .
+1 ifz>o0, The following results are easy to show. The first proposition

follows from the definition of norm and the observation that a max-

) imizer in an open set must be critical. The second proposition fol-
-1 ifz <0. lows from the definition of hyperdeterminant [7]; the conditions

Observe that ip is even, thenp, (x) = x”. The gradient of the ond; are necessary and sufficient for the existencA of

IP-norm is given by

sgn(z) =40 ifz=0,

Proposition 1. The largest? Pk -singular value is equal to the
Vx| Yp—1(x) norm of the multilinear functional associated withinduced by
X = — .
P x|t the norms||-|[py - -, [|“llpy. . €.

or simply V||x||, = x*~"/||x||5~" whenp is even. omax(A) = [|Allpy,....p5-



Proposition 2. Letd;, ..
di—1< Z#i(dj —1) foralli=1,...,k,

., dx be such that

and A denote the hyperdeterminant &f'1 X <4 Then0 is an
I2-singular value ofd € R > if and only if

A(A) =0.

4. EIGENVALUES AND EIGENVECTORS OF
SYMMETRIC TENSORS

LetA € R™* ™ be an ordek symmetricensor. Them defines
a degrede homogeneous polynomial functiof : R™ — R via
(4). With a choice of”-norm onR"™, we may consider the mul-
tilinear Rayleigh quotientd(x, ...,x)/||x||5. The Lagrangian
L:R"xR—R,

L(X7 A) = A(X7 HE 7X) - )‘(HXH;: - 1)7
is continuously differentiable whex # 0 and
VL = (VxL,V\L) = (0,0)

gives

A(Ln, %, ..., %) = App-1(x) )
at a critical point(x, \) where||x||, = 1. The unit vectorx and
scalar\ will be called ani?-eigenvectorand (”-eigenvalueof A
respectively. Note that theds in (7) satisfies the symmetry in (5).

As in the case of singular values/vectors, the instances where

p = 2 andp = k are of particular interest. Thé-eigenpairs are
characterized by

A(In,%x,...,X) = Ax
where||x|l2 = 1. When the ordek is even, thd*-eigenpairs are
characterized by

AL, x,...,x) = xx"! (8)

and in this case the unit-norm constraint is superfluous since (8)foralli: € {1,...,n —m} and allis, ..

is a homogeneous system ardnay be scaled by any non-zero
scalara.

We shall refer the reader to [5] for some interesting results on
I2-eigenvalues antf-eigenvalues for symmetric tensors — many
of which mirrors familiar properties of matrix eigenvalues.

5. EIGENVALUES AND EIGENVECTORS OF
NONSYMMETRIC TENSORS

We know that one cannot use the variational approach to charac-

terize eigenvalues/vectors abnsymmetrianatrices. So for an
nonsymmetritensorA € R™**™ we will insteaddefineeigen-

6. APPLICATIONS

Several distinct generalizations of singular values/vectors and eigen-
values/vectors from matrices to higher-order tensors have been
proposed in [3, 8, 4, 9, 5]. As one can expect, there is no one
single generalization that preserves all properties of matrix singu-
lar values/vectors or matrix eigenvalues/vectors. In the lack of a
canonical generalization, the validity of a multilinear generaliza-
tion of a bilinear concept is often measured by the extent to which

it may be applied to obtain interesting or useful results.

The proposed notions @f- andi*-singular/eigenvalues arise
naturally in the context of several different applications. We have
mentioned the relation between tHesingular values/vectors and
the best rank- approximation of a tensor under the Frobenius
norm obtained in [3, 4]. Another example is the appearand@-of
eigenvalues/vectors of symmetric tensors in the approximate solu-
tions of constraint satisfaction problems [10, 11]. A third example
is the use of*-eigenvalues for ordet-symmetric tensorg(even)
for characterizing the positive definiteness of homogeneous poly-
nomial forms — a problem that is important in automatic control
and array signal processing (see [5, 12] and the references cited
therein).

Here we will give an application df-eigenvalues and eigen-
vectors of anonsymmetri¢ensor of orderk. We will show that
a multilinear generalization of the Perron-Frobenius theorem [13]
may be deduced from the notion Bf-eigenvalues/vectors as de-
fined by (9).

Let A = [aj,...;.] € R™*". We write A > 0 if all
aj,...5, > 0 (likewise forA > 0). We writeA > Bif A—B >0
(likewise forA > B).

An order% tensorA is reducibleif there exists a permutation
o € 6,, such that the permuted tensor

[[bllzk:” = [[a(’(jl)<-<0(jk)]] c RV

has the property that for some € {1,...,n — 1}, bs,...;, =0
Ltk € {1,...,m}.

If we allow a few analogous matrix terminologies, thdnis
reducible if there exists a permutation matfxso that

B=A(P,...,P) e R™"x"

can be partitioned int@" subblocks and regarded a8 & - - - x 2
block-tensor with ‘square diagonal blockBpyg.... € R™* " *™,
Bi1...q € Rv—m)xx(n=m) ‘and a zero ‘corner blockBio...o €
R(r=m)xmx-xm \yhich we may assume without loss of general-
ity to be in the(1,0,...,0)-‘corner’.

We say that isirreducibleif it is not reducible. In particular,
if A > 0,thenitisirreducible.

values/vectors by (7) — an approach that is consistent with the ma-Theorem 1. Let A = [a;,...;, ] € R™**" be irreducible and

trix case. As (5) no longer holds, we now havelifferent forms
of (7):

A(ln,X1,X1,...,X1) = p1op-1(x1),
A(x1, In,x2,...,X2) = p2pp—1(x2),

9)
A(XIWXIC, e 7xk7jn) = Mk@p—l(xk)'

We will call the unit vectorx; a mode: eigenvectorof A corre-

sponding to the modéeigenvalueu;, i = 1,...,k. Note that
these are nothing more than the ordezguivalent of left and right
eigenvectors.

A > 0. ThenA has a positive real*-eigenvalue with ari*-
eigenvectok. that may be chosen to have all entries non-negative.
In fact, x.. is unique and has all entries positive.

Proof. LetS} = {x € R" | x > 0, ||x]|&
x € ST, we define

1}. For any

p(x) = inf{p e Ry | A(L,x,...,x) < px""'}
k—1

Note that forx > 0, pr—1(x) = x
there exists some.. € S% such that

. SinceS? is compact,

p(x.) = inf{u(x) | x € Sk} = pu.



Clearly, (12) and (13) allows us to scalgo, x1]T to unit!*-norm without
A(In, Xuy .oy Xx) < paxiL (10) affecting the validity of the inequalities and equalities. Thus we
have obtained a solution with at least} 1 relations in (10) being

We claim thatx.. is a (modet) I*-eigenvector of4, ie. e o . . .
strict inequalities. Repeating the same arguments inductively, we

ALy, X, ... X)) = paxi Tt can eventually replace all the equalities in (12) with strict inequal-
ities, leaving us with (11), a contradictionVg defer the proof of
Suppose not. Then at least one of the relations in (10) must holduniqueness and positivity &f, to the full papei O

with strict inequality. However, naall the relations in (10) can

hold with strictly inequality since otherwise A proposal to use the multilinear Perron-Frobenius theorem in

the ranking of linked objects may be found in [14]. A symmetric

AT, Xy o %) < paxi ! (11) version of this result can be used to study hypergraphs [15].
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