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Abstract. Recently the problem of determining the best, in the least-squares sense, rank-1
approximation to a higher-order tensor was studied and an iterative method that extends the well-
known power method for matrices was proposed for its solution. This higher-order power method
is also proposed for the special but important class of supersymmetric tensors, with no change. A
simplified version, adapted to the special structure of the supersymmetric problem, is deemed unreli-
able, as its convergence is not guaranteed. The aim of this paper is to show that a symmetric version
of the above method converges under assumptions of convexity (or concavity) for the functional in-
duced by the tensor in question, assumptions that are very often satisfied in practical applications.
The use of this version entails significant savings in computational complexity as compared to the
unconstrained higher-order power method. Furthermore, a novel method for initializing the iterative
process is developed which has been observed to yield an estimate that lies closer to the global op-
timum than the initialization suggested before. Moreover, its proximity to the global optimum is a
priori quantifiable. In the course of the analysis, some important properties that the supersymmetry
of a tensor implies for its square matrix unfolding are also studied.
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1. Introduction. A tensor of order N is an N -way array, i.e., its entries are
accessed via N indices.1 For example, a scalar is a tensor of order 0, a vector is a
tensor of order 1, and a matrix is a second-order tensor. Tensors find applications
in such diverse fields as physics, signal processing, data analysis, chemometrics, and
psychology [4].

The notion of rank can also be defined for tensors of order higher than 2. The way
this is done is via an extension of the well-known expansion of a matrix in a sum of
rank-1 terms. Thus, the rank, R, of an Nth-order tensor T is the minimum number
of rank-1 tensors that sum up to T . A rank-1 tensor of order N is given by the gen-
eralized outer product of N vectors, u(i), i = 1, 2, . . . , N , i.e., its (i1, i2, . . . , iN ) entry

is Ti1,i2,...,iN = u
(1)
i1
u

(2)
i2

· · ·u(N)
iN

. Despite the similarity in their definitions, the ranks
of lower- (N ≤ 2) and higher-order tensors exhibit important differences. For exam-
ple, the rank of a higher-order tensor is not necessarily upper bounded by the tensor
dimensions [9]. Furthermore, there is not a unique way of extending to higher orders
the singular value decomposition (SVD) and its connection with least-squares low
rank approximation. A multilinear generalization of the matrix SVD, called higher-
order singular value decomposition (HOSVD), was recently proposed and studied [9]
and may be understood as an extension of the so-called Tucker3 model for 3-way
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arrays (see, e.g., [18]). Despite the many similarities of this decomposition with the
second-order SVD (e.g., orthogonality between the vectors u at different terms), its
truncation does not provide the best (in the least-squares (LS) sense) low rank ap-
proximation to the tensor. Nevertheless, it has been used to initialize a higher-order
equivalent of the power method, recently proposed [8, 10] for determining the best
rank-1 approximation of Nth-order tensors.

Though an important problem per se, the LS reduced rank tensor approximation
plays a central role in the context of blind source separation (BSS) based on higher-
order statistics (HOS) [5]. The problem there is to separate and recover statistically
independent random processes, x1, . . . , xK , with the aid of observations of their linear
mixture of the form y = Hx + n, where the M ×K mixing matrix H , the source
vector x = [x1, . . . , xK ]T , and the disturbance vector n are assumed unknown (and
real, for simplicity). The noise vector is also commonly assumed to be Gaussian and
independent of x. A common method for recovering one of the sources is to project
the observation vector y onto an M × 1 vector u, chosen so that the normalized

kurtosis of the source estimate z = uTy , given by cum4(z)
(cum2(z))2

, is absolutely maximized.

It has been shown [8] that this maximization problem is equivalent to that of best
approximating the fourth-order cumulant tensor of y by another of rank 1. Hence
the higher-order power method (HOPM) of [8, 10] can be employed. However, it
should be noticed that the above tensor is supersymmetric, i.e., its entries remain
unchanged under any permutation of their indices [4]. Such a rich symmetry would
be expected to permit a simplified version of the HOPM to be applicable to this kind
of tensor. Unfortunately such a symmetric HOPM (S-HOPM) is not convergent for
general supersymmetric tensors as claimed in [10] and demonstrated via an example in
this paper. Yet, in many cases of practical interest, namely, when the function g(u) =∑

i1,i2,...,iN
Ti1,i2,...,iNui1ui2 · · ·uiN is convex (or concave), this symmetric version of

the HOPM can be shown to converge to a (local) maximum of the restriction of |g|
to the unit sphere. The gain from using this symmetric version comes mainly from
the consequent reduction in computational complexity. Though more iterations are
usually required for the S-HOPM to converge, the fact that they are N times cheaper
than in the general HOPM more than compensates for that, resulting in significant
computational complexity savings. The requirements for convexity (concavity) of the
function g are always met in the BSS context when the source kurtoses are all of the
same sign. For example in communications these kurtoses are negative and g turns
out to be concave.2

The aim of this paper is to present the S-HOPM and prove that it converges
for supersymmetric tensors whose induced polynomial forms enjoy the property of
convexity or concavity. A novel scheme for initializing the S-HOPM for fourth-order
tensors is also proposed, which has been observed to almost always outperform the
HOSVD-based scheme of [10]. Moreover, it allows for an a priori quantification of its
proximity to the globally optimal solution.

The rest of this paper is organized as follows. Section 2 introduces definitions
of basic quantities and tensor operations. The problem is stated in section 3, where
the equivalence of the rank-1 approximation problem with that of maximizing an
associated functional and the characterization of the stationary points are recalled
from [10, 16] for the symmetric case. The HOPM in both its general and symmetric

2In fact, the convergence of the S-HOPM for the BSS problem (where it coincides with the well-
known superexponential algorithm [26, 14, 16]) has been shown for the case of mixed sign kurtoses
as well, when there are at least as many sensors as sources (M ≥ K) [24].
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versions is given in section 4, and the S-HOPM is shown to converge under convex-
ity/concavity assumptions. Some important properties that the supersymmetry of a
tensor implies for its square matrix version are proved in section 5. These properties,
to be used in the subsequent analysis, are important in their own right since they
hold for any supersymmetric tensor, regardless of whether the associated function
is convex/concave or not. Section 6 develops the new initialization method and de-
rives bounds on its performance. The problem of computing a rank-R approximation
(R > 1) is briefly discussed in section 7. Section 8 concludes the paper.

1.1. Notation. Vectors will be denoted by bold lowercase letters (e.g., u) while
bold uppercase letters (e.g., T ) will denote tensors of second order (i.e., matrices).
Higher-order tensors will be denoted by bold, calligraphic, uppercase letters (e.g.,
T ). The symbol I designates the identity matrix, where the dimensions will be
understood from the context. The superscript T will be employed for transposition.
The (i, j, k, . . . , l) element of a tensor T is denoted by Ti,j,k,...,l. All indices are
assumed to start from one. The symbol ⊗ will be used to denote the (right) Kronecker
product. If A is an m× n matrix, vec(A) will signify the mn× 1 vector that is built
from the columns of A stacked one below another. The inverse operator that builds
a matrix from a vector is called unvec. Finally, for the sake of simplicity, only real
tensors will be considered. The extension of the results to tensors with Hermitian
symmetry [9] is straightforward.

2. Basic definitions. This section contains some definitions that will be useful
in what follows. Since they have been presented in detail in earlier works [9, 10, 16],
they are only briefly recalled here.

Definition 1 (supersymmetric tensor). A tensor is called supersymmetric if its
entries are invariant under any permutation of their indices.

The notions of scalar product and norm are easily extended to higher orders, as
follows.

Definition 2 (tensor scalar product). The scalar product of two tensors S and
T , of the same order, N , and same dimensions, is given by

〈S,T 〉 =
∑

i1,i2,...,iN

Si1,i2,...,iNTi1,i2,...,iN .

Definition 3 (Frobenius norm). The Frobenius norm of a tensor T of order N
is defined as

‖T ‖ =
√
〈T ,T 〉 =


 ∑

i1,i2,...,iN

T 2
i1,i2,...,iN




1/2

.

Definition 4 (matrix unfoldings). The n-mode matrix unfolding, T (n), of an
M1 ×M2 × · · · ×MN tensor T of order N with entries Ti1,i2,...,iN is defined as the
Mn × M1M2 · · ·Mn−1Mn+1 · · ·MN matrix whose columns are the Mn-dimensional
vectors obtained from T by varying the index in and keeping the other indices fixed.3

It is readily verified that, for a supersymmetric tensor, T , all n-mode matrix
unfoldings are equal, that is, T (1) = T (2) = · · · = T (N). A square matrix version for
supersymmetric tensors will also be used, as follows.

3The order of appearance of the n-mode vectors in T (n) is irrelevant in our context.
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Definition 5 (square matrix unfolding). The square matrix unfolding, T , of an
M ×M × · · · ×M supersymmetric tensor T of even order N = 2L is given by

Tm,n = Ti1,i2,...,iL,j1,j2,...,jL ,(2.1)

where

m = ML−1(i1 − 1) + · · ·+M(iL−1 − 1) + iL, 1 ≤ i1, . . . , iL ≤ M,(2.2)

n = ML−1(j1 − 1) + · · ·+M(jL−1 − 1) + jL, 1 ≤ j1, . . . , jL ≤ M.(2.3)

The outer product can be generalized to higher-orders, as follows.
Definition 6 (Tucker product). The Tucker product of N matrices {U (n)}Nn=1,

each of dimension Mn × L, yields an N th-order tensor T of dimensions M1 ×M2 ×
· · · ×MN as

Ti1,i2,...,iN =

L∑
l=1

U
(1)
i1,l

U
(2)
i2,l

· · ·U (N)
iN ,l

and is denoted by

T = U (1) �U (2) � · · · �U (N).

A weighted outer product will be defined as follows.4

Definition 7 (weighted Tucker product). The weighted Tucker product (or S-

product), with core an L1 × L2 × · · · × LN tensor S, of N matrices {U (n)}Nn=1 of
dimensions Mn × Ln yields an N th-order M1 ×M2 × · · · ×MN tensor as

Ti1,i2,...,iN =

L1∑
l1=1

L2∑
l2=1

· · ·
LN∑

lN=1

Sl1,l2,...,lNU
(1)
i1,l1

U
(2)
i2,l2

· · ·U (N)
iN ,lN

and is denoted by

T = U (1) S
� U (2) S

� · · · S� U (N).

It can easily be seen that the standard Tucker product is a weighted I-product,
where I is the identity tensor (Ii1,i2,...,iN = δ(i1, i2, . . . , iN )). The Tucker product

with all U (n) being vectors results in a rank-1 tensor, as follows.
Definition 8 (tensor rank). The rank, R, of an M1 ×M2 × · · · ×MN tensor T

is the minimal number of terms in a finite decomposition of T of the form

T =
R∑

r=1

u(1)
r � u(2)

r � · · · � u(N)
r ,

where u
(i)
r are Mi-dimensional column vectors.

A way of extending the SVD from matrices to higher-order tensors is given in the
following (see [9]).

Theorem 1 (HOSVD). Any M1 ×M2 × · · · ×MN tensor T can be expressed as

T = U (1) S
� U (2) S

� · · · S� U (N),

4This product is denoted in [9, 10] as S ×1 U (1) ×2 U (2) ×3 · · · ×N U (N), whereas it takes the

form S • U (1) • · · · • U (N) in [4].



BEST RANK-1 APPROXIMATION OF SUPERSYMMETRIC TENSORS 867

where
• U (n), n = 1, 2, . . . , N, are orthogonal Mn ×Mn matrices, and
• the core tensor S is of the same size as T , and its subtensors Sin=α, obtained

by fixing the kth index to α, have the properties of
– all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for

any possible values of n and α �= β, in the sense that

〈Sin=α,Sin=β〉 = 0;

– ordering: for all n,

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=Mn
‖.

The matrix U (n) is computed as the matrix of the left singular vectors of the n-

mode unfolding of T , T (n) [9]. The core tensor is then determined as S = (U (1))T
T
�

(U (2))T
T
� · · · T

� (U (N))T . In the supersymmetric case, all U (n) are equal and, of
course, the core tensor is supersymmetric as well. The above multilinear SVD then
reduces to the so-called higher-order eigenvalue decomposition (HOEVD) [9]. We will

sometimes use the notation U
S
�N to denote a symmetric S-product.

3. Problem statement. The best LS rank-1 tensor approximation problem is
stated below along with its close connection to the maximization of the associated
polynomial form on the unit sphere. This property is the higher-order equivalent of an
analogous property holding for matrices [11] and is going to play a central role in the
subsequent developments. Proofs can be found (for the more general, nonsymmetric
case) in [7, 10, 16].

Theorem 2 (tensor rank-1 approximation). Given an N th-order supersymmetric
M ×M × · · · ×M tensor T , consider the problem of determining a scalar λ and a
vector u ∈ R

M such that the rank-1 tensor T̂ = λu�N minimizes the function

f(T̂ ) = ‖T − T̂ ‖2(3.1)

subject to u having unit norm. Then the unit-norm vector u corresponds to a (local)
minimum of (3.1) if and only if it yields a (local) maximum of |g(u)|, with

g(u) =
∑

i1,i2,...,iN

Ti1,i2,...,iNui1ui2 · · ·uiN = 〈T ,u�N 〉.(3.2)

The corresponding value of λ is λ = g(u).
To make the connection with similar results in the second-order case clearer, let

us define the functional

h(u) =
〈T ,u�N 〉2
〈u,u〉N ,(3.3)

whose maximization corresponds to maximizing g(u) for ‖u‖ = 1. The above can
be viewed as an Nth-order Rayleigh quotient squared. Recall that the corresponding
maximization problem for matrices is solved by the dominant eigenpair (λ,u), where
λ is the eigenvalue with the largest absolute value [28, 11]. The stationary points of

the corresponding functional uTT u
uTu are the solutions to

T u =
uTT u

uTu
u.(3.4)
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The analogous result for the Nth-order case is as follows [7, 10, 16].
Theorem 3 (characterization of stationary points). The unit-norm vector u is

a stationary point of the functional h of (3.3) if and only if

∑
i2,...,iN

Ti1,i2,...,iNui2ui3 · · ·uiN = λui1 for all i1(3.5)

or, equivalently,

I
T
� (uT )

T
� (uT )

T
� · · · T� (uT )︸ ︷︷ ︸

N−1 times

= λu,(3.6)

with λ = 〈T ,u�N 〉.
4. The HOPM.

4.1. General case. An iterative use of (3.4) leads to the well-known power
method for determining the dominant eigenpair of a matrix T [28, 11]. A tensorial
equivalent is suggested by (3.6) and will be analyzed in the next subsection. Let
us first have a look at the HOPM as given in [8, 10] for a general, not necessarily
supersymmetric, M1 ×M2 × · · · ×MN tensor T .

Algorithm 1. Higher-order power method (HOPM).

Initialization: u
(n)
0 = a unit-norm Mn − vector, 1 ≤ n ≤ N

Iteration: for k = 1, 2, . . .

ũ
(1)
k = I

T
� (u

(2)
k−1)

T T
� · · · T� (u

(N)
k−1)

T ,

λ
(1)
k = ‖ũ(1)

k ‖,

u
(1)
k =

ũ
(1)
k

λ
(1)
k

,

u
(2)
k = (u

(1)
k )T

T
� I

T
� (u

(3)
k−1)

T T
� · · · T� (u

(N)
k−1)

T ,

λ
(2)
k = ‖ũ(2)

k ‖,

u
(2)
k =

ũ
(2)
k

λ
(2)
k

,

...

ũ
(n)
k = (u

(1)
k )T

T
� · · · T� (u

(n−1)
k )T

T
� I

T
� (u

(n+1)
k−1 )T

T
� · · · T� (u

(N)
k−1)

T ,

λ
(n)
k = ‖ũ(n)

k ‖,

u
(n)
k =

ũ
(n)
k

λ
(n)
k

,

...

ũ
(N)
k = (u

(1)
k )T

T
� · · · T� (u

(N−1)
k )T

T
� I ,

λ
(N)
k = ‖ũ(N)

k ‖,

u
(N)
k =

ũ
(N)
k

λ
(N)
k
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end

Output: T̂ = λu(1) T
� u(2) T

� · · · T� u(N).

The T -product ũ
(n)
k = (u

(1)
k )T

T
� · · · T

� (u
(n−1)
k )T

T
� I

T
� (u

(n+1)
k−1 )T

T
� · · · T

� (u
(N)
k−1)

T

can be implemented as5

ũ
(n)
k = T (1)(u

(1)
k ⊗ · · · ⊗ u

(n−1)
k ⊗ u

(n+1)
k−1 ⊗ · · · ⊗ u

(N)
k−1).

N such products have to be computed per iteration.
The above algorithm can be shown to always converge to a (local) maximum of

(3.3), with the corresponding value of h given by λ2. The convergence proof [22] relies

on the fact that u(1) T
� · · · T� u(N) is a multilinear function of u(n)’s, that is, it is linear

with respect to each of them.
An initial estimate of u(n), 1 ≤ n ≤ N , which has been observed in [8, 10] to very

often lie in the basin of attraction of a globally optimal solution, is given by setting u
(n)
0

equal to the dominant left singular vector of the n-mode matrix unfolding, T (n). This

is the first column of the matrix U (n) in the HOSVD of T . This initialization method
is inspired from what holds in the matrix case, where the best rank-1 approximant
is provided by the dominant singular triple [11]. As shown in [10], however, this
property does not hold anymore for higher-order arrays, and only some bounds can
be derived on the approximation error. The similarities, though, of HOSVD with its
second-order counterpart suggest its use to compute an initial estimate for HOPM.

4.2. Symmetric case. As pointed out in [8, 10], for a supersymmetric T , the

convergence of Algorithm 1 is to a supersymmetric estimator T̂ , with all u(n)’s being
equal to each other. However, the intermediate results are not necessarily symmetric.
It is shown in [10] that, with T being a supersymmetric 2 × 2 × · · · × 2 tensor, the
stationary points of the HOPM (solutions to (3.6)) can be determined as the roots of
an appropriate Nth-order polynomial. For larger supersymmetric tensors the above
algorithm is also proposed, as a constrained version suggested by (3.6) is deemed
unreliable since it is not guaranteed to monotonically increase |g|. The algorithm
suggested by (3.6) is as follows.

Algorithm 2. Symmetric higher-order power method (S-HOPM).

Initialization: u0 = a unit-norm M − vector

Iteration: for k = 1, 2, . . .

ũk = I
T
� (uT

k−1)
T
�(N−1),

uk =
ũk

‖ũk‖
end

Output: T̂ = g(u)u
T
�N

The expression ũk = I
T
� (uT

k−1)
T
�(N−1) can as before be rewritten as

ũk = T (1) (uk−1 ⊗ · · · ⊗ uk−1)︸ ︷︷ ︸
N−1 times

.

5Recall that all matrices T (n), n = 1, . . . , N , are equal for a supersymmetric T .
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Fig. 4.1. Results of the HOPM and S-HOPM for the supersymmetric tensor given in Example 1.

For the special case of N = 4, which is the most common one in the BSS problem,
the above can also take the following alternative form, in terms of the square matrix
unfolding:

ũk = unvec(T (uk−1 ⊗ uk−1))uk−1.

Note that only one such product needs to be computed per iteration, as compared
to N for the general HOPM. Thus, if this constrained version is applicable, an N -fold
reduction in computational complexity results. However, the form to be optimized is
now nonlinear with respect to the sought for vector, u, thus rendering the convergence
proof for Algorithm 1 not applicable. In fact, as the following example demonstrates,
the S-HOPM does not converge for all supersymmetric tensors T .

Example 1. Consider a supersymmetric 3× 3× 3× 3 tensor with entries

T1111 = 0.2883, T1112 = −0.0031, T1113 = 0.1973, T1122 = −0.2485, T1123 = −0.2939,

T1133 = 0.3847, T1222 = 0.2972, T1223 = 0.1862, T1233 = 0.0919, T1333 = −0.3619,

T2222 = 0.1241, T2223 = −0.3420, T2233 = 0.2127, T2333 = 0.2727, T3333 = −0.3054.

The results from the application of the general HOPM and its symmetric version,
S-HOPM, are depicted in Figure 4.1. The curve for the general HOPM depicts the

values of 〈T ,u
(1)
k �u

(2)
k �u

(3)
k �u

(4)
k 〉. g(uk) is plotted for the S-HOPM. Both algorithms

are initialized via HOSVD. It is seen that the S-HOPM iterations do not converge.
We will show, however, that Algorithm 2 is convergent if N = 2L is even and g(·)

is a convex (or concave) function of u. Let us recall the meaning of this property [25].
Definition 9 (convex (concave) function). Let g be a function whose values are

real or ±∞ and whose domain is a convex subset S of R
M . Then g is said to be
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convex on S if its epigraph,

epig
�
= {(u, ν)|u ∈ S, ν ∈ R, ν ≥ g(u)},

is a convex subset of R
M+1. A concave function on S is a function whose negative is

convex.
From the definition of g, and using the square matrix unfolding of T , it is readily

verified that g(u) can be written as a polynomial matrix form:

g(u) = (u ⊗ u ⊗ · · · ⊗ u)T︸ ︷︷ ︸
L times

T (u ⊗ u ⊗ · · · ⊗ u)︸ ︷︷ ︸
L times

.

A necessary and sufficient condition for a twice continuously differentiable function
g(u) to be convex (concave) on an open convex subset C of R

M is that its Hessian
(i.e., second derivative) matrix be positive (negative) semidefinite on C [25]. Hence,
g above is convex (concave) on R

M if and only if the matrix

(I ⊗ u ⊗ u ⊗ · · · ⊗ u︸ ︷︷ ︸
L−1 times

)TT (I ⊗ u ⊗ u ⊗ · · · ⊗ u︸ ︷︷ ︸
L−1 times

)(4.1)

is positive (negative) semidefinite for all u ∈ R
M . This implies that g(u) has to be

nonnegative (nonpositive) for all u.
The above condition on the matrix (4.1) will be satisfied if T is positive (negative)

semidefinite.6 For example, this holds for the fourth-order cumulant tensor of the
output of a linear mixing system, y = Hx + n, whose sources have kurtoses of the
same sign. In that case, T is given by [16]

T = H
S
� H

S
� H

S
� H(4.2)

with S denoting the (diagonal) tensor of the fourth-order cumulants of x. The cor-
responding matrix T is given by

T = (H �H )diag(cum4(xi))(H �H )T ,(4.3)

where � is the Khatri–Rao (columnwise Kronecker) product [27].
Notice that even if g is convex (concave), this does not hold for the quotient

g(u)

‖u‖N

since the unit sphere

Σ
�
= {u ∈ R

M |‖u‖ = 1}
is not a convex set.

Example 2. Consider the supersymmetric 3 × 3 × 3 × 3 tensor T that contains
the fourth-order cumulants of the mixture observations for the 3× 7 mixing matrix

H =


 −0.3912 0.1427 0.3087 0.2511 −0.5408 0.3692 0.4894

−0.6743 −0.3816 −0.5317 −0.1942 −0.2120 −0.0770 −0.1687
0.4947 −0.0364 −0.3621 0.2594 −0.6336 0.1911 −0.3430




6For second-order tensors (matrices) this is also a necessary condition.
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Fig. 4.2. The function g(u) for the tensor of Example 2, restricted to the unit sphere.

and source fourth-order cumulants

(cum4(xi))
7
i=1 = (−0.3753,−0.3087,−0.7600,−0.0227,−0.4633,−0.0143,−0.5470).

The resulting function g is concave and nonpositive. Its restriction to the unit sphere
is shown in Figure 4.2. To allow a three-variate function to be plotted, we have pa-

rameterized the unit-norm vector u as u =
[
cos(θ) sin(θ) cos(φ) sin(θ) sin(φ)

]T
where the angles θ, φ were normalized to the interval

(−π
2 ,

π
2

]
, i.e., the cosines were

constrained to be nonnegative. This can be done since the value assumed by g(u) is
invariant to sign changes. It is clearly seen that this is no longer concave.

Theorem 4 (convergence of S-HOPM). For any supersymmetric N th-order M×
M × · · · ×M tensor T such that N is even and the associated function g is convex
(concave) on R

M , Algorithm 2 converges to a local maximum (minimum) of the re-
striction of g to the unit sphere, Σ, for any initialization, except for saddle points and
crest lines leading to such saddle points.

Proof. Consider first the case that g is convex. This assumption implies that the
set epig is a convex subset of R

M+1, and hence a tangent hyperplane at any point
(v , g(v)) is in fact a supporting hyperplane of epig. This fact is expressed by the
so-called (sub)gradient inequality [25]

g(v2)− g(v1) ≥ 〈v2 − v1,∇g(v1)〉
holding for any vectors v1,v2 ∈ R

M (regardless of how distant they may be). To
apply this to the problem at hand, set v2 = uk and v1 = uk−1 to obtain

g(uk)− g(uk−1) ≥ 〈uk,∇g(uk−1)〉 − 〈uk−1,∇g(uk−1)〉.(4.4)

What we want to show is that if we are not at a stationary point, g is increasing
monotonically. It suffices then to show that the right-hand side of (4.4) is positive if
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uk �= uk−1. Note that, for any unit-norm vector u, the Cauchy–Schwarz inequality
yields

〈u,∇g(uk−1)〉 ≤ ‖∇g(uk−1)‖,(4.5)

where the equality holds if and only if u = ∇g(uk−1)
‖∇g(uk−1)‖ . But this is precisely the

formula that gives uk in Algorithm 2. Hence

〈uk,∇g(uk−1)〉 − 〈uk−1,∇g(uk−1)〉 > 0,

which, in view of (4.4), implies that g(uk) is increasing with k. The convergence
follows from the fact that the restriction of |g| to Σ is bounded from above, namely,

∣∣∣∣ g(u)‖u‖N
∣∣∣∣ =

∣∣∣∣ (u ⊗ u ⊗ · · · ⊗ u)TT (u ⊗ u ⊗ · · · ⊗ u)

(u ⊗ · · · ⊗ u)T (u ⊗ · · · ⊗ u)

∣∣∣∣ ≤ |λ1|,(4.6)

with λ1 denoting the eigenvalue of T with largest modulus.
The case of g being concave can be treated as above, by replacing g with −g. The

only point that we need to comment on is that the quantity 〈u,∇g(uk−1)〉 in (4.5)

now has to take its minimum value, which occurs when u = − ∇g(uk−1)
‖∇g(uk−1)‖ . However,

the minus sign is not necessary as it does not affect the value of g(uk) (recall that N
is even).

A distinction is made in [7] between the HOPM, as derived from the Lagrangian
equations for the corresponding constrained minimization problem, and a gradient
descent procedure. However, it can be shown, following similar arguments to those
employed in [19] for the case of a norm function g(·), that the S-HOPM is in fact a
gradient recursion using a strategic choice for the step-size parameter.

5. Properties of the matrix T . In this section we will state and prove some
properties that the supersymmetry of a tensor implies for its square matrix unfold-
ing. The so-called vec-permutation matrix [13] plays a central role to the subsequent
analysis.

Definition 10 (vec-permutation matrix). The vec-permutation matrix, Im,n, is
defined as the mn×mn permutation matrix that satisfies the equality

Im,nvec(A) = vec(AT )(5.1)

for all m× n matrices A.
An explicit way of defining Im,n is given below as a theorem [13].
Theorem 5 (explicit characterization of Im,n). The (i, j) entry of Im,n is equal

to unity if k = l′ and l = k′ with

i = (k − 1)n+ l, 1 ≤ k ≤ m, 1 ≤ l ≤ n,

j = (k′ − 1)m+ l′, 1 ≤ k′ ≤ n, 1 ≤ l′ ≤ m,

and is zero otherwise.
Theorem 6 (properties of T (general even order)). The square matrix unfolding,

T , of an M ×M × · · · ×M supersymmetric tensor T of order N = 2L satisfies the
following properties:

(i) T T = T .
(ii) IML−1,MT = T .
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Proof. Recall the definition of T from (2.1)–(2.3). The symmetry of T follows
easily from the fact that Ti1,i2,...,iL,j1,j2,...,jL = Tj1,j2,...,jL,i1,i2,...,iL .

Call T ′ the matrix IML−1,MT and consider any of its entries, say T ′
p,q. Write its

indices as

p = ML−1(k − 1) + l, 1 ≤ k ≤ M, 1 ≤ l ≤ ML−1,

q = ML−1(q1 − 1) + · · ·+M(qL−1 − 1) + qL, 1 ≤ qi ≤ M, 1 ≤ i ≤ L.

Then, it is readily seen that Theorem 5 implies

T ′
p,q = TM(l−1)+k,q.

Writing further l in the form

l = ML−2(l1 − 1) + · · ·+M(lL−2 − 1) + lL−1, 1 ≤ li ≤ M,

and using the supersymmetry of T , the above yields

T ′
p,q = TML−1(l1−1)+···+M(lL−1−1)+k,q

= Tl1,l2,...,lL−1,k,q1,q2,...,qL

= Tk,l1,l2,...,lL−1,q1,q2,...,qL

= TML−1(k−1)+ML−2(l1−1)+···+lL−1,q

= TML−1(k−1)+l,q

= Tp,q.

This proves (ii).
Being symmetric, T admits an eigenvalue decomposition withML real eigenvalues

and orthonormal eigenvectors [28],

T =

ML∑
i=1

λiξiξ
T
i ,(5.2)

where

ξTi ξj = δ(i, j) for all i, j

and the eigenvalues are numbered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λML |.
Let us now confine our attention to fourth-order supersymmetric tensors (L = 2). We
shall denote the corresponding permutation matrix IM,M by P . It is easy to see that
P is symmetric. Let us also define the M ×M matrices Ξi as the matrix versions of
the corresponding eigenvectors of T , i.e.,

Ξi = unvec(ξi).

For this special, yet important case, some more information on T , involving its eigen-
structure, can be revealed [23].

Theorem 7 (properties of T (N = 4)). The square matrix unfolding of any
fourth-order supersymmetric tensor, T , satisfies the following properties:
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(i) P T = T P = P TP = T .

(ii) It admits M(M+1)
2 eigenvectors ξ with positive symmetry, i.e., P ξ = +ξ,

and M(M−1)
2 eigenvectors with negative symmetry, i.e., P ξ = −ξ. The

corresponding matrices Ξ are symmetric (Ξ = ΞT ) and skew-symmetric
(ΞT = −Ξ), respectively.

(iii) All eigenvectors of T having negative symmetry must correspond to a zero
eigenvalue.

(iv) rank(T ) ≤ M(M+1)
2 .

Proof.
(i) The proof of (i) follows easily from the symmetry of T ,P and property (ii) of

Theorem 6.
(ii) We will first prove that all eigenvectors ξ of T enjoy one of the above sym-

metries. Take the ith eigenpair

T ξi = λiξi.

Premultiplying the above equation by P and taking into account the equality P T =
T P yields

T · P ξi = λi · P ξi,(5.3)

which shows that P ξi is also an eigenvector of T for the eigenvalue λi. If λi is simple,
then the corresponding eigenvector is unique up to a sign factor, and hence P ξi = ±ξi.
In the case of a multiple eigenvalue, one can always choose an eigenvector from its
invariant space that has the desired symmetry. For example, a possible choice could
be the normalized version of ξ′i = P ξi ± ξi. This eigenvector is seen to be orthogonal
to the rest.

It follows from the definition of P (cf. (5.1)) that the symmetries P ξi = ±ξi
satisfied by the eigenvectors of T are equivalent to ΞT

i = ±Ξi, respectively.

Introduce now the following two subspaces of R
M2

:

S+ = {x ∈ R
M2 |P x = +x},

S− = {x ∈ R
M2 |P x = −x}.

These subspaces are orthogonal to each other since if x ∈ S+ and y ∈ S−, then the
orthogonality of P [13] implies

xTy = −xTP TP y = −xTy ;

hence xTy = 0. It also follows that

dimS+ =
M(M + 1)

2
,

dimS− =
M(M − 1)

2
,

since, as shown above, parameterizing S+ (resp., S−) is equivalent to parameterizing
the set of symmetric (resp., skew-symmetric) M × M matrices. Since dimS+ +
dimS− = M2, we can write the orthogonal decomposition as

R
M2

= S+ ⊕ S−.
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The result then follows from the fact that the eigenvectors of T belong to either S+

or S− and form an orthonormal basis of R
M2

.7

(iii) Using the property T P = T in (5.3) yields T ξi = λiP ξi. If ξi is such that
P ξi = −ξi, then it follows that λiξi = −λiξi, and λi = 0.

(iv) The proof of (iv) follows directly from (ii) and (iii).

Corollary 1 (dominant eigenvector of T (N = 4)). The dominant eigenvector,
ξ1, of the square matrix unfolding of a nonzero supersymmetric fourth-order tensor
satisfies P ξ1 = +ξ1. Equivalently, its M ×M matrix version, Ξ1, is symmetric.

Proof. The proof follows from Theorem 7(iii) since λ1 �= 0.

6. New initialization. We derive here an alternative initialization scheme for
the S-HOPM for fourth-order tensors that is observed to be more effective than that
based on the HOSVD in approaching the globally optimum point. The starting point
is the inequality (4.6) that becomes an equality if and only if u ⊗ u coincides with
a dominant eigenvector, ±ξ1. That is, the global maximum of h(u) (cf. (3.3)) would
be attained if ξ1 could be written as a “Kronecker square,” something which is in
general not true.

Nonetheless, this remark suggests a way of computing an initial estimate for u,
namely, setting it equal to the best, in the LS sense, “Kronecker square root” of ξ1:

u = arg min
ς∈R,‖s‖=1

‖ξ1 − ςs ⊗ s‖.

Equivalently,

u = arg min
ς∈R,‖s‖=1

‖Ξ1 − ςssT ‖.

Since Ξ1 is symmetric (see Corollary 1), the latter problem is solved by setting u
equal to the unit-norm eigenvector of Ξ1 that corresponds to its absolutely largest
eigenvalue, say ς1 [11]. Note that ς21 ≤ ‖Ξ1‖2 = ‖ξ1‖2 = 1.

The proposed initialization method thus involves two symmetric matrix rank-1
approximation problems:

New Initialization

1. ξ1= dominant eigenvector of T .
2. u0= dominant eigenvector of unvec(ξ1).

Using (5.2), g(u0) can be written as

g(u0) = 〈u0 ⊗ u0,T (u0 ⊗ u0)〉

=

M2∑
i=1

λi((u0 ⊗ u0)
T ξi)

2

=

M(M+1)/2∑
i=1

λi(u
T
0 Ξiu0)

2,

7This also proves that the vec-permutation matrix P
�
= IM,M has eigenvalues ±1 with multi-

plicities M(M±1)
2

, respectively, a property stated in [13].
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where use was made of the well-known identity vec(ABC ) = (CT ⊗A)vec(B) [13]

and the fact that λi = 0 for i > M(M+1)
2 . Choosing u0 as above yields

g(u0) = λ1ς
2
1 +

M(M+1)/2∑
i=2

λi(u
T
0 Ξiu0)

2.

If T is sign (semi)definite (g is then convex/concave), the latter relation implies

|g(u0)| ≥ |λ1|ς2.(6.1)

This, in conjunction with (4.6), provides us with lower and upper bounds on the initial
value of h, as follows.

Theorem 8 (bounds on initial value). The value assumed by h with the suggested
initialization, when applied to a supersymmetric tensor T with sign (semi)definite
square matrix unfolding, T , is bounded as

λ2
1ς

4
1 ≤ h(u0) ≤ λ2

1,

where λ1 and ς1 are the absolutely largest eigenvalues of the matrices T and Ξ1, respec-
tively. This initial value approaches the global maximum as the vector ξ1 approaches
Kronecker decomposability (i.e., as |ς1| approaches one).

Example 2 (continued). Consider the 3 × 3 × 3 × 3 tensor given before. The
corresponding matrix T is found to have the following singular values:

(|λi|)9i=1 = (0.2841, 0.2617, 0.2305, 0.0353, 0.0020, 0.0001, 0, 0, 0),

agreeing with Theorem 7(iii).8 We ran the S-HOPM for this tensor, using both
the HOSVD-based and the new initialization methods. The results are shown in
Figure 6.1. In both cases the iterations converge to a global minimum. Nevertheless,
the new initialization scheme is seen to lie much closer to the globally optimal solution
than the HOSVD-based scheme. In fact, for this example successive iterations are
nearly superfluous. Extensive simulations have shown this to be the typical case for
tensors with an associated functional that is convex/concave.

The superior performance of the new method can also be seen in Figure 6.2
where the position of the two initial estimates in the parameter space, as well as the
trajectories followed in each case, are shown.

The lower and upper bounds given in Theorem 8 are 0.0444 and 0.0807, respec-
tively, and are seen to be satisfied by the initial value assumed by h in the new
initialization scheme, namely, h(u0) = 0.0758. Note that the initial value suggested
by the HOSVD-based scheme, namely, 0.0183, does not meet the lower bound.

We have found, however, some examples where one of the initialization methods
leads to a local extremum. These cases are rare and, moreover, in all of them h
assumes at the suboptimal point a value quite close to the optimal one.

Example 3. Let the tensor T be given by (4.2) with

H =


 −0.1413 −0.8318 −0.0769 −0.1434 0.4681 0.2054 0.0210

0.3194 0.0328 0.6555 0.1696 0.0224 0.6580 0.0716
0.4123 −0.4371 0.1749 −0.3828 −0.6389 −0.2315 −0.0065




8Note that there are 6 nonzero eigenvalues, whereas there are 7 sources. The number of nonzero

eigenvalues of T can reveal the number of (kurtic) sources only in the case that K ≤ M(M+1)
2

.
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Fig. 6.1. Results of the S-HOPM for both the HOSVD-based and new initializations.
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Fig. 6.2. Visualization of the S-HOPM algorithm for both initialization methods (Example 2).
The HOSVD-based initial estimate is denoted by a small circle and the trajectory followed by +’s.
The initial estimate provided by the proposed method is denoted by a small square and the subsequent
estimates by ×’s.
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Fig. 6.3. Results of S-HOPM for an initial estimate based on HOSVD and the new method.
In the former case, the algorithm is trapped to a local minimum.

and the source cumulants

(cum4(xi))
7
i=1 = (−0.1204,−0.4336,−0.0961,−0.8479,−0.7684,−0.8408,−0.9204).

As shown in Figure 6.3, the S-HOPM, initialized with the aid of the HOSVD, is
trapped to a local minimum.

The bounds of Theorem 8 are 0.0537 and 0.1272 and the new initialization method
yields an initial value of 0.1004 for h. Again, the initial value provided by the HOSVD-
based method, namely, 0.0438, does not satisfy the lower bound.

Example 4. The converse is seen to happen for the tensor built as in (4.2) with

H =


 −0.5100 0.3056 0.2035 0.1959 0.4809 0.3216 0.4816

0.4881 −0.4607 0.5045 −0.2727 0.2863 0.2995 0.2211
−0.0529 −0.4287 −0.2190 0.5228 −0.3968 0.5673 0.1133




and

(cum4(xi))
7
i=1 = (−0.4173,−0.3469,−0.2225,−0.2766,−0.5792,−0.4679,−0.7488).

Figure 6.4 shows that the new initialization method leads to a local minimum this
time. Nevertheless, as we can see in Figure 6.5 there is no significant difference in
the values of h at the local and global minima. Figure 6.6 shows the evolution of
the algorithm on the parameter space for the two initializations. In this example, the
bounds of Theorem 8, 0.0092 and 0.0387, are met by the initial values for h provided
by both the new initialization method and the HOSVD-based one, namely, 0.0181
and 0.0174, respectively.
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Fig. 6.4. Results of S-HOPM for both the HOSVD-based and the new initialization methods.
The latter leads to a local minimum.

Fig. 6.5. The function g for the tensor of Example 4. Notice the local minimum, corresponding
to a value of the function quite close to its global minimum one.



BEST RANK-1 APPROXIMATION OF SUPERSYMMETRIC TENSORS 881

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

φ

θ

Fig. 6.6. Visualization of the initial estimates and the trajectories followed by the S-HOPM in
Example 4, for both initialization methods. Symbols are as in Figure 6.2.

7. On the best rank-R approximation. It is known that by successively
subtracting the LS rank-1 approximation from a given matrix R times results in its
LS rank-R approximation [11]. One could wonder whether this fact still holds for
higher-order tensors, as pointed out in [3]. Unfortunately, as the following (typical)
example demonstrates, this is not the case.

Example 5. Take the tensor T described in Example 2, normalized to unit norm,
and determine its best rank-1 approximant, T̂ . Then do the same for the tensor
T −T̂ , and so on. As shown in Figure 7.1, the norm of the residue indeed decreases to
practically zero; however, this is done in about 200 iterations, while T has rank 7. It is
also of interest to note that the rank of T remains equal to 6 all the way through.

The same iterative process, but with every new rank-1 term being constrained
to be orthogonal to the previous ones, was recently studied in [17]. Depending on
the definition of the orthogonality adopted, this fails or is not certain to provide a
valid rank-R approximation scheme. The above process would work in the case of a
tensor with rank less than or equal to its dimension, M . This is the case in the BSS
context when the mixing matrix is “tall,” i.e., M ≥ K. In fact, in such a case, all

rank(T ) rank-1 terms can be jointly determined by minimizing the norm ‖T −H
S
�N‖

subject to the constraint that S is diagonal and H has full column rank (usually
assumed to have orthonormal columns). Works coping with this problem include
[15, 21]. An algebraic approach via joint diagonalization of the matrices Ξi as defined
above is proposed in [2]. Note that step 2 of our initialization method is part of the
diagonalization of Ξ1. Nonetheless, it is the problem of the recovery of a single source
(rank-1 approximation) that our method addresses. Moreover, it is applicable to BSS
problems with “fat” mixing matrices (M < K) as well (see Example 2).
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Fig. 7.1. Norm of the residue remaining when successively subtracting rank-1 terms from the
tensor of Example 5. The spike near iteration 200 may be due to numerical artifacts.

For the latter more challenging problem, [1] develops an algebraic method for
determining H , based on the assumption of linear independence of the projectors on
the spaces spanned by its columns. This can be seen to be equivalent to the matrix
H �H , which occurs in (4.3), having full column rank.

Both algebraic- and optimization-based approaches for expanding a supersym-
metric tensor in a sum of rank(T ) rank-1 terms have been developed in [6] based
on its representation in terms of an homogeneous polynomial. The problem then be-
comes one of expressing the polynomial as a sum of powers of linear forms. Workable
algorithms derived this way appear limited to small-sized tensors [3].

Finally, the HOPM can be viewed as a special case of the alternating least
squares (ALS) iterative approach common in problems of multilinear model fitting
(PARAFAC or CANDECOMP [18, 7, 27]) to multidimensional data. The ALS
method can be used with no change to compute a rank-R approximation to a
supersymmetric tensor as well, although this way the rich symmetry in the problem
is not exploited.

8. Conclusions. The problem of computing the best, in the LS sense, rank-1
approximation to a given Nth-order supersymmetric tensor has been studied in this
paper. A symmetric version of the higher-order power method, which was thought to
be unreliable, has been shown to be convergent for tensors whose associated polyno-
mial form is convex or concave. A new method for initializing the iterations has been
developed for the fourth-order case and observed in extensive simulations to provide
an estimate that lies closer to the globally optimal solution than that yielded by the
HOSVD. Moreover, the proximity to the optimal solution is a priori quantifiable. It
happens, though rarely, that the initial estimate provided by either the HOSVD-based
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scheme or the one proposed here be in the basin of attraction of a locally optimal so-
lution. However, this is not a serious problem since in all such cases encountered,
the quality of approximation corresponding to the local optimum is observed to be
quite close to the best attainable. As a byproduct of our study of the rank-1 ap-
proximation problem, some properties satisfied by the square matrix unfolding of any
supersymmetric tensor have also been derived.

The applicability of the symmetric higher-order power method is accompanied by
a significant reduction to the computational complexity of its general version. The
convexity/concavity assumptions required to prove its convergence are plausible in
many signal processing applications, such as in blind separation of multiuser commu-
nications channels, where all source signals have kurtoses of the same sign.

It is not an easy task to extend the results obtained here to the more general
problem of computing the best rank-R approximation to a supersymmetric tensor,
when R > 1. Simply imposing the symmetry constraint on the ALS method of fitting
PARAFAC models to general tensors, in the same way that HOPM gave rise to the
S-HOPM, does not always result in a convergent procedure.
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