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Abstract. In this paper we discuss a multilinear generalization of the best rank-R approximation
problem for matrices, namely, the approximation of a given higher-order tensor, in an optimal least-
squares sense, by a tensor that has prespecified column rank value, row rank value, etc. For matrices,
the solution is conceptually obtained by truncation of the singular value decomposition (SVD);
however, this approach does not have a straightforward multilinear counterpart. We discuss higher-
order generalizations of the power method and the orthogonal iteration method.
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1. Introduction. Multilinear algebra is the algebra of higher-order tensors,
which are the higher-order equivalents of vectors (first order) and matrices (second
order), i.e., quantities of which the elements are addressed by more than two indices.
Multilinear algebra is gaining more and more interest, largely due to its applications
in the context of higher-order statistics (HOS) [17, 18, 2, 4, 5, 7].

Rank-related issues in multilinear algebra are thoroughly different from their ma-
trix counterparts. Let us first introduce some definitions. A rank-1 tensor is a tensor
that consists of the outer product of a number of vectors. For an Nth-order tensor A
and N vectors U (1), U (2), . . . , U (N), this means that ai1i2···iN = u

(1)
i1

u
(2)
i2

· · ·u(N)
iN

for

all values of the indices, which will be concisely written as A = U (1) ◦U (2) ◦ · · · ◦U (N).
The n-rank of a higher-order tensor is the obvious generalization of the column (row)
rank of matrices: given an (I1 × I2 × · · · × IN )-tensor A, it equals the dimension of
its n-mode vector space, i.e., the vector space spanned by the In-dimensional vec-
tors obtained from A by varying the index in and keeping the other indices fixed.
An important difference with the rank of matrices is that the different n-ranks of
a higher-order tensor are not necessarily the same. The n-rank will be denoted as
rankn(A). An Nth-order tensor of which rank1(A) = R1, rank2(A) = R2, etc., will
briefly be called a rank-(R1, R2, . . . , RN ) tensor. This is not to be confused with a
“rank-R tensor”, by which one generally means a tensor that can be decomposed in
a sum of R, but not less than R, rank-1 terms; see, e.g., [16].

This paper is a follow-up of [9], in which we discussed a multilinear generaliza-
tion of the singular value decomposition (SVD). For convenience, we will refer to
this decomposition as the higher-order SVD (HOSVD). The starting point of our dis-
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cussion is that, despite the many analogies between the SVD and the HOSVD, the
tensor decomposition does not reflect a simple higher-order equivalent of the classi-
cal link between the best rank-R approximation of a given matrix and its truncated
SVD. Although truncation of the HOSVD of a given tensor may lead to a good rank-
(R1, R2, . . . , RN ) approximation ([9] contains an error bound), it turns out that this
tensor is in general not the best possible (least-squares) approximation under the given
n-mode rank constraints. This paper reports some research results on the estimation
of best rank-(R1, R2, . . . , RN ) approximations.

Important research on this topic has already been carried out by Kroonenberg [13,
14], Kroonenberg and de Leeuw [15], and ten Berghe, de Leeuw, and Kroonenberg [19].
They devised an alternating least-squares (ALS) method to improve the fit, which is
known as “three-mode factor analysis” in psychometrics. (The generalization to orders
higher than three is briefly indicated in [13].) The basic idea is to optimize, mode per
mode and in an iterative way, the components of a factorization of the given tensor;
each optimization step essentially involves a best reduced-rank approximation of a
positive (semi)definite symmetric matrix. We will discuss this work and present the
following refinements and complementary results:

(1) In the fundamental best rank-1 approximation problem, an approximation of
a given higher-order tensor can gradually be enhanced by means of a relatively simple
higher-order generalization of the power method [12] (see sections 3.1 and 3.2).

(2) The efficiency of the higher-order power algorithm can further be increased
by updating two modes at the same time (see section 3.3).

(3) Kroonenberg, de Leeuw, and ten Berghe initialized their algorithm with a
truncated HOSVD model, but it was indicated that only local optimization was guar-
anteed. In section 3.4 we will explicitly show that initializing optimization routines
with a truncated HOSVD indeed does not always lead to the global optimum; on the
other hand, it is our experience that defective cases are rarely met.

(4) For the elementary case of supersymmetric (2 × 2 × · · · × 2)-tensors, the
symmetric stationary points of the higher-order power algorithm can be fully charac-
terized (see section 3.5). This case is important, e.g., with respect to applications in
blind source separation [11].

(5) With respect to arbitrary values of R1, R2, . . . , RN , we will present a square-
root version of the original algorithm, aiming at a higher accuracy, and interpret
it as a multilinear generalization of the technique of orthogonal iterations [12] (see
section 4).
For clarity, the concepts of this paper are formulated in terms of real-valued tensors.
They can be generalized for complex tensors.

Before starting with the next section, we add a comment on the notation that
is used. To facilitate the distinction between scalars, vectors, matrices, and higher-
order tensors, the type of a given quantity will be reflected by its representation:
scalars are denoted by lower-case letters (a, b, . . . ; α, β, . . . ), vectors are written as
italic capitals (A, B, . . . ), matrices correspond to boldface capitals (A, B, . . . ), and
tensors are written as calligraphic letters (A, B, . . .). This notation is consistently
used for lower-order parts of a given structure. For example, the entry with row index
i and column index j in a matrix A, i.e., (A)ij , is symbolized by aij (also (A)i = ai
and (A)i1i2···iN = ai1i2···iN ); furthermore, the ith column vector of a matrix A is
denoted as Ai, i.e., A = [A1A2 · · ·]. To enhance the overall readability, we have made
one exception to this rule: as we frequently use the characters i, j, r, and n in the
meaning of indices (counters), I, J , R, and N will be reserved to denote (unless stated
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otherwise) the index upper bounds.

2. Basic definitions. In this section, we introduce some elementary notations
and definitions needed in subsequent developments.

2.1. Multiplication of a higher-order tensor by a matrix. Higher-order
power and orthogonal iterations involve a multilinear equivalent of matrix-vector and
matrix-matrix multiplications.

Let us first have a look at the matrix product G = U · F · VT , involving ma-
trices F ∈ R

I1×I2 , U ∈ R
J1×I1 , V ∈ R

J2×I2 , and G ∈ R
J1×J2 . To avoid working

with “generalized transposes” in the multilinear case (in which the fact that 1-mode
vectors are transpose-free would not have an inherent meaning), we observe that the
relationship between U and F and the relationship between V (not VT ) and F are
in fact completely similar: in the same way that U makes linear combinations of the
rows of F, V makes linear combinations of the columns of F; in the same way that
the columns of F are multiplied by U, the rows of F are multiplied by V; in the same
way that the columns of U are associated with the column space of G, the columns
of V are associated with the row space of G. This typical relationship will be denoted
by means of the ×n symbol: G = F×1 U×2 V.

In general, we make the following definition.
Definition 2.1. The n-mode product of a tensor A ∈ C

I1×I2×···×IN by a matrix
U ∈ C

Jn×In , denoted by A×nU, is an (I1×I2×· · ·×In−1×Jn×In+1 · · ·×IN )-tensor
of which the entries are given by

(A×n U)i1i2···in−1jnin+1···iN
def
=
∑
in

ai1i2···in−1inin+1···iNujnin .

The n-mode product satisfies the following properties.
Property 1. Given the tensor A ∈ C

I1×I2×···×IN and the matrices F ∈ C
Jn×In ,

G ∈ C
Jm×Im , one has

(A×n F)×m G = (A×m G)×n F = A×n F×m G.

Property 2. Given the tensor A ∈ C
I1×I2×···×IN and the matrices F ∈ C

Jn×In ,
G ∈ C

Kn×Jn , one has

(A×n F)×n G = A×n (G · F).

2.2. Matrix representation of a higher-order tensor. To be able to express
our results in a more common matrix language, we define “matrix unfoldings” of a
given tensor, i.e., matrix representations of that tensor in which all the column vectors
(row vectors, etc.) are ordered sequentially. To avoid confusion, we will retain one
particular ordering of the column (row, etc.) vectors; for order three, these unfolding
procedures are represented in Figure 2.1. Notice that the definitions of the matrix
unfoldings involve the tensor dimensions I1, I2, I3 in a cyclic way and that, when
dealing with an unfolding of dimensionality Ic × IaIb, we formally assume that the
index ia varies more slowly than ib. In general, we make the following definition.

Definition 2.2. Assume an N th-order tensor A ∈ R
I1×I2×···×IN . The ma-

trix unfolding A(n) ∈ R
In×(In+1In+2···INI1I2···In−1) contains the element ai1i2···iN at

the position with row number in and column number equal to (in+1 − 1)In+2In+3 · · ·
INI1I2 · · · In−1 + (in+2 − 1)In+3In+4 · · · INI1I2 · · · In−1 + · · · +(iN − 1)I1I2 · · ·
In−1 + (i1 − 1)I2I3 · · · In−1 + (i2 − 1)I3I4 · · · In−1 + · · ·+ in−1.
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Fig. 2.1. Unfolding of the (I1×I2×I3)-tensor A to the (I1×I2I3)-matrix A(1), the (I2×I3I1)-
matrix A(2), and the (I3 × I1I2)-matrix A(3) (I1 = I2 = I3 = 4).

Example 1. Define a tensor A ∈ R
3×2×3 by a111 = a112 = a211 = −a212 = 1,

a213 = a311 = a313 = a121 = a122 = a221 = −a222 = 2, a223 = a321 = a323 = 4,
a113 = a312 = a123 = a322 = 0. The matrix unfolding A(1) is given by

A(1) =


 1 1 0 2 2 0
1 −1 2 2 −2 4
2 0 2 4 0 4


 .

2.3. Scalar product and Frobenius norm. The scalar product 〈A,B〉 of
two tensors A,B ∈ R

I1×I2×···×IN is defined in a straightforward way as 〈A,B〉 def
=∑

i1

∑
i2
· · ·∑iN

ai1i2···iN bi1i2···iN . The Frobenius norm of a tensor A ∈ R
I1×I2×···×IN

is then defined as ‖A‖ def
=
√〈A,A〉.

3. Higher-order power iteration. In this section, we investigate how a given
tensor can be approximated, in an optimal least-squares sense, by a tensor of rank 1.
In section 3.1, the problem is formalized in two different ways and analyzed with the
technique of Lagrange multipliers. In section 3.2, we show that an approximation can
be improved by means of a higher-order generalization of the power method. A more
efficient variant is presented in section 3.3. Section 3.4 deals with the choice of a good
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initial value. For supersymmetric (2×2×· · ·×2)-tensors, the determination of the best
rank-1 approximation and the other symmetric stationary points of the higher-order
power algorithm is reformulated as a polynomial rooting problem in section 3.5.

Section 3.2 can be considered as a special but important case of the ALS technique
for the computation of the decomposition of a given tensor in a minimal sum of rank-
1 terms [1, 3]. The idea is to update the components of the approximation mode
per mode, which leads to a sequence of linear least-squares problems. However, in
the rank-1 case these least-squares problems have a trivial solution, which allows for
a faster approach, as explained in section 3.3. More background material on the
decomposition of a tensor in a sum of rank-1 terms can be found in [5].

3.1. Best rank-1 approximation. The problem we want to solve can be de-
scribed mathematically as follows.

Given a real N th-order tensor A ∈ R
I1×I2×···IN , find a scalar λ and unit-norm

vectors U (1), U (2), . . . , U (N) such that the rank-1 tensor Â def
= λU (1) ◦U (2) ◦· · ·◦U (N)

minimizes the least-squares cost function

f(Â) = ‖A − Â‖2(3.1)

over the manifold of rank-1 tensors.
This constrained optimization problem can be analyzed using the technique of

Lagrange multipliers. Therefore, we consider the following combination of f with the
constraint terms:

f̃
def
=

∑
i1i2···iN

(ai1i2···iN − λu
(1)
i1

u
(2)
i2

· · ·u(N)
iN
)2 +

∑
n

λ(n)

(∑
in

(u
(n)
in
)2 − 1

)
,(3.2)

in which λ(n) (1 � n � N) are the Lagrange multipliers. Setting the derivative with

respect to u
(n)
in
equal to zero yields

λ
∑

i1···in−1in+1···iN
ai1i2···iNu

(1)
i1

· · ·u(n−1)
in1

u
(n+1)
in+1

· · ·u(N)
iN

= λ(n)u
(n)
in
+ λ2u

(n)
in

∑
i1···in−1in+1···iN

(u
(1)
i1
)2 · · · (u(n−1)

in1
)2(u

(n+1)
in+1

)2 · · · (u(N)
iN
)2.(3.3)

Derivation with respect to λ(n) and λ, respectively, yields∑
in

(u
(n)
in
)2 = 1,(3.4)

∑
i1i2···iN

ai1i2···iNu
(1)
i1

u
(2)
i2

· · ·u(N)
iN

= λ
∑

i1i2···iN
(u

(1)
i1
)2(u

(2)
i2
)2 · · · (u(N)

iN
)2.(3.5)

Combining (3.4) with (3.5) and with the right-hand side of (3.3) yields∑
i1i2···iN

ai1i2···iNu
(1)
i1

u
(2)
i2

· · ·u(N)
iN

= λ,(3.6)

λ
∑

i1···in−1in+1···iN
ai1i2···iNu

(1)
i1

· · ·u(n−1)
in1

u
(n+1)
in+1

· · ·u(N)
iN

= (λ2 + λ(n))u
(n)
in

.(3.7)
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Combining (3.4) with the right-hand side of (3.7), and comparing this to (3.6), yields∑
i1···in−1in+1···iN

ai1i2···iNu
(1)
i1

· · ·u(n−1)
in1

u
(n+1)
in+1

· · ·u(N)
iN

= λu
(N)
iN

.(3.8)

Summarizing, the Lagrange equations correspond to (1 � n � N):

A×1 U
(1)T · · · ×n−1 U

(n−1)T ×n+1 U
(n+1)T · · · ×N U (N)T = λU (n),(3.9)

A×1 U
(1)T ×2 U

(2)T · · · ×N U (N)T = λ,(3.10)

‖U (n)‖ = 1.(3.11)

The best rank-1 approximation problem can also be formulated as follows.
Theorem 3.1. Assume a real N th-order tensor A ∈ R

I1×I2×···IN , then the min-
imization of the cost function of (3.1) is equivalent to the maximization, over the
unit-norm vectors U (1), U (2), . . . , U (N), of the function

g(U (1), U (2), . . . , U (N)) =
∣∣∣A×1 U

(1)T ×2 U
(2)T · · · ×N U (N)T

∣∣∣2 .(3.12)

If the scalar λ, corresponding to the Frobenius norm of Â in (3.1), is chosen in
accordance with (3.10), then the functions of (3.1) and (3.12) are related by

f = ‖A‖2 − g.(3.13)

Proof. We have the following:

f(Â) = ‖A − Â‖2 = ‖A‖2 − 2〈A, Â〉+ ‖Â‖2.

According to the definition of λ, the value taken by 〈A, Â〉 equals λ2. Since U (1),
U (2), . . . , U (N) have unit-norm, ‖Â‖2 = λ2 as well. Combination with the definition
of g proves the theorem.

Remark 1. We defined the best rank-1 approximation problem as the minimiza-
tion of the distance between a given tensor and its approximation on the rank-1
manifold. Theorem 3.1 shows that this is equivalent to the maximization of the norm
of the projection of the original tensor onto the rank-1 manifold.

Remark 2. Theorem 3.1 is the higher-order generalization of the fact that the
computation of the best rank-1 approximation of a matrix A is equivalent to the
determination of unit-vectors U and V such that |UTAV |2 is maximal.

3.2. A power algorithm. For the actual computation of the best rank-1 ap-
proximation of A, the Lagrange equations and their derivation can be interpreted
in a constructive way. Imagine that the vectors U (1), . . . , U (n−1), U (n+1), . . . , U (N)

are fixed and that f in (3.1) is merely a quadratic function in the unknown uncon-
strained vector λU (n). Equation (3.9) then simply shows how the optimal λU can be
computed for fixed U (1), . . . , U (n−1), U (n+1), . . . , U (N).

The full set of Lagrange equations (1 � n � N) can be linked to an ALS algorithm
for the (local) minimization of f(Â): in each step the estimate of the scalar λ and
the estimate of one of the vectors U (1), U (2), . . . , U (N) are optimized, while the other
vector estimates are kept constant. The result is shown in step 2 of Algorithm 3.2.
We remark that the expression

Ũ
(n)
k+1 = A×1 U

(1)
k+1

T · · · ×n−1 U
(n−1)
k+1

T ×n+1 U
(n+1)
k

T · · · ×N U
(N)
k

T
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ALGORITHM 3.2.
Higher-Order Power Method.
In: A ∈ R

I1×I2×···×IN .
Out: Â ∈ R

I1×I2×···×IN : estimator of best rank-1 approximation of A.
1. Initial values: U

(n)
0 is the dominant left singular vector of A(n) (2 � n �

N) and/or repeat the algorithm for several initial values.
2. Iterate until convergence:

• Ũ
(1)
k+1 = A×2 U

(2)
k

T ×3 U
(3)
k

T · · · ×N U
(N)
k

T
;

λ
(1)
k+1 = ‖Ũ (1)

k+1‖;
U

(1)
k+1 = Ũ

(1)
k+1/λ

(1)
k+1;

• Ũ
(2)
k+1 = A×1 U

(1)
k+1

T ×3 U
(3)
k

T · · · ×N U
(N)
k

T
;

λ
(2)
k+1 = ‖Ũ (2)

k+1‖;
U

(2)
k+1 = Ũ

(2)
k+1/λ

(2)
k+1;

• . . .
• Ũ

(N)
k+1 = A×1 U

(1)
k+1

T ×2 U
(2)
k+1

T · · · ×N−1 U
(N−1)
k+1

T
;

λ
(N)
k+1 = ‖Ũ (N)

k+1‖;
U

(N)
k+1 = Ũ

(N)
k+1/λ

(N)
k+1.

Converged values: U (1), U (2), . . . , U (N), λ.
3. Â = λU (1) ◦ U (2) ◦ · · · ◦ U (N).

can be written in matrix format as follows:

Ũ
(n)
k+1 = A(n) · (U (1)

k+1 ⊗ · · · ⊗ U
(n−1)
k+1 ⊗ U

(n+1)
k ⊗ · · · ⊗ U

(N)
k ),

in which ⊗ represents the Kronecker product.
Clearly this technique is a higher-order extension of the power method for matri-

ces [12]. The termination criterion could be formulated in terms of the accuracy of

components (e.g., |U (n)
k+1

T
U

(n)
k | < ε for 1 � n � N) or in terms of the quality of the fit

(e.g., λ
(N)
k+1 − λ

(N)
k < ε). With respect to the initialization, we refer to section 3.4.

Remark 3. For the best approximation of a supersymmetric tensor A by a super-
symmetric rank-1 tensor Â = λU ◦ U ◦ · · · ◦ U , the derivation is analogous. (Super-
symmetric higher-order tensors are tensors that are invariant under arbitrary permu-
tations of their indices; examples are the basic quantities of HOS.) The equivalent of
(3.9) is

A×1 U
T · · · ×n−1 U

T ×n+1 U
T · · · ×N UT = λU.(3.14)

This equation can as well be interpreted as an update of the unknown n-mode vec-
tor λU (n), while the other vectors U (1), . . . , U (n−1), U (n+1), . . . , U (N) are fixed to U .
However, such an update breaks the symmetry of the estimate unless λ and U already
corresponded to a supersymmetric solution of the Lagrange equation. A symmetric
version of the algorithm, based on the iteration

Ũk+1 = A×1 U
T
k ×2 U

T
k · · · ×N−1 U

T
k ,(3.15)

for which U
(1)
k = U

(2)
k = · · · = U

(N)
k = Uk, is unreliable since it does not necessarily

decrease the cost function f(Â) in a monotonous way, as can easily be verified from
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Fig. 3.1. Depiction of Algorithm 1 for a typical example of a supersymmetric tensor in R2×2×2.

Abscis: the angle θ
(2)
k

in U
(2)
k
= (cos θ

(2)
k
sin θ

(2)
k
)T (in radians). Ordinate: the angle θ

(3)
k

in U
(3)
k
=

(cos θ
(3)
k

sin θ
(3)
k
)T (in radians). Both angles are normalized to the interval (−π/2,+π/2]. The

small circle shows the initial guess obtained by HOSVD. The global optimum is (−0.3860,−0.3860).

examples. The fact that a power iteration produces unsymmetric intermediate results
is not observed for symmetric matrices: at the second-order level, each iteration
step involves only the knowledge of one intermediate vector, such that it is simply
impossible to compare the different n-mode vector estimates at a given iteration step.

Example 2. Figure 3.1 depicts step 2 of Algorithm 3.2 for a (2× 2× 2) example.
For different choices of θ0, determining initial vectors U

(2)
0 = U

(3)
0 = (cos θ0 sin θ0)

T ,

we plotted after each iteration the angle θ
(3)
k in U

(3)
k = (cos θ

(3)
k sin θ

(3)
k )T versus the

angle θ
(2)
k in U

(2)
k = (cos θ

(2)
k sin θ

(2)
k )T . The angles were normalized to the interval

(−π/2,+π/2]. (The sign of the vectors does not matter, as can be seen from the
definition of the function g; as far as f is concerned, the sign can be incorporated in
the scalar λ.) The tensor A that we consider is supersymmetric and defined by{

a111 = 1.5578, a222 = 1.1226,
a112 = −2.4443, a221 = −1.0982.

We observe that Algorithm 3.2 leads to unsymmetric intermediate results not
located on the main diagonal of the figure.

We also remark that there are two stable ((−0.3860,−0.3860), (0.7413, 0.7413))
and two unstable ((−1.4052,−1.4052), (0.3347, 0.3347)) symmetric stationary points
of the higher-order power algorithm. The first three correspond to the three solutions
of the Lagrange equation

A×2 U
T ×3 U

T = λU(3.16)

on the unit circle ‖U‖ = 1. The solution (0.3347, 0.3347) is special: even after
convergence the three substeps of each iteration produce unsymmetric results, but
these effects compensate such that the overall power iteration is symmetric. The
global optimum is (−0.3860,−0.3860).
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3.3. Joint updates in the higher-order power algorithm. In the iteration
scheme developed in section 3.2, the estimates of the vectors U (1), U (2), . . . , U (N) are
updated one at a time. However, it is possible to update the estimates of two of the
vectors in a single iteration step.

Let us assume, for example, that the values of U (1), . . . , U (n−1), U
(n+2)
k , . . . , U (N)

are fixed and that U (n) and U (n+1) have to be updated. Theorem 3.1 then implies
that the optimal U (n) and U (n+1) can be found as the dominant left and right singular

vectors of the matrix A×1 U
(1)T · · · ×n−1 U

(n−1)T ×n+2 U
(n+2)T · · · ×N U (N)T , since

g = |U (n)T · (A×1 U
(1)T · · ·×n−1 U

(n−1)T ×n+2 U
(n+2)T · · ·×N U (N)T ) ·U (n+1)|2; the

corresponding value of g is the squared dominant singular value.
The efficiency of Algorithm 3.2 can be increased by resorting to modern techniques

for the estimation of the dominant singular triplet [12]. (Computation of the dominant
singular triplet by a matrix power algorithm would correspond to an iteration between
substeps n and n + 1 of step 2 in Algorithm 3.2.) Note that, in the terminology of

Algorithm 3.2, U
(n)
k and U

(n+1)
k can be used as first approximations of U

(n)
k+1 and

U
(n+1)
k+1 .

3.4. Starting value. Example 2 illustrates a major difference between the second-
order and the higher-order problem of best rank-1 approximation: for tensors, the
Lagrange equations can have several stable solutions. A descent algorithm, like the
higher-order power method, will reveal only the global optimum if the starting point
is in the attraction region of this global optimum.

Considering the fact that the best rank-1 approximation of a matrix is obtained by
truncating its SVD after the first singular value, it is clear that estimation of U (n) as
the dominant left singular vector of the matrix unfolding A(n) (1 � n � N) may yield
a good rank-1 approximation. As a matter of fact, this corresponds to truncation of
the HOSVD after the first term [9]. Another important difference between matrices
and higher-order tensors is that this approximation is not necessarily the globally
optimal one. (For example, in Figure 3.1 the estimate obtained by truncation of the
HOSVD is indicated by means of a small circle.)

However, in our simulations we have observed that the HOSVD estimate usually
belongs to the attraction region of the best rank-1 approximation. Hence we propose
to use the HOSVD estimate as the starting value for the power iteration derived
above; we assume that this iteration will not cause “jumps” to other attraction regions.
However, there is no absolute guarantee: we have been able to generate special cases in
which monotonous descent techniques eventually lead to a local optimum with a close-
to-optimal fit, but nevertheless different from the global optimum. In this respect,
repeating the optimization procedure for several initial values could be envisaged.

Example 3. Consider a tensor B ∈ R
2×2×2×2, of which the nonzero entries are

given by

{
b1111 = 25.1, b1212 = 25.6,
b2121 = 24.8, b2222 = 23.

Due to the symmetries bijkl = bkjil and bijkl = bilkj , the best rank-1 approximation
of B has the form λU (1) ◦ U (2) ◦ U (1) ◦ U (2); we write U (1) = (cosα sinα)T and

U (2) = (cosβ sinβ)T . The function g̃1
def
= B ×1 U

(1)T ×2 U
(2)T ×3 U

(1)T ×4 U
(2)T

corresponds to a weighted arithmetic mean of the nonzero entries of B:
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g̃1(α, β) = 25.1 cos
2 α cos2 β + 25.6 cos2 α sin2 β

+24.8 sin2 α cos2 β + 23 sin2 α sin2 β.

The global maximum of this function is 25.6, reached for α = 0 and β = π/2; there
are no essentially different local maxima. According to Theorem 3.1, setting λ = 25.6,
U (1) = (1 0)T , and U (2) = (0 1)T gives the best rank-1 approximation of B. On the
other hand, B is such that B(1) and B(2) each consist of mutually orthogonal rows,
arranged in order of decreasing Frobenius norm; hence truncation of the HOSVD
yields the vectors U (1) = (1 0)T and U (2) = (1 0)T , which belong to the correct
attraction region in a trivial way.

Now consider a tensor A ∈ R
2×2×2×2, equal to B, except for the entries

a1121 = 0.3, a2111 = 0.3.

A has similar symmetries as B. The function g̃2
def
= A×1 U

(1)T ×2 U
(2)T ×3 U

(1)T ×4

U (2)T , given by

g̃2(α, β) = g̃1(α, β) + 0.6 cos
2 β cosα sinα,(3.17)

is shown in Figure 3.2 by means of a mesh and a contour plot. The extra term in (3.17)
is small enough such that g̃1 and g̃2 are similar—in particular, the global maximum is
the same—but it induces a local maximum (namely, (0.5536, 0)) on the axis β = 0. On
the contour plot, the zero-gradient points of g̃2 are indicated by means of “+” marks;
the global maximum is indicated by means of a small circle. A(1) and A(2) still have
nearly orthogonal rows, arranged in order of decreasing Frobenius norm. Truncation
of the HOSVD leads to vectors that are still close to (1 0)T ; this corresponds to
the “×” mark on the contour plot. Because of the symmetry of g̃2 around the axis
β = 0, a gradient ascent starting from the truncated HOSVD will converge not to
the global maximum but to the local optimum (0.5536, 0). The same holds for the
higher-order power algorithm: after each iteration the intermediate result was plotted
as a dot in the contour plot of Figure 3.2. Altering the ordering of the substeps
in Algorithm 3.2 yields comparable results. (Starting from the HOSVD guess, the
global maximum could be found, however, by alternating, as indicated in section 3.3,
between simultaneous updates of the mode-1 and mode-3 vector on one hand, and
on the other hand the mode-2 and mode-4 vector, beginning with the former.) It is
clear that this example is not an isolated case: the conditions that ensure that the
HOSVD truncate is in the wrong attraction region are still satisfied for sufficiently
small perturbations of A.

3.5. Best rank-1 approximation of supersymmetric binary tensors. The
best rank-1 approximation of supersymmetric (2×2×· · ·×2)-tensors deserves special
attention, as it appears that the determination of the symmetric stationary points
of the higher-order power algorithm can be reformulated as a polynomial rooting
problem in this case. Despite its elementary character, the problem is very relevant:
e.g., in [11] we proved that it is intimately connected with the blind separation of a
linear mixture of two independent sources; separation of mixtures of a larger size can
be achieved by a Jacobi iteration over such elementary cases [4].

We first prove that there can be at most three distinct symmetric solutions to
the Lagrange equations for a supersymmetric (2 × 2 × 2)-tensor; the generalization
to arbitrary tensor orders is straightforward. For convenience we use the notation
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Fig. 3.2. The quality of the best rank-1 approximation of the partially symmetric tensor A
in Example 3, for different values of α and β. The “×” mark shows the initial guess obtained by
HOSVD. The global optimum is indicated by means of a small circle. The “+” marks correspond to
the zero-gradient points of the function g̃2, defined in the example. The intermediate results after
each iteration cycle of Algorithm 3.2, initialized with the first HOSVD components, are plotted as a
sequence of dots.

U = (c s)T . Equation (3.16) corresponds to the following set of equations:

a111c
2 + 2a112cs+ a122s

2 = λc,

a211c
2 + 2a212cs+ a222s

2 = λs.

Eliminating λ and claiming that ‖U‖2 = 1 yields

a211c
3 + (2a212 − a111)c

2s+ (a222 − 2a112)cs
2 − a122s

3 = 0,

c2 + s2 = 1.

On the unit circle a solution is entirely defined by t = s/c, each time corresponding
to the vectors (c s)T and (−c −s)T , which are not essentially different. The solutions
can be found by rooting the polynomial

a211 + (2a212 − a111)t+ (a222 − 2a112)t
2 − a122t

3 = 0,
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which has at most three distinct real roots. The same expression shows where the
derivative of g̃ = A×1 U

T ×2 U
T ×3 U

T is equal to zero. Similarly, for an Nth-order
supersymmetric (2 × 2 × · · · × 2)-tensor, there can be at most N distinct symmetric
solutions to the Lagrange equations; these solutions can be found as the roots of an
Nth-order polynomial.

On the other hand, it is also possible that a higher-order power iteration yields a
stationary solution that is characterized by a symmetric state U (2) = U (3) = · · · = U ,
but nevertheless produces an intermediate vector U (1) that is different from U ; e.g.,
see the solution (0.3347, 0.3347) in Example 2. Therefore, let us consider solutions to
the Lagrange equations of the type

A×2 U
T ×3 U

T = λU (1),(3.18)

A×2 U
(1)T ×3 U

T = λU(3.19)

for a supersymmetric (2× 2× 2)-tensor A, where U (1) is not necessarily equal to U .
Equations (3.18) and (3.19) can be combined as

B ×2 U
T ×3 U

T ×4 U
T = λU,(3.20)

in which the tensor B is defined by bijkl =
∑

p aijpaklp for all entries. Although B itself
is not supersymmetric, the solutions to (3.20) can be determined as above; at most
four distinct real solutions are possible. Similarly, for an Nth order supersymmetric
(2× 2× · · · × 2)-tensor, the solutions to the Lagrange equations

A×2 U
T ×3 U

T · · · ×N UT = λU (1),(3.21)

A×2 U
(1)T ×3 U

T · · · ×N UT = λU(3.22)

can be found by rooting a polynomial of degree 2N − 2.
The determination of arbitrary unsymmetric stationary points of a higher-order

power iteration is much harder than the analysis of the two specific cases above; it
generally leads to sets of polynomial equations and will therefore not be considered.

4. Higher-order orthogonal iteration. In this section we generalize the best
rank-1 approximation problem of the previous section in the sense that the approxi-
mation should now have prespecified mode-1 rank, mode-2 rank, etc. The derivation
of the computational procedure follows a similar scheme. In section 4.1, we give two
related formal definitions of the approximation problem. Section 4.2 is devoted to the
actual computation of the solution.

The derivation follows roughly the same lines as in the work by Kroonenberg [13,
14], Kroonenberg and de Leeuw [15], and ten Berghe, de Leeuw, and Kroonenberg
[19], but with some modifications in the practical implementation. On the other hand,
the overall presentation is intended to clarify the general linear/multilinear framework
underlying the best rank-R/rank-(R1, R2, . . . , RN ) approximation problem. The al-
gorithm that we present is a square-root version of the Kroonenberg algorithm, which
increases the accuracy, as is well known [12]. Next, the computation scheme can be
based on the calculation of dominant subspaces, rather than individual singular vec-
tors, resulting in a higher efficiency. The algorithm will be interpreted as a multilinear
generalization of the technique of orthogonal iterations [12]. An important remark
concerns the initialization of the algorithm. Kroonenberg, de Leeuw, and ten Berghe
initialized their algorithm with a truncated HOSVD, but it was indicated that only
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local optimization was guaranteed. In section 3.4 we have demonstrated that initializ-
ing optimization routines with a truncated HOSVD does not always lead to the global
optimum, though it is our experience that defective cases are rarely met.

4.1. Best rank-(R1, R2, . . . , RN) approximation. In this section we gen-
eralize the best rank-1 approximation problem of the previous section to the best
approximation by a tensor with prespecified mode-1 rank, mode-2 rank, etc. For-
mally, the problem we want to solve can be formulated as follows.

Given a real Nth-order tensor A ∈ R
I1×I2×···IN , find a tensor Â ∈ R

I1×I2×···IN ,
having rank1(Â) = R1, rank2(Â) = R2, . . . , rankN(Â) = RN , that minimizes the
least-squares cost function

f(Â) = ‖A − Â‖2.(4.1)

The n-rank conditions imply that Â can be decomposed as

Â = B ×1 U
(1) ×2 U

(2) · · · ×N U(N),(4.2)

in which U(1) ∈ R
I1×R1 , U(2) ∈ R

I2×R2 , . . . , U(N) ∈ R
IN×RN each have orthonormal

columns and B ∈ R
R1×R2×···×RN .

Actually it is sufficient to determine the matrices U(1), U(2), . . . ,U(N) for the
optimization of f . For any estimate of these matrices, the optimal tensor B is given
by the following theorem.

Theorem 4.1. Assume a tensor A ∈ R
I1×I2×···IN and consider a tensor Â ∈

R
I1×I2×···IN as in (4.2). For given matrices U(1), U(2), . . . ,U(N), the tensor B that

optimizes f(Â) = ‖A − Â‖2 is given by

B = A×1 U
(1)T ×2 U

(2)T . . .×N U(N)T .(4.3)

Proof. The optimization of

f = ‖A − B ×1 U
(1) ×2 U

(2) · · · ×N U(N)‖2

for the unknown elements of B is merely a classical linear least-squares problem. It
corresponds to the least-squares estimation of the solution of the following set of linear
equations, which is possibly overdetermined:

B ×1 U
(1) ×2 U

(2) · · · ×N U(N) = A.

Taking into account that U(1), U(2), . . . ,U(N) have orthonormal columns, these ma-
trices can be brought to the other side of the equation by (n-mode) multiplication
with the transposed matrices.

Remark 4. Theorem 4.1 is the multidimensional equivalent of the optimal choice
of λ in (3.10).

Analogous with Theorem 3.1 we state that the best rank-(R1, R2, . . . , RN ) ap-
proximation problem can also be formulated as follows.

Theorem 4.2. Assume a real N th-order tensor A ∈ R
I1×I2×...IN ; then the

minimization of the cost function of (4.1) is equivalent to the maximization, over the
matrices U(1),U(2), . . . ,U(N) having orthonormal columns, of the function

g(U(1),U(2), . . . ,U(N)) =
∥∥∥A×1 U

(1)T ×2 U
(2)T · · · ×N U(N)T

∥∥∥2

.(4.4)
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If the tensor B, the Frobenius norm of which equals the Frobenius norm of Â in (4.2),
is chosen in accordance with (4.3), then the functions of (4.1) and (4.4) are related by

f = ‖A‖2 − g.(4.5)

Proof. We look for the relations between the definition of g and the terms in the
following expression for f :

f(Â) = ‖A − Â‖2 = ‖A‖2 − 2〈A, Â〉+ ‖Â‖2.

First, the definition of the inner product allows us to write

〈A, Â〉 = 〈A,B ×1 U
(1) ×2 U

(2) · · · ×N U(N)〉
= 〈A ×1 U

(1)T ×2 U
(2)T · · · ×N U(N)T ,B〉

= ‖B‖2.

Next, since U(1),U(2), . . . ,U(N) have orthonormal columns, they do not affect the
Frobenius norm

‖Â‖2 = ‖B‖2.

Substitution of the preceding expressions in the equation for f yields

f(Â) = ‖A‖2 − ‖B‖2.

Combination with the definition of g proves the theorem.
Remark 5. Basically, the best rank-(R1, R2, . . . , RN ) approximation problem con-

sists of the determination of a reduced n-rank tensor Â that explains as much of the
“energy” (sum of the squared entries) of a given tensor A as possible under the given
n-rank constraints. Theorem 4.2 implies that this problem is equivalent to the explicit
maximization of the energy of the approximation.

In other words, we are looking for a basis of rank-1 tensors {U (1)
r1 ◦U (2)

r2 ◦· · ·◦U (N)
rN },

in which U
(n)
1 , U

(n)
2 , . . . , U

(n)
Rn

are mutually orthonormal (1 � n � N), such that the
norm of the projection of A onto this basis is maximal.

4.2. An orthogonal iteration. For the actual computation of the best rank-
(R1, R2, . . . , RN ) approximation of A, let us interpret the function g in the following
way. Imagine that the matrices U(1), . . . , U(n−1), U(n+1), . . . ,U(N) are fixed and
that g in (4.4) is merely a quadratic expression in the components of the unknown
matrix U(n), consisting of orthonormal columns. We have

g = ‖Ũ (n) ×n U
(n)T ‖2,(4.6)

in which

Ũ (n) def
= A×1 U

(1)T · · · ×n−1 U
(n−1)T ×n+1 U

(n+1)T · · · ×N U(N)T .(4.7)

Hence the columns of U(n) can be found as an orthonormal basis for the dominant
subspace of the n-mode space of Ũ (n).

Repeating this procedure for different mode numbers leads to an ALS algorithm
for the (local) minimization of f(Â): in each step the estimate of one of the matrices
U(1),U(2), . . . ,U(N) is optimized, while the other matrix estimates are kept constant.
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Algorithm 4.2.
Higher-Order Orthogonal Iteration.
In: A ∈ R

I1×I2×···×IN .
Out: Â ∈ R

I1×I2×···×IN : estimator of best rank-(R1, R2, . . . , RN ) approximation
of A.

1. Initial values: U
(n)
0 ∈ R

In×Rn , of which the columns form an orthonormal
basis for the dominant Rn-dimensional left singular subspace of A(n) (2 �
n � N) and/or repeat the algorithm for several initial values.

2. Iterate until convergence:

• Ũ (1)
k+1 = A×2 U

(2)
k

T ×3 U
(3)
k

T · · · ×N U
(N)
k

T
;

Maximize over U(1) ∈ R
I1×R1 with U(1)TU(1) = I:

h(U(1)) = ‖Ũ (1)
k+1 ×1 U

(1)T ‖;
max(h(U(1))) = h(U

(1)
max) = λ

(1)
k+1;

U
(1)
k+1 = U

(1)
max;

• Ũ (2)
k+1 = A×1 U

(1)
k+1

T ×3 U
(3)
k

T · · · ×N U
(N)
k

T
;

Maximize over U(2) ∈ R
I2×R2 with U(2)TU(2) = I:

h(U(2)) = ‖Ũ (2)
k+1 ×2 U

(2)T ‖;
max(h(U(2))) = h(U

(2)
max) = λ

(2)
k+1;

U
(2)
k+1 = U

(2)
max;

• . . .
• Ũ (N)

k+1 = A×1 U
(1)
k+1

T ×2 U
(2)
k+1

T · · · ×N−1 U
(N−1)
k+1

T
;

Maximize over U(N) ∈ R
IN×RN with U(N)TU(N) = I:

h(U(N)) = ‖Ũ (N)
k+1 ×N U(N)T ‖;

max(h(U(N))) = h(U
(N)
max) = λ

(N)
k+1;

U
(N)
k+1 = U

(N)
max.

Converged values: U(1),U(2), . . . ,U(N),B = Ũ (N) ×N U(N)T .
3. Â = B ×1 U

(1) ×2 U
(2) · · · ×N U(N).

The result is shown in step 2 of Algorithm 4.2. Note that (4.7) can be written in a
matrix format as follows:

Ũ
(n)
(n) = A(n) · (U(n+1) ⊗ · · · ⊗U(N) ⊗U(1) ⊗ · · · ⊗U(n−1)).

Clearly this technique is a higher-order extension of the orthogonal iteration for
matrices [12]. A major difference, in some sense also with the higher-order power
method, is that each iteration step involves not only the computation of a multilinear
transformation but also the estimation of a dominant subspace.

As far as supersymmetric higher-order tensors are concerned, higher-order orthog-
onal iterations—like higher-order power iterations—yield unsymmetric intermediate
results.

As with higher-order power iterations, it makes sense to initialize the higher-
order orthogonal iteration with column-wise orthogonal matrices of which the columns
span the space of the dominant left singular vectors of the matrix unfoldings A(n)

(1 � n � N); this corresponds to truncation of the HOSVD [9]. We refer to section 3.4.
The complete higher-order orthogonal iteration algorithm, for a tensor A ∈

R
I1×I2×···×IN , is presented in Algorithm 4.2.
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With respect to Algorithm 4.2, we remark as follows:

(1) It is not required that the columns of U
(n)
k (k � 0 and 1 � n � N) coincide

with the left singular vectors of the matrix from which they are derived. It is sufficient
to compute an arbitrary orthonormal basis for theRn-dimensional dominant subspace.

(2) The projection of U
(n)
k on the n-mode space of Ũ (n)

k+1 gives a first estimate of

the dominant Rn-dimensional subspace in the calculation of U
(n)
k+1. For a discussion

of fast subspace computation methods, we refer to [12, 6].
(3) The stop criterion used in the algorithm for the computation of a dominant

subspace, can be based on the value of h(U(n)), which corresponds to the square root
of the function g that has to be optimized (see (4.6)). In terms of the accuracy of the

components, the termination criterion can take the form of, e.g., ‖U(n)T

k+1 ·U(n)
k ‖2 >

(1− ε)Rn (1 � n � N).
(4) In comparison with the situation in section 3.3, jointly updating the estimates

of two of the matrices U(1),U(2), . . . ,U(N) can be quite involved. Let us assume, for

example, that the values of U(1), . . . ,U(n−1),U
(n+2)
k , . . . ,U(N) are fixed and that

U(n) and U(n+1) have to be updated. Theorem 4.2 then implies that the optimal
matricesU(n) andU(n+1) can be found as the column-wise orthonormal maximizers of
‖(A×1U

(1)T · · ·×n−1U
(n−1)T ×n+2U

(n+2)T · · ·×NU(N)T )×nU
(n)T ×n+1U

(n+1)T ‖2.
This involves the estimation of some kind of “simultaneous” dominant subspaces of

R1R2 · · ·Rn−1Rn+2 · · ·RN matrix slices of A×1U
(1)T · · ·×n−1U

(n−1)T ×n+2U
(n+2)T

· · · ×N U(N)T , which is a nontrivial problem if R1R2 · · ·Rn−1Rn+2 · · ·RN > 1.
Example 4. Consider a tensor A ∈ R

3×2×2, defined by the following matrix
unfolding:

A(1) =


 0 −1 1 4
2 −2 3 −5
4 3 5 −6


 .

The left singular matrices of A(1), A(2), and A(3) are given by

U(1) =


 −0.2465 −0.4993 0.8306

0.5217 0.6539 0.5479
0.8167 −0.5684 −0.0994


 , U(2) =

(
0.1715 0.9852
0.9852 −0.1715

)
,

U(3) =

(
0.5105 0.8599

−0.8599 0.5105

)
.

The singular values equal (a) 11.0753, 3.5498, and 3.2768, (b) 10.6975 and 5.6181,
and (c) 10.5162, 5.9506, and 0, respectively.

Truncation of the HOSVD after the first term in each mode gives a rank-1 ap-
proximation of A of which the Frobenius norm equals 10.0470. This value is increased
to λ = 10.1693 by a higher-order power iteration (Algorithm 3.2). The evolution of
the norm during the iteration is given by the solid line in Figure 4.1. The best rank-1
approximation λV (1) ◦ V (2) ◦ V (3) is given by

V (1) =


 −0.2515

0.6035
0.7567


 , V (2) =

(
0.1344
0.9909

)
, V (3) =

(
0.5765

−0.8171
)
.
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‖Â
‖

Fig. 4.1. Evolution of the norm of the approximation Â of the tensor A in Example 4, during
the higher-order power iteration or higher-order orthogonal iteration, as a function of the iteration
step k. Solid line: computation of the best rank-1 approximation. Dashed line: computation of the
best rank-(2, 2, 1) approximation.

The best rank-(2, 2, 1) approximation of A, decomposed as B×1W
(1)×2W

(2)×3W
(3)

as in (4.2), is given by

W(1) =


 −0.2789 −0.4141

0.5984 −0.7806
0.7511 0.4681


 , B(1) =

(
10.1473 0.0000
0.0000 2.7607

)
,

W(2) =

(
0.0982 −0.9952
0.9952 0.0982

)
, W (3) =

(
0.5105

−0.8599
)
.

The Frobenius norm of this approximation equals 10.5162. The evolution of the norm
during the higher-order orthogonal iteration (Algorithm 4.2) is given by the dashed
line in Figure 4.1.

Example 5. As an alternative for section 4.2, one could think of a generalized
deflation approach for the computation of the best rank-(R1, R2, . . . , RN ) approxi-
mation, i.e., one could wonder whether the result could not easily be obtained by
means of successive rank-1 approximations. In this example we will show that such a
procedure is not straightforward.

Consider the supersymmetric (2 × 2 × 2)-tensor A of which all the entries are
equal to 1 except for a111 = 2. Obviously, the best rank-(2, 2, 2) approximation is A
itself. The best rank-1 approximation λ1 U1 ◦ U1 ◦ U1 can be computed as explained
in section 3.5. Next, we consider the best rank-1 approximation λ2 U2 ◦U2 ◦U2 of the
residue, and so on. We obtain

λ1 = 3.2560, λ2 = 0.5235, λ3 = −0.3213, λ4 = −0.1287, λ5 = 0.0597,
λ6 = 0.0264, λ7 = −0.0118, λ8 = 0.0053, λ9 = 0.0024,
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and so on, and

U1 =

(
0.7981
0.6025

)
, U2 =

(
0.9186
−0.3952

)
, U3 =

(
0.0392
−0.9992

)
,

U4 =

(
0.8733
0.4872

)
, U5 =

(
0.8252
−0.5649

)
, U6 =

(
0.1355
0.9908

)
,

U7 =

(
0.9469
0.3217

)
, U8 =

(
0.7112
−0.7030

)
, U9 =

(
0.3107
0.9505

)
, etc.

We observe that, in contrast to the matrix case, A cannot immediately be derived
from these rank-1 approximations. Neither is there a straightforward link between
the series of rank-1 approximations and the decomposition of A in a minimal number
of rank-1 terms; the latter decomposition is given by A = X1 ◦X1 ◦X1+X2 ◦X2 ◦X2,
in which

X1 =

(
1
1

)
, X2 =

(
1
0

)
.

5. Conclusion. There are some remarkable relations, but there are also some
striking differences, between the best rank-R approximation of a matrix and the best
rank-(R1, R2, . . . , RN ) approximation of an Nth-order tensor:

(1) Unlike the matrix case, the least-squares cost function can show several local
optima for higher-order tensors.

(2) For matrices, the best rank-R approximation is obtained by setting the small-
est singular values equal to zero while keeping the R largest ones. Truncation of the
HOSVD may yield a good tensor approximation, but this approximation is generi-
cally suboptimal. However, our simulations suggest that there is still a weak link: it
is observed that for well-conditioned problems the HOSVD estimate usually belongs
to the valley of the least-squares cost function, corresponding to the global optimum.

(3) One way to obtain the dominant R-dimensional subspaces of the row and
column space of a matrix is the power iteration (R = 1) or orthogonal iteration
(R > 1). Higher-order generalizations of these techniques take the form of ALS
algorithms, which can be used to enhance the fit between a tensor and a rank-1 or
rank-(R1, R2, . . . , RN ) approximation of it.

(4) A higher-order power iteration step basically consists of a multilinear map-
ping instead of merely a linear transformation. In addition, higher-order orthogonal
iterations can involve the estimation of a dominant subspace.

In the literature of psychometrics, the least-squares approximation of a multiway
dataset by a dataset with reduced n-mode rank values is known as multimode factor
analysis. In this paper, we have further contributed to a linear/multilinear algebraic
framework for the best rank-R/rank-(R1, R2, . . . , RN ) approximation problem. We
have presented a square-root algorithm, in which an iteration step is based on a multi-
linear mapping, followed by the estimation of a dominant subspace; this technique was
interpreted as a higher-order generalization of the method of orthogonal iterations.
We have demonstrated that starting the iteration from a truncated HOSVD does not
lead to the global optimum in all possible cases. We have paid special attention to
the case of supersymmetric tensors, in view of applications in, for example, HOS.
We have extensively discussed the fundamental best rank-1 approximation problem.
For supersymmetric (2 × 2 × · · · × 2)-tensors, the determination of the best rank-1
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approximation and the other supersymmetric stationary points of the higher-order
power algorithm has been reformulated as polynomial rooting problem.

Finally we remark that, as with matrices, the efficiency of higher-order power and
orthogonal iterations could further be improved by means of a preprocessing consisting
of a finite number of steps in which some tensor entries are set equal to zero. To this
end, a higher-order equivalent of the Hessenberg decomposition is proposed in [10].
However this technique is less interesting for tensors than it is for matrices: the relative
speed-up becomes smaller for larger tensor order N , as the matrices in which zeros
are obtained (e.g., the matrices for which at least one index is equal to one, in the case
of square tensors) form a relatively decreasing part of the tensor as N is increased.
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