
Stanford University, Management Science & Engineering (and ICME)

MS&E 318 (CME 338) Large-Scale Numerical Optimization
Instructor: Michael Saunders Spring 2018

Notes 4: Iterative Methods for Symmetric Ax = b

1 Introduction

Iterative methods for solving linear systems Ax = b become necessary when A ∈ Rn×n is too
large to factorize directly. The meaning of too large depends on the context, but n = 10000
up to n = 108 is typical. In optimization, the following symmetric (but possibly indefinite)
examples arise in computing search directions:

• Newton’s method for unconstrained optimization: H∆x = −g (where g and H are
the gradient and Hessian of the objective function).

• Newton’s method for optimization with linear constraints Jx = b:
Solve ZTHZv = −ZTg and set ∆x = Zv, where Z spans the null space of the constraint
matrix (JZ = 0).

• KKT systems with linearized constraints:
(
−H JT

J

)(
∆x
∆y

)
=
(
g − JTy
−c− Jx

)
.

The conjugate-gradient method (CG) is the prototype solver for Ax = b when A is symmetric
and positive definite (spd). Distinguishing features of CG follow:

• A is regarded as an operator. For various vectors v, CG asks for the matrix-vector
product y = Av. This is the only way that A is defined. The first v is a multiple of b.

• Only a few work n-vectors of storage are needed to generate each approximate solution
xk (k = 1, 2, . . .).

• With exact arithmetic, CG would terminate in at most n iterations. In practice it may
need far fewer iterations if A has clustered eigenvalues, or far more if we are not so
lucky. Of course the first situation is preferable.

• Favorable eigenvalue distributions can be achieved by finding a preconditioner M such
that M = CCT ≈ A (in some sense) and solving a transformed system Āx̄ = b̄, where
Ā is the operator C−1AC−T ≈ I and the remaining quantities are obtained by solving
Cb̄ = b and CTx = x̄.

• The matrix-vector product y = Āv means “Solve CTw1 = v, form w2 = Aw1, and solve
Cy = w2”. Thus it must be possible to solve with C and CT reasonably efficiently
(as well as multiplying by A). The simplest example is diagonal preconditioning with
C = diag(

√
Ajj).

• PCG (preconditioned CG) is a rearrangement of CG that allows solves with M itself,
rather than C and CT separately. Diagonal preconditioning then means working with
the preconditioner M = diag(A).

2 Lanczos-based methods for symmetric systems

We review three methods for solving symmetric systems Ax = b. As described in [11], the
methods CG, MINRES, and SYMMLQ are based on the Lanczos process [8] for tridiagonal-
izing A. A helpful framework for viewing such methods was suggested by Paige [10]:

An iterative process generates certain quantities from the data. At each iteration
a subproblem is defined, suggesting how those quantities may be combined to give
a new estimate of the required solution. Different subproblems define different
methods for solving the original problem. Different ways of solving a subproblem
lead to different implementations of the associated method.

17

18 MS&E 318 (CME 338) Large-Scale Numerical Optimization

Typically the subproblems may be solved efficiently and stably (though stability questions
are sometimes overlooked). The numerically difficult aspects are usually introduced by the
process.

2.1 Existence

The Lanczos process is an iterative form of the symmetric orthogonal tridiagonalization
V TAV = T , derivable from the existence of the slightly larger tridiagonalization(

1
V T

)(
0 bT

b A

)(
1

V

)
=
(

0 β1e
T
1

β1e1 T

)
, (1)

where V could be a product of n − 1 Householder matrices. From (1) we know that there
exists an orthogonal V such that(

0 bT

b A

)(
1

V

)
=
(

1
V

)(
0 β1e

T
1

β1e1 T

)
⇒
(

0 bTV
b AV

)
=
(

0 β1e
T
1

V β1e1 V T

)
⇒ b = β1v1 and AV = V T.

If T = tridiag(βk, αk, βk+1) with v0 = vn+1 ≡ 0, the kth column of AV = V T gives
Avk = βkvk−1 + αkvk + βk+1vk+1 for k = 1, 2, . . . , n.

2.2 The Lanczos process (orthogonal tridiagonalization)

Tridiag(A, b)→ (Tk, Vk) denotes the following process. Given a symmetric matrix A and a
starting vector b, the Lanczos process generates vectors vk and scalars αk, βk (k = 1, 2, . . .)
according to these steps (with v0 ≡ 0):

1. Set β1v1 = b. (This means β1 ← ‖b‖2 and then v1 ← b/β1, but exit if β1 = 0.)

2. For k = 1, 2, . . . , ` set
w = Avk or w = Avk − βkvk−1

αk = vT
kw αk = vT

kw
βk+1vk+1 = w − αkvk − βkvk−1 βk+1vk+1 = w − αkvk

After k steps with β1, . . . , βk > 0, the situation may be summarized as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Hk, (2)

where ek is the kth unit vector, Vk =
(
v1 v2 . . . vk

)
, Tk is tridiagonal, and Hk is also

tridiagonal with one extra row:

Tk =


α1 β2

β2 α2 β3

.
βk αk

 , Hk =


α1 β2

β2 α2 β3

.
βk αk

βk+1


=

(
Tk

βk+1e
T
k

)
.

In exact arithmetic, the columns of Vk are orthonormal and the process stops with k = `
and β`+1 = 0 for some ` ≤ n, and then AV` = V`T`. For derivation purposes we assume that
this happens, though in practice it is unlikely unless vk+1 is reorthogonalized with respect to
Vk at each iteration. In any case, (2) holds to machine precision and the computed vectors
satisfy ‖Vk‖1 ≈ 1 (even if k � n).

Spring 2018, Notes 4 CG Methods for Symmetric Systems 19

2.3 Properties of the Lanczos process

From the way the Lanczos vectors are generated, it is clear that vk lies in the Krylov subspace
Kk(A, b) ≡ span{b, Ab,A2b, . . . , Ak−1b}. The following properties can be proved:

1. If A is changed to A − σI for some scalar shift σ, Tk becomes Tk − σI and Vk is
unaltered, showing that singular systems are commonplace. Shifted problems appear
in inverse iteration or Rayleigh quotient iteration.

2. If A is positive definite, so is Tk for all k.

3. If A is indefinite, some Tk might be singular, but then by the Sturm sequence property
(see [7]), Tk has exactly one zero eigenvalue and the strict interlacing property implies
that Tk±1 are nonsingular. Hence Tk cannot be singular twice in a row (whether A is
singular or not).

4. Hk has full column rank k for all k < `.

5. T` is nonsingular if and only if b ∈ range(A).

2.4 CG, MINRES, and SYMMLQ

Table 1 lists three ways to choose “optimal” points within each Krylov subspace Kk (i.e.,
points of the form xk = Vkyk for some vector yk). The three choices lead to three methods
for solving Ax = b, namely CG, MINRES, and SYMMLQ. Note that the CG method is
not meaningful if the quadratic form is unbounded below. This means that A must be
positive-definite for CG.

From (2) we see that the residual vector associated with a point xk ∈ Kk is

rk ≡ b−Axk (3)
= β1v1 −AVkyk

= Vk+1(β1e1 −Hkyk)
= Vk+1tk+1, (4)

where tk+1 ≡ β1e1 −Hkyk. (5)

This suggests that ‖rk‖ will be small if yk makes tk+1 small by some measure. Indeed, we
find that Table 1’s subproblems for xk lead to the corresponding subproblems for yk shown
in Table 2 (which also shows the factorizations needed to solve the subproblems). The CG

subproblem makes tk+1 = 0 everywhere except its last element, while the MINRES subprob-
lem is more balanced in minimizing ‖tk+1‖. The SYMMLQ subproblem makes tk+1 = 0
everywhere except its last two elements, while keeping ‖yk‖ as small as possible.

Table 1: Minimization properties for three methods for solving Ax = b. They seek points
xk = Vkyk that give small residual vectors rk ≡ b−Axk.

Method Definition of optimal xk in Krylov subspace

CG min 1
2x

T
kAxk − bTxk s.t. xk ∈ Kk

≡ min ‖rk‖2A−1 s.t. xk ∈ Kk

MINRES min ‖rk‖2 s.t. xk ∈ Kk

SYMMLQ min ‖xk‖2 s.t. xk ∈ Kk, rk ⊥ Kk−1

≡ min ‖x− xk‖2 s.t. xk ∈ AKk−1

20 MS&E 318 (CME 338) Large-Scale Numerical Optimization

Table 2: Subproblems defining yk and xk = Vkyk for four methods.

Method Subproblem Factorization Estimate of x

CG Tkyk = β1e1 Tk = LkDkL
T
k xC

k = Vkyk

MINRES min ‖Hkyk − β1e1‖ QkHk =
(
Rk

0

)
xM

k = Vkyk

SYMMLQ min ‖yk‖ s.t. HT
k−1Q

T
k−1 = (Lk−1 0) xL

k = Vkyk

HT
k−1yk = β1e1

MINRES-QLP min ‖yk‖ s.t. QkHk =
(
Rk

0

)
xQ

k = Vkyk

‖Hkyk − β1e1‖ = min RkPk = L̄k

Table 3: Definition of Wk, W̄ k, zk, z̄k such that xk = Vkyk = Wkzk or W̄ kz̄k.

Wk zk Estimate of x

CG VkL
−T
k LkDkzk = β1e1 xC

k = Wkzk

MINRES VkR
−1
k

(
zk

ζ̄k+1

)
= Qk

(
β1e1
0

)
xM

k = Wkzk

SYMMLQ W̄ k = VkQ
T
k−1 Lk−1zk−1 = β1e1 xL

k = W̄ kz̄k

=
[
Wk−1 w̄k

]
ζ̄k = 0 = Wk−1zk−1

MINRES-QLP W̄ k = VkPk L̄kz̄k = zk xQ
k = W̄ kz̄k

If A is positive definite, each Tk is theoretically positive definite and CG can obtain
Cholesky factors Tk = LkDkL

T
k . MINRES uses the QR factorization of Hk, and is ap-

plicable to any symmetric A (including singular systems if suitable stopping criteria are
implemented). SYMMLQ uses the same QR factorization, disguised as the LQ factorization
of HT

k , and is again applicable to any symmetric A, except that Ax = b must be consistent.
MINRES-QLP works with a two-sided orthogonal factorization of Hk for greater reliability
on ill-conditioned or singular systems (see Choi [1], Choi et al. [2]). The QLP name comes
from Stewart [18].

Note that all elements of yk may change in yk+1. Also, we don’t wish to store all of Vk+1

in order to form Vk+1yk+1. Thus, each method computes certain quantities Wk and zk that
allow the solution estimates to be updated. Table 3 shows all the possibilities we can think
of. (Tables 2–3 are from [15], except for the more recent MINRES-QLP entries.)

Also note that Vk(β1e1) = b exactly for all k because v1 is a multiple of b. Thus, the
relations rk = Vk+1tk+1 (4) and tk+1 = β1e1 − Hkyk (5) hold accurately for any yk even
though the columns of Vk+1 lose orthogonality. Since

‖rk‖ ≤ ‖Vk+1‖‖β1e1 −Hkyk‖

with ‖Vk+1‖ = O(1) and ‖β1e1 −Hkyk‖ tending to decrease for the given choices of yk, we
can expect ‖rk‖ to become small eventually.

Spring 2018, Notes 4 CG Methods for Symmetric Systems 21

The CG iteration CG treats Tkyk = β1e1 as LkDk(LT
k yk) = β1e1, defines zk ≡ LT

k yk,
and solves the lower-triangular systems

LkDkzk = β1e1, zk =
(
zk−1

ζk

)
LkW

T
k = V T

k , WT
k =

(
WT

k−1

wT
k

)
by computing only the last elements of the solutions at each iteration k, taking advantage of
the fact that the preceding parts of zk and Wk have already been computed. For example,
since Lk is lower bidiagonal with unit diagonals, we can form wk = vk − λkwk−1 efficiently,
where λk is the (k, k − 1) element of Lk. Thus,

xk = Vkyk = WkL
T
k yk

= Wkzk

= Wk−1zk−1 + wkζk

= xk−1 + ζkwk

can also be formed cheaply. The vectors in Vk−2 and Wk−1 are no longer needed.
Although we don’t want all of yk, we see from LT

k yk = zk that the last element of yk is
ηk = ζk. Also from (4)–(5) and the fact that CG makes tk+1 zero except for its last element
τk+1 ≡ eT

k+1tk+1, we see that the CG residual vector satisfies rC
k = τk+1vk+1 and hence

‖rC
k ‖ = |τk+1| = | − βk+1ηk| = |βk+1ζk|. Thus when CG is implemented this way, we have

an accurate estimate of ‖rC
k ‖ at essentially no cost.

The MINRES iteration By definition, the MINRES point xM
k solves the problem

min
yk

‖rk‖ such that xk = Vkyk,

so that ‖rM
k ‖ decreases monotonically as long as the columns of Vk remain independent.

(Remember they are theoretically orthonormal.) Many users prefer MINRES for this reason.
To allow for inconsistent systems, the stopping rule must check both ‖rk‖ and ‖Ark‖.
The iteration is similar to CG in solving RT

kW
T
k = V T

k for each wk in turn and updating
xk = xk−1 + ζkwk. There is more work and storage because RT

k is lower tridiagonal. A
numerical concern is that the columns of Wk = VkR

−1
k could be large if some of the Rk are

ill-conditioned.
If A is positive definite, we now know that ‖xM

k ‖ is monotonically increasing (Fong [3, 5]),
so there should not be significant cancellation error in forming xM

k = xM
k−1 + ζkwk. But

there does seem to be a risk of cancellation when A is indefinite. This risk is avoided by
MINRES-QLP (see below).

To see how the QR factorization Qk

(
Hk β1e1

)
=

„
Rk zk

0 ζ̄k+1

«
proceeds, consider the

effect of the first plane rotation when k = 4:
c1 s1

s1 −c1
1

1
1




α1 β2 β1

β2 α2 β3 0
β3 α3 β4 0

β4 α4 0
β5 0

 =


ρ1 σ2 τ3 ζ1

ρ̄2 σ̄3 ζ̄2

β3 α3 β4 0
β4 α4 0

β5 0

 ,

where

ρ1 =
√
α2

1 + β2
2 σ2 = c1β2 + s1α2 τ3 = s1β3 ζ1 = c1β1

c1 = α1/ρ1, s1 = β2/ρ1 ρ̄2 = s1β2 − c1α2 σ̄3 = −c1β3 ζ̄2 = s1β1

22 MS&E 318 (CME 338) Large-Scale Numerical Optimization

and barred items will become unbarred after the second rotation:
1

c2 s2

s2 −c2
1

1




ρ1 σ2 τ3 ζ1

ρ̄2 σ̄3 ζ̄2

β3 α3 β4 0
β4 α4 0

β5 0

 =


ρ1 σ2 τ3 ζ1

ρ2 σ3 τ4 ζ2

ρ̄3 σ̄4 ζ̄3

β4 α4 0
β5 0

 .

Similarly,
1

1
c3 s3

s3 −c3
1




ρ1 σ2 τ3 ζ1

ρ2 σ3 τ4 ζ2

ρ̄3 σ̄4 ζ̄3

β4 α4 0
β5 0

 =


ρ1 σ2 τ3 ζ1

ρ2 σ3 τ4 ζ2

ρ3 σ4 ζ3

ρ̄4 ζ̄4

β5 0

 ,

and finally
1

1
1

c4 s4

s4 −c4




ρ1 σ2 τ3 ζ1

ρ2 σ3 τ4 ζ2

ρ3 σ4 ζ3

ρ̄4 ζ̄4

β5 0

 =


ρ1 σ2 τ3 ζ1

ρ2 σ3 τ4 ζ2

ρ3 σ4 ζ3

ρ4 ζ4

ζ̄5

 .

In particular, we see that ζ̄k+1 = sk ζ̄k = sksk−1 . . . s1β1 is monotonically decreasing. This is
the residual norm for the least-squares problem min ‖tk+1‖ ≡ ‖Hkyk − β1e1‖. If we assume
Vk+1 is orthonormal, (3)–(5) show that ‖rM

k ‖ = ‖tk+1‖ = ζ̄k+1, which is cheaply available.

The SYMMLQ iteration In contrast to MINRES, SYMMLQ’s point xL
k solves

min
yk

‖xk‖ such that xk = Vkyk and V T
k−1rk = 0,

so that ‖xL
k ‖ increases and the system must be consistent (‖rL

k ‖ → 0). It also solves

min
w
‖x− xk‖ such that xk = AVk−1w

[6, 9], so that the error norm ‖x− xL
k ‖ decreases monotonically.

The SYMMLQ solutions xL
k = Wk−1zk−1 = xL

k−1 + ζk−1wk−1 are accumulated as a
sequence of theoretically orthogonal steps. Although the columns of Vk and Wk−1 are not
likely to be orthonormal in practice, we will always have ‖wk−1‖ ≈ 1 with ‖xL

k ‖ increasing,
so that forming xL

k should involve very little cancellation error, even if A is indefinite.
By observation, ‖rk‖ is often much larger for SYMMLQ than for the other methods. This

is not cause for concern. It’s a sign that SYMMLQ is stepping around points that would
be troublesome for CG. Since the residual norms can be estimated cheaply, SYMMLQ has
provision for transferring to the CG point upon termination if the residual is then smaller.
Thus, if ‖rC

k ‖ < ‖rL
k ‖, SYMMLQ takes a final step of the form xC

k = xL
k + ζ̄kw̄k, where the

last two items are already known.
Note that after k iterations, SYMMLQ has solved a single triangular system Lk−1zk−1 =

β1e1, and this is the only place where ill-conditioning in A becomes evident while k < `. (At
the end with β`+1 theoretically zero, the condition of T` is critical, but SYMMLQ reaches xC

`

in the safest way.) We therefore believe that SYMMLQ is the method of choice for indefinite
consistent systems. MINRES-QLP should be comparable in reliability at the cost of slightly
more work and storage per iteration, and it handles singular systems well.

Spring 2018, Notes 4 CG Methods for Symmetric Systems 23

MINRES-QLP The effects of rounding errors on the convergence of CG, MINRES, and
SYMMLQ have been analyzed by Sleijpen et al. [16]. Some numerical examples confirm that
MINRES may not achieve small ‖rk‖ on consistent systems when A is very ill-conditioned.

MINRES-QLP is the only method that returns the minimum-length solution on singular
inconsistent systems Ax ≈ b. It is significantly more complex (see Choi [1]) but can be
more reliable than MINRES when A is ill-conditioned. In [1] it is anticipated that the
rounding errors in MINRES’s solution of the n independent ill-conditioned triangular systems
RT

kW
T
k = V T

k (i.e., in the n rows of Wk) are more significant than in MINRES-QLP’s solution
of the single ill-conditioned system L̄kz̄k = zk, as in SYMMLQ’s Lk−1zk−1 = β1e1.

2.5 Estimation of norms

At iteration k of the above solvers, estimates of ‖rk‖, ‖Ark‖, ‖xk‖, ‖A‖, and cond(A) are
needed in order to implement reliable stopping rules. The estimates have been studied most
fully for MINRES and MINRES-QLP in Choi [1]. In particular, ‖A‖2 ≈ ‖Tk‖2 or ‖HT

k Hk‖
1/2
1

are reasonable estimates that can be estimated cheaply as the iterations proceed. Different
solvers estimate the other quantities in various ways.

2.6 Stopping rules

An approximate solution xk may be regarded as acceptable if it is the exact solution for a
slightly different problem (with A and b perturbed). This is the backward error point of
view. For consistent systems Ax = b with uncertainty in A and b, we will see in the next
chapter that we can stop if

‖rk‖ ≤ α‖A‖‖xk‖+ β‖b‖ (6)

for some user-specified tolerances that reflect the uncertainty in A and b (e.g., α = β =
tol = 10−4, 10−8, or 10−12 respectively for moderate, accurate, or very accurate solutions
using 15-digit arithmetic). For inconsistent problems where ‖rk‖ 6→ 0, a good stopping rule
for MINRES and MINRES-QLP is

‖Ark‖ ≤ α‖A‖‖rk‖. (7)

This is a special symmetric version of Stewart’s result [17] for rectangular least-squares
problems min ‖Ax− b‖, also used in the next chapter. The norms required in tests (6)–(7)
can be estimated cheaply as the iterations proceed. Fortunately, the estimates of ‖rk‖ and
‖Ark‖ are remarkably accurate until one of them approaches zero, and even then one of
them tends to keep decreasing—hence causing termination as desired.

Note that stopping rule (6) is equivalent to stopping if ψk ≡ ‖rk‖/(α‖A‖‖xk‖+β‖b‖) ≤ 1.
On positive definite Ax = b, ψk is monotonically decreasing for MINRES (because ‖rM

k ‖ and
‖xM

k ‖ are monotonic), and empirically becomes significantly smaller than ψk for CG. Hence,
we believe that MINRES is often preferable to CG in the sense that it can stop sooner.

2.7 Cautions

The methods described above are reliable in practice, even though the columns of Vk soon
become far from orthonormal. The work and storage per iteration are constant and minimal
(O(n)). The main question remaining is, how many iterations will be required? We hope
for far fewer than n iterations, but it could be 5n or 10n or even more.

If reorthogonalization were used to maintain orthonormal Vk, the iterations would be
bounded by n (and more precisely by the number of clusters in the eigenvalue of A). How-
ever, all of the vectors vk would need to be stored, and the work and storage would grow
quadratically. We consider this not an option in general (although it is tolerated with
GMRES [14]).

Many authors present equation (2) correctly, but then derive further results from two
equations that don’t hold unless full reorthogonalization is used. We emphasize that there

24 MS&E 318 (CME 338) Large-Scale Numerical Optimization

is no need to assume that V T
k AVk = Tk and/or V T

k b = β1e1, which quickly cease to be true
without reorthogonalization of Vk. Luckily, equations (2) and (4) are sufficient as they stand.

Similarly, many authors allow an approximate solution x0 to be provided, and proceed
to update the solution inside the solver when it is applied to the system Ad = r0, where
r0 = b−Ax0 and x = x0 + d. Compare the implementations

x← x0 for k = 1 :K, x← x+ correction, end
d← 0 for k = 1 :K, d← d+ correction, end x = x0 + d.

The first choice is not recommended when x0 is a good approximation, because the x cor-
rections could be small relative to x0 and many significant digits could be lost. The second
choice is safer, at the cost of storing x0 elsewhere. For this choice, we need to be conscious
of solving Ad = r0 when choosing stopping tolerances. If anything is to be gained from x0,
we need looser tolerances than if we were solving Ax = b itself.

Moral: The Matlab iterative solvers use α = 0 and β = tol. If you have a good x0,
always input b = r0 and x0 = 0 and solve Ad = r0 with loose tolerance tol0, then form
x = x0 +d. It is hard to guess the tolerance, but perhaps it could be tol0 = tol×‖b‖/‖r0‖.

Simple solution: Our own implementations of the iterative solvers enforce caution by not
allowing x0 to be input. To help future users we could accept x0, compute r0 = b−Ax0, and
note that the residuals for Ad = r0 and Ax = b are the same: rk = r0−Adk = b−A(x0+dk).
Hence, although the solver is computing iterates dk for solving Ad = r0, we can estimate
‖rk‖ cheaply and we can also compute ‖xk‖ = ‖x0 + dk‖ for use in (6).

2.8 Augmented systems

The following symmetric system underlies several methods for more general problems:

Âγ,δx̂ = b̂ ≡
(
γI A
AT δI

)(
s
x

)
=
(
b
0

)
, (8)

where A is a square or rectangular matrix and γ, δ are specified scalars. The Lanczos
process Tridiag(Âγ,δ, b̂) has a special structure that is interesting to observe. After 2k steps
it generates

T2k =


γ α1

α1 δ β2

β2 γ α2

. . .
βk γ αk

αk δ

 , V2k =
(
u1 u2 . . . uk

v1 v2 . . . vk

)
,

and the next step gives T2k+1, V2k+1 in the obvious way. We find that the scalars αk, βk and
vectors uk, vk are independent of γ and δ. We can therefore generate them with γ = δ = 0.
However, that case is more efficiently generated by the Golub-Kahan process Bidiag(A, b)
described later.

For certain choices of γ and δ, the subproblems associated with CG and MINRES can
also be rearranged to improve efficiency, leading to algorithms CRAIG (γ = δ = 0) [12],
LSQR and LSMR (γ = 1, δ = 0 or γ = −δ 6= 0) [12, 13, 4], and AMRES (γ = δ) [3, Ch5–6].
Again it is simpler to derive those algorithms directly from Bidiag(A, b).

Spring 2018, Notes 4 CG Methods for Symmetric Systems 25

References
[1] S.-C. Choi. Iterative Methods for Singular Linear Equations and Least-Squares Problems. PhD thesis,

ICME, Stanford University, Dec 2006.

[2] S.-C. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite
or singular symmetric systems. SIAM J. Sci. Comput., 33(4):1810–1836, 2011. http://stanford.edu/
group/SOL/software.html.

[3] D. C.-L. Fong. Minimum-Residual Methods for Sparse Least-Squares Using Golub-Kahan Bidiagonal-
ization. PhD thesis, ICME, Stanford University, Dec 2011.

[4] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for least-squares problems. SIAM
J. Sci. Comput., 33(5):2950–2971, 2011. http://stanford.edu/group/SOL/software.html.

[5] D. C.-L. Fong and M. A. Saunders. CG versus MINRES: An empirical comparison. SQU Journal for
Science, 17(1):44–62, 2012. http://stanford.edu/group/SOL/reports/SOL-2011-2R.pdf.

[6] R. W. Freund. Über einige CG-ähnliche Verfahren zur Lösung linearer Gleichungssysteme. PhD thesis,
Universität Würzburg, FRG, 1983.

[7] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical
Sciences. The Johns Hopkins University Press, Baltimore, third edition, 1996.

[8] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. J. Res. Natl. Bur. Stand., 45:255–282, 1950.

[9] D. P. O’Leary, 1990. Private communication.

[10] C. C. Paige. Krylov subspace processes, Krylov subspace methods and iteration polynomials. In J. D.
Brown, M. T. Chu, D. C. Ellison, and R. J. Plemmons, editors, Proceedings of the Cornelius Lanczos
International Centenary Conference, Raleigh, NC, Dec. 1993, pages 83–92. SIAM, Philadelphia, 1994.

[11] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J.
Numer. Anal., 12:617–629, 1975.

[12] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least
squares. ACM Trans. Math. Software, 8(1):43–71, 1982.

[13] C. C. Paige and M. A. Saunders. Algorithm 583; LSQR: Sparse linear equations and least-squares
problems. ACM Trans. Math. Software, 8(2):195–209, 1982.

[14] Y. Saad and M. H. Schultz. GMRES: a generalized minimum residual algorithm for solving nonsym-
metric linear systems. SIAM J. Sci. and Statist. Comput., 7:856–869, 1986.

[15] M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numer. Math.,
35:588–604, 1995.

[16] G. L. G. Sleijpen, H. A. Van der Vorst, and J. Modersitzki. Differences in the effects of rounding errors
in Krylov solvers for symmetric indefinite linear systems. SIAM J. Matrix Anal. Appl., 22(3):723–751,
2000.

[17] G. W. Stewart. Research, development and LINPACK. In J. R. Rice, editor, Mathematical Software
III, pages 1–14. Academic Press, New York, 1977.

[18] G. W. Stewart. The QLP approximation to the singular value decomposition. SIAM J. Sci. Comput.,
20(4):1336–1348, 1999.

