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ABSTRACT

Motivation: Networks have been used to model many real-
world phenomena to better understand the phenomena and
to guide experiments in order to predict their behavior. Since
incorrect models lead to incorrect predictions, it is vital to have
as accurate a model as possible. As a result, new techniques
and models for analyzing and modeling real-world networks
have recently been introduced.

Results: One example of large and complex networks involves
protein—protein interaction (PPI) networks. We analyze PPI
networks of yeast Saccharomyces cerevisiae and fruitfly
Drosophila melanogaster using a newly introduced measure
of local network structure as well as the standardly used meas-
ures of global network structure. We examine the fit of four
different network models, including Erdds-Rényi, scale-free
and geometric random network models, to these PPI networks
with respect to the measures of local and global network struc-
ture. We demonstrate that the currently accepted scale-free
model of PPI networks fails to fit the data in several respects
and show that a random geometric model provides a much
more accurate model of the PPl data. We hypothesize that
only the noise in these networks is scale-free.

Conclusions: We systematically evaluate how well-different
network models fit the PPI networks. We show that the struc-
ture of PPI networks is better modeled by a geometric random
graph than by a scale-free model.

Contact: juris@cs.utoronto.ca

Supplementary information: Supplementary information is
available at http://www.cs.utoronto.ca/~juris/data/ppiGRG04/

1 INTRODUCTION

df?{ woJj papeojumoq

between the components (modeled by links between the=
nodes, i.e. by network edges). Studying statistical and the-2
oretical properties of large networks (also called graphs) has2
gained considerable attention in the past few years. Variousgnf—
network models have been proposed to describe propertieé-
of large real-world networks, starting with the earliest mod- 2
els of Erdés—Rényi random graphs (Erdés and Rényi, 19592
1960, 1961) and including more recent small-world (Watts and %
Strogatz, 1998), scale-free (Barabasi and Albert, 1999) and
hierarchical (Ravaset al., 2002) models. Excellent review
papers have recently appeared describing this emerging, largg
research area (Newman, 2003; Barabasi and Oltvai, 20045
Albert and Barabasi, 2002; Strogatz, 2001). oy
This paper uses a method for detecting local structural2
properties of large networks and proposes a new model ofd
PPI networks. Our new measure of local network struc-
ture consists of 29 network measurements. Using this ne
measure of network structure, we find that the PPI networks
of Saccharomyces cerevisiae and Drosophila melanogaster
are more accurately modeled by geometric random graph%
(defined below) than by the scale-free model. The extent ofx
this improvement is such that even perturbing the network§
by random additions, deletions and rewiring of 30% of the e
edges introduces much smaller error when compared to the;
error from modeling the network by scale-free, or other cur-
rently available network models (details are provided below).
In addition, we show that three out of four standard network —
parameters measuring a global network structure also show am
improved fit between the experimentally determined PPI net-
works and the geometric random graph model than betweer$
the PPI networks and the scale-free model.
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Many real-world phenomena have been modeled by large
networks including the World Wide Web, electronic cir- 2 SYSTEMS AND METHODS
cuits, collaborations between scientists, metabolic pathway3.1 Definitions

and protein—protein interactions (PPIs). A common propertyr, o knowledge, this study is the first one to use geometric

of these phenomena is that they all consist of compon

random graphs to model PPI networks. Thus, we give a brief

ents (modeled by network nodes) and pairwise intera‘Ctionaescription of geometric random graphs. The descriptions of

*To whom correspondence should be addressed.

more popular Erdés—Rényi and scale-free network models are
presented in the Supplementary information.
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2.1.1 Geometric random graphs A geometric graph 3-node graphlets 4-node graphlets
G(V,r) with radiusr is a graph with node sét of points ; § .;\. I:IY@

in a metric space and edge #et= {{u, v}|(u,v € V) A (0 < A A
lu —v|| < r)}, where|| - | is an arbitrary distance normin 1 2 3 4 5 6 7 8
this space. That is, points in a metric space correspond to 5-node graphlets

nodes, and two nodes are adjacent if the distance between
them is at most. Often, two-dimensional space is con- ‘%‘ A?X Q X
sidered, containing points in the unit squée1] or unit 9 10 11 12 13 11 15° 16 17 18 19

disc, and O< r < 1 (Diaz et al., 1999, 2000), with the

distance norms being (Manhattan distance}, (Euclidean ﬁ @@g @ E@@
distanc_e) ol (Chessboard distance). The distance bgtween 0 21 %52 % x % o X 2
two points (x1, y1) and (x2, y2) is |x1 — x2| + [y1 — y2| in
the l; norm, \/(x1 — x2)2 + (y1 — y2)2 in the [ norm, and
max(|x1 — x2/|, |y1 — y2|) in thel,, norm. A random geomet-

Fig. 1. All 3-node, 4-node and 5-node connected networks (graph-

. hG . i h with nod hich lets), ordered within groups from the least to the most dense with
ric graphG(x,r) Is a geometric graph with nodes whic respect to the number of edges when compared to the maximums

cprresponq ta i.ndepend'ently and uniformly ranqlomly dis- possible number of edges in the graphlet; they are numbered from <
tributed points in a metric space. Many properties of thesq g 29. 2

graphs have been explored when— oo (Penrose, 2003).

Similar to Erdés—Rényi random graphs, certain properties of :

these graphs also appear suddenly when a specific threshdmerconnected regions called clusters. The average clusterin
is reached coefficient of all nodes of degréein a network,C(k), has

been shown to followC (k) ~ k=1 for many real-world net-
212 Global network properties The most commonly works indicating a network’s hierarchical structure (Ravasz

studied statistical properties to measure the global structure G"d Barabasi, 2003; Ravaszal., 2002). Many real-world
large networks are the degree distribution, network diametef€tWorks have been shown to have high clustering coefficients
and clustering coefficients, defined as follows. The degree gi"d to exhibit small-world and scale-free properties.

a node is the number of edges (connections) incident to the 1 3 | ocal network properties In addition to the above
node. The degree distributioR k), describes the probability global properties of network structure, a new bottom-up 2
that a node has degrgeThis network property has been used gpproach focusing on finding small, over-represented patterns2
to distinguish amongst different network models; in particular,jp 3 network has recently been introduced (Mital., 2002,
Erdds—Rényi random networks have a Poisson degree dist@go4; Shen-Oret al., 2002; Itzkovitzet al., 2003). In this
bution, while scale-free networks have a power-law degregpproach, all small subgraphs (subnetworks whose nodes an
distribution P (k) ~ k=7, wherey is a positive number. The edges belong to the large network) of a large network are iden-
smallest number of links that have to be traversed to get fronfied and the ones that appear in the network significantly
nodex to nodey in a network is called the distance betweenmore frequently than in the randomized network are called
nodesc andy and a path through the network that achieves thisyetwork motifs. Different types of real-world networks have
distance is called shortest path betweeandy. The average  peen shown to have different motifs (Mig al., 2002). The

of shortest path lengths over all pairs of nodes in a networlg cerevisiae PPI network constructed on combined, mostly
is called the network diameter. [Note that in classical grapﬁwo-hybrid analysis data (Ueg al., 2000; Xenariost al.,
theory, the diameter is the maximum of shortest path lengthsoop), has been shown to have two network motifs (Milo o
over all pairs of nodes in the network (West, 2001).] This netg g, 2002), those corresponding to graphs 2 and 4 presen-z
work property also distinguishes different network modelsted in Figure 1. Furthermore, different real-world evolved
e.g. the diameter of Erdos—Rényirandom networksnodes  and designed networks have been grouped into superfamil-3
is proportional to log, the network property often referred to jes according to their local structural properties (Mtcal., 3
as the small-world property; the diameters of scale-free ranzpo4). In addition, the shortest path distribution and the fre- 3
dom networks with degree exponent2y < 3, which have  quencies of 3-15-node cycles in the high-confidence fruitfly ©
been observed for most real-world networks, are ultra-smalbp| network have been shown to differ from those of randomly
(Chung and Lu, 2002; Cohen and Havlin, 2003), i.e. proporyewired networks which preserve the same degree distribution

tional to loglogs. The clustering coefficient of nodein a a5 the original PPI network (Giet al., 2003).
networkis defined a8, = 2¢1/[n1(n1—1)], wherevis linked

tony neighboring nodes and is the number of edges amongst 2-2  Graphlet analysis of PPI networks

then neighbors ob. The average of, over allnodes ofa  Our approach to analyzing large networks belongs to the
network is the clustering coefficiedt of the whole network  bottom-up type. Similar to the approach of Mébal. (2004),
and it measures the tendency of the network to form highlywe identify all 3-5-node subgraphs of PPl networks for
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Scerevisiae and D.melanogaster. We compare the frequen- et al. (2002) classification]; the high-confidence fruitfly
cies of the appearance of these subgraphs in PPl networlkmelanogaster PPl network involving 4637 interactions
with the frequencies of their appearance in four differentamongst 4602 proteins (Gietal., 2003); and the entire fruit-
types of random networks: (1) Erdés—Rényi random netfly D.melanogaster PPl network as published in Giet al.
works with the same number of nodes and edges as th@003) involving 20 007 interactions amongst 6985 proteins,
corresponding PPI networks (ER); (2) Erdos—Rényi randonwhich includes low confidence interactions. We computed
networks with the same number of nodes, edges and the sargeaphlet frequencies in the PPI and the corresponding random
degree distribution as corresponding PPI networks (ER-DD)networks of the previously described four different types.
(3) scale-free random networks with the same number of Graphlet counts quantify the local structural properties of
nodes and the number of edges within 1% of those of the network. Currently, our knowledge of the connections in
corresponding PPI networks (SF); and (4) several types dPPI networks is incomplete (i.e. we do not know all the
geometric random graphs with the number of nodes and thedges, and for many organisms, we do not even know allf%’
number of edges within 1% of those of the correspondinghe nodes). The edges we do know are dominated by expers;
PPI networks (GEO) (see Supplementary information). Wements focused around proteins that are currently considered
used three different geometric random graph models, definimportant’. However, we hypothesize that the local struc- =
ing points uniformly at random in two-dimensional Euclideantural properties of the full PPI network, once all connections Fni
space (GEO-2D), three-dimensional Euclidean space (GEGare made, are similar to the local structural properties of &
3D) and four-dimensional Euclidean space (GEO-4D); thahe currently known, highly studied parts of the network.
Euclidean distance measure between the points was used Thus, we would expect that the relative frequency of graph-
determine if two points are close enough to be linked bylets among the currently known connections is similar to the @
an edge in the corresponding geometric random graph (seelative frequency of graphlets in the full PPI network, which 3
Supplementary information). is as yet unknown. Thus, we use the relative frequency of 3
The number of different connected networksomodes graphletsV; (G)/T (G) to characterize PPI networks and the
increases exponentially with Forrn = 3,4 and 5, there are networks we use to model them, whe¥e(G) is the num-
2,6 and 21 different connected networksmomodes, respect- ber of graphlets of type (i € {1,...,29}) in a networkG,
ively. To avoid terminology confusing network motifs with and7(G) = 2;221 N;(G) is the total number of graphlets of
network subgraphs (motifs are special types of subgraphs};. In this model, then, the ‘similarity’ between two graphs <
we use the term graphlet to denote a connected network witshould be independent of the total number of nodes or edgesg
asmall number of nodes. All 3-5-node graphlets are presentezhd should depend only upon the differences between relative:
in Figure 1. [Note thatin their analysis of undirected networks frequencies of graphlets. Thus, we define the relative graphle%
Milo etal. (2004) examined the presence of the eight graphletfrequency distanc®(G, H), or distance for brevity, between
of size 3 or 4.] We use the graphlet frequency, i.e. the numbemwo graphsG andH as:
of occurrences of a graphlet in a network, as a new network
parameter and show that PPI networks are closest to geomet-
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ric random graphs with respect to this new network parameter D(G,H) = Z |Fi(G) = Fi(H)],
(details are given below). In addition, despite the difference i=1
in degree distributions of PPI networks and geometric ra”WhereF-(G) — —log(N;(G)/T(G)). We use the logarithm

dom graphs and the similarity between degree distributions_o(gf the graphlet frequency because frequencies of differents
PPI networks and scale-free networks, we show that the d'ag'raphlets can differ by several orders of magnitude and weg

meter and clustering coefficient parameters also indicate theato not want the distance measure to be entirely dominated by
PPI networks are closer to the geometric random graph model  1,ost frequent graphlets

than to the ER, ER-DD and SF models. We hypothesize that

the discrepancy between the dggree distributions of PPI ar*:g RESULTS AND DISCUSSION

GEO networks is caused by a high percentage of false negat-

ives in the PPI networks and that when PPI datasets becomel ~Graphlet frequency counts

denser and more complete, the degree distributions of PRIsing this method, we computed the distances between seveo

networks will be closer to Poisson distributions, characteristieeral real-world PPI networks and the corresponding ER,

of geometric random graphs. ER-DD, SF and GEO random networks. We found that the
We analyzed graphlet frequencies of four PPl networksGEO random networks fit the data an order of magnitude bet-

the high-confidence yeaSicerevisiae PPI network involving  ter in the higher-confidence PPl networks, and less so (but

0z Aenigeq gL

2455 interactions amongst 988 proteins (von Memghgl.,  still better) in the more noisy PPI networks (see Supplement-
2002); the yeasB.cerevisiae PPI network involving 11000 ary Table 3 of the Supplementary information). The only
interactions amongst 2401 proteins (von Merieg al., exception is the larger fruitfly PPI network, with77% of

2002) [these are the top 11000 interactions in von Meringts edges corresponding to lower confidence interactions (Giot

3510



Modeling interactome: scale-free or geometric?
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Fig. 2. Comparison of graphlet frequencies in the high-confidence S.cerevisiae PPI network (von Mering et al., 2002) (green line) with
corresponding ER, ER-DD, SF and GEO random networks. Zero frequencies were replaced by 0.1 for plotting on log-scale. (A) PPI network
versus five corresponding ER random networks. (B) PPI network versus five corresponding ER-DD random networks. (C) PPI network versus
five corresponding SF random networks. (D) PPI network versus five corresponding GEO-2D random networks. (E) PPI network versus
a corresponding GEO-2D, GEO-3D and GEO-4D random network. (F) PPI network versus five GEO-3D random networks with the same
number of nodes and approximately three times as many edges as the PPI network.

et al.,2003); this PPI network is ~2.7 times closer to the scale-
free than to the geometric network model with respect to this
parameter (see Supplementary information). We hypothesize
that this behavior of the graphlet frequency parameter is the
consequence of a large amount of noise present in this fruit-
fly PPI network; our analysis of the diameters and clustering

coefficients of these networks further support this hypothesis
(see below).

An illustration showing graphlet frequencies in the high-
confidence yeast PPI network and the corresponding random
model networks is presented in Figure 2. As mentioned above,
the current yeast high-confidence PPI network is missing
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many edges, so we expect that the complete PPI networlaslovand Sneppen, 2002). They have hierarchical structures
would be much denser. Also, we believe that the maximunwith C (k) scaling ask—! (Barabéskt al., 2003). The degree
degree of this PPI network is not likely to change significantlydistributions of this yeast PPI network, as well as the PPI net-
due to the extent of research having been done on the highlyork of the bacteriunidelicobacter pylori, have been shown
connected regions of the network. Thus, we constructed twto decay according to a power law (Jecgi@l., 2001; Rain
sets of three-dimensional geometric random networks with thet al., 2001). However, the high confidenBemelanogaster
same number of nodes, but about three and six times as mamP| network and a largdd.melanogaster PPI network have
edges as the PPI network, respectively. By making the GEObeen shown to decay close to, but faster than a power law
3D networks corresponding to this PPl network about six(Giot et al., 2003).
times as dense as the PPI network, we matched the maximumWe compared the commonly studied statistical propertleso
degree of the PPI network to those of these geometric randowf large networks, namely the degree distribution, network = 5
networks. The resulting geometric random network modelsliameter and clustering coefficientsand C (k), of the PPI f%’
provide the closest fit with respect to the graphlet frequencyand various model networks. Despite the degree distributionsZ;
parameter to the PPI network (see Fig. 2 F and Supplementanf the PP networks being closest to the degree distributions of3
information). the corresponding scale-free random networks (Supplement=
ary Figures 9 and 10), the remaining three parameters of the‘i
3.2 Robustness of Graphlet frequency counts two yeast PPI networks differ from the scale-free model with &
When studying PPI networks, it should be noted that all of themost of them being closest to the corresponding geometric§
current publicly available PPI datasets contain a percentage eAndom networks (Supplementary Tables 4 and 5, and Supple2
false positives and are also largely incomplete, i.e. the numbenentary Figures 11 and 12). An illustration of the behavior of
of false negatives is arguably much larger than the numbe€ (k) in the yeast high-confidence PPI network and the corres-3
of false positives. Since the genomes of many species haygnding model networks is presented in Figure 3. Also, many%\
already been sequenced, itis expected that the predicted numfthese properties of the two fruitfly PP1 networks were close g
ber of proteins in PPI datasets will not change significantlyto ER, ER-DD and SF models possibly indicating the pres- =
but the number of known interactions will grow dramatically. ence of noise in these PPI networks (Supplementary Tables 45
Since PPI networks contain noise, we examined the robusand 5, and Supplementary Figures 13 and 14). Neverthes
ness of the graphlet frequency parameter by adding noise tess, the high-confidence fruitfly PPI network exhibits some &
the yeast high-confidence PPI network and comparing graplgeometric network properties; e.g. the clustering coefficient &
letfrequencies of the perturbed networks and the PPI networlof this PPI network is only an order of magnitude smaller <
In particular, we perturbed this PPl network by randomlythan the clustering coefficients of the corresponding geometﬁ
adding, deleting and rewiring 10, 20 and 30% of its edgesric random networks, butiitis at least four orders of magnitude & e
We computed distances between the perturbed networks afakger than the clustering coefficients of the corre:spondlngo
the PPI network by using the distance function defined abovescale-free networks (Supplementary Table 5). We expect thaP\0
We found the exceptional robustness of the graphlet frequenayngoing improvements in the fruitfly PPI dataset will make
parameter to random additions of edges encouraging, espthe structural properties of its PPI network closer to those of &
cially since the currently available PPI networks are missinghe geometric random graphs.
many edges. In particular, additions of 30% of edges resulted
in networks which were-21 times closer to the PPI network
than the corresponding SF random networks. We also founi CONCLUSIONS
that graphlet frequencies were fairly robust to random edg®espite recent significant advances in understanding Iargeg
deletions and rewirings (deletions and rewirings of 30% ofreal-world networks, this area of research is still in its mfancy =
edges resulted in networks which weré times closer to the (Barabasi and Oltvai, 2004; Newman, 2003). Novel tech- - gy
PPI network than the corresponding SF random networkshiques for analyzing, characterizing and modeling structuress
which further increases our confidence in PPI networks havef these networks need to be developed. As new data become$
ing geometric properties despite the presence of false positivesvailable, we must ensure that the theoretical models con+y
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in the data (see Supplementary information). tinue to accurately represent the data. The scale-free modeb
) has been assumed to provide such a model for PPl networks
3.3 Global network properties of PPl and model (Jeonget al., 2001; Rairet al., 2001; Maslov and Sneppen,
networks 2002). The current scale-free model of human PPl network

Recently, there has been a lot of interest in the global propeihas been used for planning experiments in order to optim-
ties of PPI networks. PPI networks for the ye8serevisiae  ize time and cost required for their completion (Lappe and
resulting from different high-throughput studies (Uetal., Holm, 2004). In particular, the model was used to form the
2000; Xenariot al., 2000; Itoet al., 2001) have been shown basis of an algorithmic strategy for guiding experiments which
to have scale-free degree distributions (Jeehgl., 2001;  would detect up to 90% of the human interactome with less
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Fig. 3. Comparison of average clustering coefficients C (k) of degree k nodes in the high-confidence S.cerevisiae PPI network (von Mering
et al., 2002) (green dots) with corresponding ER, ER-DD, SF and GEO random networks. Since we use a log-scale, zero values were placed
on the abscissa. (A) PPI network versus five corresponding ER random networks. (B) PPI network versus five corresponding ER-DD random
networks. (C) PPI network versus five corresponding SF random networks. (D) PPI network versus five corresponding GEO-3D random
networks. (E) PPI network versus five corresponding GEO-3D random networks with the same number of nodes and approximately three
times as many edges as the PPI network. (F) PPI network versus five corresponding GEO-3D random networks with the same number of

nodes and approximately six times as many edges as the PPI network.

than one-third of the proteome used as bait in high-throughput
pull-down experiments (Lappe and Holm, 2004). However, if
an incorrect model is used to plan experiments then clearly the
experiments will be at best inefficient at gaining the desired
information. At worst, they could even be misleading by

failing to direct experimenters to find actual PPIs that exist
but will remain hidden because the experiments will be look-
ing in the wrong place. Therefore, having an improved model
for the PPI networks is crucial for effective experimental
planning.
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We have shown compelling evidence that the structureBettstetter,C. (2002) On the minimum node degree and connectivity
of yeast PPl networks is closer to the geometric random ofawireless multihop networleroceedingsof the 3rd ACM inter-
graph model than to the currently accepted scale-free model. national symposiumon mobilead hoc networking and computing,

For yeast PPI networks, three out of four of the commonly ACM Press, NY, pp. 80-91. _ _

studied statistical properties of global network structure, a&hung,F- and Lu,L. (2002) The average distances in random graphs
well as the newly introduced graphlet frequency parameter ;vgg%lvigst;);pected degreesProc. Natl Acad. Sci., USA, 99,
describing local structural properties of large networks, wer '

| . hs th le-f ohen,R. and Havlin,S. (2003) Scale-free networks are ultra small.
closer to geometric random graphs than to scale-free or Phys. Rev. Lett., 90, 058701.

Erd6s—-Renyi random graphs. In addition, despite the noisjjaz 3., penrose,M.D., Petit,J. and Serna (2001) Linear orderings of5
present in their PPI detection techniques and the lack of random geometric grapha.Algorithm., 38, 78—116. 2
independent verification of its PPIs by various laboratoriespiaz,J., Penrose,M.D., Petit,J. and Serna,M. (2000) Convergences
fruitfly PPI networks do show properties of geometric ran- theorems for some layout measures on random lattice and&
dom graphs. Other designed and optimized communication random geometric graphsCombinatorics, Prob. Comput., 10,
networks, such as wireless multihop networks (Bettstetter, 489-511.

2002), electrical power-grid and protein structure networks="dds,P. and Rényi,A. (1959) On random grapRsbl. Math., 6,
(Milo et al., 2004), have been modeled by geometric random 290‘297' L )

graphs as well. Thus, it is plausible that PPI networks, whict"d0S:P- and Rényi,A. (1960) On the evolution of random graphs.
possibly emerged, similar to the World Wide Web, through Publ. Math. Ingt. Hung. Acad. i, 5, 17-61.

. . ) Erdds,P. and Rényi,A. (1961) On the strength of connectedness of
stochastic growth processes, but unlike the World Wide Web " 4om graphActa Math. ci. Hung., 12, 261—267. :

have gone through millions of years of evolutionary optimiza-giot, |, Bader,J., Brouwer,C., ChaudhuriA., Kuang,B., LiY.,
tion, are better modeled by the geometric random graph model Hao,Y., 0o0i,C., Godwin,B., Vitols,Eet al. (2003) A protein
than by the scale-free model (the scale-free model seems to beinteraction map of Drosophila melanogaster. Science, 302,
appropriate for networks that have emerged through stochastic 1727-1736.
growth processes and have not been optimized, such as the,T., Chiba,T., Ozawa,R., Yoshida,M., Hattori,M. and Sakaki,Y.
World Wide Web). Also, similar to the limited coverage that  (2001) A comprehensive two-hybrid analysis to explore the yeast
wireless networks have, currently available PPI data cover Protein interactomebroc. Natl Acad. Sci., USA, 98, 4569-4574.
only a portion of the interactome. Once a more complete inter'—tZko"'tE'Sﬁ M"‘;’R" Ka;Shta;‘é';]‘" Zév’GEagg '3"2%?;7' (2003) Sub-
actome data becomes available, we will be able to validate the graphs in random NEWOrkE:NYS. Rev. &, 05, :
correctness of the current model and possibly design betteFong’H" Mason,S.P., BarabasiAL. and Olvai,Z.N. (2001)
Lethality and centrality in protein networks. Nature, 411,
models for PPI networks. 41-42
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