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ABSTRACT
Motivation: Networks have been used to model many real-
world phenomena to better understand the phenomena and
to guide experiments in order to predict their behavior. Since
incorrect models lead to incorrect predictions, it is vital to have
as accurate a model as possible. As a result, new techniques
and models for analyzing and modeling real-world networks
have recently been introduced.
Results: One example of large and complex networks involves
protein–protein interaction (PPI) networks. We analyze PPI
networks of yeast Saccharomyces cerevisiae and fruitfly
Drosophila melanogaster using a newly introduced measure
of local network structure as well as the standardly used meas-
ures of global network structure. We examine the fit of four
different network models, including Erdös-Rényi, scale-free
and geometric random network models, to these PPI networks
with respect to the measures of local and global network struc-
ture. We demonstrate that the currently accepted scale-free
model of PPI networks fails to fit the data in several respects
and show that a random geometric model provides a much
more accurate model of the PPI data. We hypothesize that
only the noise in these networks is scale-free.
Conclusions: We systematically evaluate how well-different
network models fit the PPI networks. We show that the struc-
ture of PPI networks is better modeled by a geometric random
graph than by a scale-free model.
Contact: juris@cs.utoronto.ca
Supplementary information: Supplementary information is
available at http://www.cs.utoronto.ca/∼juris/data/ppiGRG04/

1 INTRODUCTION
Many real-world phenomena have been modeled by large
networks including the World Wide Web, electronic cir-
cuits, collaborations between scientists, metabolic pathways
and protein–protein interactions (PPIs). A common property
of these phenomena is that they all consist of compon-
ents (modeled by network nodes) and pairwise interactions
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between the components (modeled by links between the
nodes, i.e. by network edges). Studying statistical and the-
oretical properties of large networks (also called graphs) has
gained considerable attention in the past few years. Various
network models have been proposed to describe properties
of large real-world networks, starting with the earliest mod-
els of Erdös–Rényi random graphs (Erdös and Rényi, 1959,
1960, 1961) and including more recent small-world (Watts and
Strogatz, 1998), scale-free (Barabási and Albert, 1999) and
hierarchical (Ravaszet al., 2002) models. Excellent review
papers have recently appeared describing this emerging, large
research area (Newman, 2003; Barabási and Oltvai, 2004;
Albert and Barabási, 2002; Strogatz, 2001).

This paper uses a method for detecting local structural
properties of large networks and proposes a new model of
PPI networks. Our new measure of local network struc-
ture consists of 29 network measurements. Using this new
measure of network structure, we find that the PPI networks
of Saccharomyces cerevisiae and Drosophila melanogaster
are more accurately modeled by geometric random graphs
(defined below) than by the scale-free model. The extent of
this improvement is such that even perturbing the network
by random additions, deletions and rewiring of 30% of the
edges introduces much smaller error when compared to the
error from modeling the network by scale-free, or other cur-
rently available network models (details are provided below).
In addition, we show that three out of four standard network
parameters measuring a global network structure also show an
improved fit between the experimentally determined PPI net-
works and the geometric random graph model than between
the PPI networks and the scale-free model.

2 SYSTEMS AND METHODS
2.1 Definitions
To our knowledge, this study is the first one to use geometric
random graphs to model PPI networks. Thus, we give a brief
description of geometric random graphs. The descriptions of
more popular Erdös–Rényi and scale-free network models are
presented in the Supplementary information.
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2.1.1 Geometric random graphs A geometric graph
G(V , r) with radiusr is a graph with node setV of points
in a metric space and edge setE = {{u,v}|(u,v ∈ V ) ∧ (0 <

‖u − v‖ ≤ r)}, where‖ · ‖ is an arbitrary distance norm in
this space. That is, points in a metric space correspond to
nodes, and two nodes are adjacent if the distance between
them is at mostr. Often, two-dimensional space is con-
sidered, containing points in the unit square[0, 1]2 or unit
disc, and 0< r < 1 (Diaz et al., 1999, 2000), with the
distance norms beingl1 (Manhattan distance),l2 (Euclidean
distance) orl∞ (Chessboard distance). The distance between
two points(x1,y1) and (x2,y2) is |x1 − x2| + |y1 − y2| in
the l1 norm,

√
(x1 − x2)2 + (y1 − y2)2 in the l2 norm, and

max(|x1 − x2|, |y1 − y2|) in thel∞ norm. A random geomet-
ric graphG(n, r) is a geometric graph withn nodes which
correspond ton independently and uniformly randomly dis-
tributed points in a metric space. Many properties of these
graphs have been explored whenn → ∞ (Penrose, 2003).
Similar to Erdös–Rényi random graphs, certain properties of
these graphs also appear suddenly when a specific threshold
is reached.

2.1.2 Global network properties The most commonly
studied statistical properties to measure the global structure of
large networks are the degree distribution, network diameter
and clustering coefficients, defined as follows. The degree of
a node is the number of edges (connections) incident to the
node. The degree distribution,P(k), describes the probability
that a node has degreek. This network property has been used
to distinguish amongst different network models; in particular,
Erdös–Rényi random networks have a Poisson degree distri-
bution, while scale-free networks have a power-law degree
distributionP(k) ∼ k−γ , whereγ is a positive number. The
smallest number of links that have to be traversed to get from
nodex to nodey in a network is called the distance between
nodesx andy and a path through the network that achieves this
distance is called shortest path betweenx andy. The average
of shortest path lengths over all pairs of nodes in a network
is called the network diameter. [Note that in classical graph
theory, the diameter is the maximum of shortest path lengths
over all pairs of nodes in the network (West, 2001).] This net-
work property also distinguishes different network models,
e.g. the diameter of Erdös–Rényi random networks onn nodes
is proportional to logn, the network property often referred to
as the small-world property; the diameters of scale-free ran-
dom networks with degree exponent 2< γ < 3, which have
been observed for most real-world networks, are ultra-small
(Chung and Lu, 2002; Cohen and Havlin, 2003), i.e. propor-
tional to log logn. The clustering coefficient of nodev in a
network is defined asCv = 2e1/[n1(n1−1)], wherev is linked
ton1 neighboring nodes ande1 is the number of edges amongst
then1 neighbors ofv. The average ofCv over all nodesv of a
network is the clustering coefficientC of the whole network
and it measures the tendency of the network to form highly
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Fig. 1. All 3-node, 4-node and 5-node connected networks (graph-
lets), ordered within groups from the least to the most dense with
respect to the number of edges when compared to the maximum
possible number of edges in the graphlet; they are numbered from
1 to 29.

interconnected regions called clusters. The average clustering
coefficient of all nodes of degreek in a network,C(k), has
been shown to followC(k) ∼ k−1 for many real-world net-
works indicating a network’s hierarchical structure (Ravasz
and Barabási, 2003; Ravaszet al., 2002). Many real-world
networks have been shown to have high clustering coefficients
and to exhibit small-world and scale-free properties.

2.1.3 Local network properties In addition to the above
global properties of network structure, a new bottom-up
approach focusing on finding small, over-represented patterns
in a network has recently been introduced (Miloet al., 2002,
2004; Shen-Orret al., 2002; Itzkovitzet al., 2003). In this
approach, all small subgraphs (subnetworks whose nodes and
edges belong to the large network) of a large network are iden-
tified and the ones that appear in the network significantly
more frequently than in the randomized network are called
network motifs. Different types of real-world networks have
been shown to have different motifs (Miloet al., 2002). The
S.cerevisiae PPI network constructed on combined, mostly
two-hybrid analysis data (Uetzet al., 2000; Xenarioset al.,
2000), has been shown to have two network motifs (Milo
et al., 2002), those corresponding to graphs 2 and 4 presen-
ted in Figure 1. Furthermore, different real-world evolved
and designed networks have been grouped into superfamil-
ies according to their local structural properties (Miloet al.,
2004). In addition, the shortest path distribution and the fre-
quencies of 3–15-node cycles in the high-confidence fruitfly
PPI network have been shown to differ from those of randomly
rewired networks which preserve the same degree distribution
as the original PPI network (Giotet al., 2003).

2.2 Graphlet analysis of PPI networks
Our approach to analyzing large networks belongs to the
bottom-up type. Similar to the approach of Miloet al. (2004),
we identify all 3–5-node subgraphs of PPI networks for
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S.cerevisiae andD.melanogaster. We compare the frequen-
cies of the appearance of these subgraphs in PPI networks
with the frequencies of their appearance in four different
types of random networks: (1) Erdös–Rényi random net-
works with the same number of nodes and edges as the
corresponding PPI networks (ER); (2) Erdös–Rényi random
networks with the same number of nodes, edges and the same
degree distribution as corresponding PPI networks (ER-DD);
(3) scale-free random networks with the same number of
nodes and the number of edges within 1% of those of the
corresponding PPI networks (SF); and (4) several types of
geometric random graphs with the number of nodes and the
number of edges within 1% of those of the corresponding
PPI networks (GEO) (see Supplementary information). We
used three different geometric random graph models, defin-
ing points uniformly at random in two-dimensional Euclidean
space (GEO-2D), three-dimensional Euclidean space (GEO-
3D) and four-dimensional Euclidean space (GEO-4D); the
Euclidean distance measure between the points was used to
determine if two points are close enough to be linked by
an edge in the corresponding geometric random graph (see
Supplementary information).

The number of different connected networks onn nodes
increases exponentially withn. Forn = 3, 4 and 5, there are
2, 6 and 21 different connected networks onn nodes, respect-
ively. To avoid terminology confusing network motifs with
network subgraphs (motifs are special types of subgraphs),
we use the term graphlet to denote a connected network with
a small number of nodes. All 3–5-node graphlets are presented
in Figure 1. [Note that in their analysis of undirected networks,
Milo et al. (2004) examined the presence of the eight graphlets
of size 3 or 4.] We use the graphlet frequency, i.e. the number
of occurrences of a graphlet in a network, as a new network
parameter and show that PPI networks are closest to geomet-
ric random graphs with respect to this new network parameter
(details are given below). In addition, despite the difference
in degree distributions of PPI networks and geometric ran-
dom graphs and the similarity between degree distributions of
PPI networks and scale-free networks, we show that the dia-
meter and clustering coefficient parameters also indicate that
PPI networks are closer to the geometric random graph model
than to the ER, ER-DD and SF models. We hypothesize that
the discrepancy between the degree distributions of PPI and
GEO networks is caused by a high percentage of false negat-
ives in the PPI networks and that when PPI datasets become
denser and more complete, the degree distributions of PPI
networks will be closer to Poisson distributions, characteristic
of geometric random graphs.

We analyzed graphlet frequencies of four PPI networks:
the high-confidence yeastS.cerevisiae PPI network involving
2455 interactions amongst 988 proteins (von Meringet al.,
2002); the yeastS.cerevisiae PPI network involving 11 000
interactions amongst 2401 proteins (von Meringet al.,
2002) [these are the top 11 000 interactions in von Mering

et al. (2002) classification]; the high-confidence fruitfly
D.melanogaster PPI network involving 4637 interactions
amongst 4602 proteins (Giotet al., 2003); and the entire fruit-
fly D.melanogaster PPI network as published in Giotet al.
(2003) involving 20 007 interactions amongst 6985 proteins,
which includes low confidence interactions. We computed
graphlet frequencies in the PPI and the corresponding random
networks of the previously described four different types.

Graphlet counts quantify the local structural properties of
a network. Currently, our knowledge of the connections in
PPI networks is incomplete (i.e. we do not know all the
edges, and for many organisms, we do not even know all
the nodes). The edges we do know are dominated by exper-
iments focused around proteins that are currently considered
‘important’. However, we hypothesize that the local struc-
tural properties of the full PPI network, once all connections
are made, are similar to the local structural properties of
the currently known, highly studied parts of the network.
Thus, we would expect that the relative frequency of graph-
lets among the currently known connections is similar to the
relative frequency of graphlets in the full PPI network, which
is as yet unknown. Thus, we use the relative frequency of
graphletsNi(G)/T (G) to characterize PPI networks and the
networks we use to model them, whereNi(G) is the num-
ber of graphlets of typei (i ∈ {1, . . . , 29}) in a networkG,
andT (G) = ∑29

i=1 Ni(G) is the total number of graphlets of
G. In this model, then, the ‘similarity’ between two graphs
should be independent of the total number of nodes or edges,
and should depend only upon the differences between relative
frequencies of graphlets. Thus, we define the relative graphlet
frequency distanceD(G,H), or distance for brevity, between
two graphsG andH as:

D(G,H) =
29∑

i=1

|Fi(G) − Fi(H)|,

whereFi(G) = − log(Ni(G)/T (G)). We use the logarithm
of the graphlet frequency because frequencies of different
graphlets can differ by several orders of magnitude and we
do not want the distance measure to be entirely dominated by
the most frequent graphlets.

3 RESULTS AND DISCUSSION
3.1 Graphlet frequency counts
Using this method, we computed the distances between sev-
eral real-world PPI networks and the corresponding ER,
ER-DD, SF and GEO random networks. We found that the
GEO random networks fit the data an order of magnitude bet-
ter in the higher-confidence PPI networks, and less so (but
still better) in the more noisy PPI networks (see Supplement-
ary Table 3 of the Supplementary information). The only
exception is the larger fruitfly PPI network, with∼77% of
its edges corresponding to lower confidence interactions (Giot
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Fig. 2. Comparison of graphlet frequencies in the high-confidence S.cerevisiae PPI network (von Mering et al., 2002) (green line) with
corresponding ER, ER-DD, SF and GEO random networks. Zero frequencies were replaced by 0.1 for plotting on log-scale. (A) PPI network
versus five corresponding ER random networks. (B) PPI network versus five corresponding ER-DD random networks. (C) PPI network versus
five corresponding SF random networks. (D) PPI network versus five corresponding GEO-2D random networks. (E) PPI network versus
a corresponding GEO-2D, GEO-3D and GEO-4D random network. (F) PPI network versus five GEO-3D random networks with the same
number of nodes and approximately three times as many edges as the PPI network.

et al., 2003); this PPI network is ∼2.7 times closer to the scale-
free than to the geometric network model with respect to this
parameter (see Supplementary information). We hypothesize
that this behavior of the graphlet frequency parameter is the
consequence of a large amount of noise present in this fruit-
fly PPI network; our analysis of the diameters and clustering

coefficients of these networks further support this hypothesis
(see below).

An illustration showing graphlet frequencies in the high-
confidence yeast PPI network and the corresponding random
model networks is presented in Figure 2. As mentioned above,
the current yeast high-confidence PPI network is missing
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many edges, so we expect that the complete PPI network
would be much denser. Also, we believe that the maximum
degree of this PPI network is not likely to change significantly
due to the extent of research having been done on the highly
connected regions of the network. Thus, we constructed two
sets of three-dimensional geometric random networks with the
same number of nodes, but about three and six times as many
edges as the PPI network, respectively. By making the GEO-
3D networks corresponding to this PPI network about six
times as dense as the PPI network, we matched the maximum
degree of the PPI network to those of these geometric random
networks. The resulting geometric random network models
provide the closest fit with respect to the graphlet frequency
parameter to the PPI network (see Fig. 2 F and Supplementary
information).

3.2 Robustness of Graphlet frequency counts
When studying PPI networks, it should be noted that all of the
current publicly available PPI datasets contain a percentage of
false positives and are also largely incomplete, i.e. the number
of false negatives is arguably much larger than the number
of false positives. Since the genomes of many species have
already been sequenced, it is expected that the predicted num-
ber of proteins in PPI datasets will not change significantly,
but the number of known interactions will grow dramatically.

Since PPI networks contain noise, we examined the robust-
ness of the graphlet frequency parameter by adding noise to
the yeast high-confidence PPI network and comparing graph-
let frequencies of the perturbed networks and the PPI network.
In particular, we perturbed this PPI network by randomly
adding, deleting and rewiring 10, 20 and 30% of its edges.
We computed distances between the perturbed networks and
the PPI network by using the distance function defined above.
We found the exceptional robustness of the graphlet frequency
parameter to random additions of edges encouraging, espe-
cially since the currently available PPI networks are missing
many edges. In particular, additions of 30% of edges resulted
in networks which were∼21 times closer to the PPI network
than the corresponding SF random networks. We also found
that graphlet frequencies were fairly robust to random edge
deletions and rewirings (deletions and rewirings of 30% of
edges resulted in networks which were∼6 times closer to the
PPI network than the corresponding SF random networks),
which further increases our confidence in PPI networks hav-
ing geometric properties despite the presence of false positives
in the data (see Supplementary information).

3.3 Global network properties of PPI and model
networks

Recently, there has been a lot of interest in the global proper-
ties of PPI networks. PPI networks for the yeastS.cerevisiae
resulting from different high-throughput studies (Uetzet al.,
2000; Xenarioset al., 2000; Itoet al., 2001) have been shown
to have scale-free degree distributions (Jeonget al., 2001;

Maslov and Sneppen, 2002). They have hierarchical structures
with C(k) scaling ask−1 (Barabásiet al., 2003). The degree
distributions of this yeast PPI network, as well as the PPI net-
work of the bacteriumHelicobacter pylori, have been shown
to decay according to a power law (Jeonget al., 2001; Rain
et al., 2001). However, the high confidenceD.melanogaster
PPI network and a largerD.melanogaster PPI network have
been shown to decay close to, but faster than a power law
(Giot et al., 2003).

We compared the commonly studied statistical properties
of large networks, namely the degree distribution, network
diameter and clustering coefficientsC andC(k), of the PPI
and various model networks. Despite the degree distributions
of the PPI networks being closest to the degree distributions of
the corresponding scale-free random networks (Supplement-
ary Figures 9 and 10), the remaining three parameters of the
two yeast PPI networks differ from the scale-free model with
most of them being closest to the corresponding geometric
random networks (Supplementary Tables 4 and 5, and Supple-
mentary Figures 11 and 12). An illustration of the behavior of
C(k) in the yeast high-confidence PPI network and the corres-
ponding model networks is presented in Figure 3. Also, many
of these properties of the two fruitfly PPI networks were close
to ER, ER-DD and SF models possibly indicating the pres-
ence of noise in these PPI networks (Supplementary Tables 4
and 5, and Supplementary Figures 13 and 14). Neverthe-
less, the high-confidence fruitfly PPI network exhibits some
geometric network properties; e.g. the clustering coefficient
of this PPI network is only an order of magnitude smaller
than the clustering coefficients of the corresponding geomet-
ric random networks, but it is at least four orders of magnitude
larger than the clustering coefficients of the corresponding
scale-free networks (Supplementary Table 5). We expect that
ongoing improvements in the fruitfly PPI dataset will make
the structural properties of its PPI network closer to those of
the geometric random graphs.

4 CONCLUSIONS
Despite recent significant advances in understanding large
real-world networks, this area of research is still in its infancy
(Barabási and Oltvai, 2004; Newman, 2003). Novel tech-
niques for analyzing, characterizing and modeling structures
of these networks need to be developed. As new data becomes
available, we must ensure that the theoretical models con-
tinue to accurately represent the data. The scale-free model
has been assumed to provide such a model for PPI networks
(Jeonget al., 2001; Rainet al., 2001; Maslov and Sneppen,
2002). The current scale-free model of human PPI network
has been used for planning experiments in order to optim-
ize time and cost required for their completion (Lappe and
Holm, 2004). In particular, the model was used to form the
basis of an algorithmic strategy for guiding experiments which
would detect up to 90% of the human interactome with less
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Fig. 3. Comparison of average clustering coefficients C(k) of degree k nodes in the high-confidence S.cerevisiae PPI network (von Mering
et al., 2002) (green dots) with corresponding ER, ER-DD, SF and GEO random networks. Since we use a log-scale, zero values were placed
on the abscissa. (A) PPI network versus five corresponding ER random networks. (B) PPI network versus five corresponding ER-DD random
networks. (C) PPI network versus five corresponding SF random networks. (D) PPI network versus five corresponding GEO-3D random
networks. (E) PPI network versus five corresponding GEO-3D random networks with the same number of nodes and approximately three
times as many edges as the PPI network. (F) PPI network versus five corresponding GEO-3D random networks with the same number of
nodes and approximately six times as many edges as the PPI network.

than one-third of the proteome used as bait in high-throughput
pull-down experiments (Lappe and Holm, 2004). However, if
an incorrect model is used to plan experiments then clearly the
experiments will be at best inefficient at gaining the desired
information. At worst, they could even be misleading by

failing to direct experimenters to find actual PPIs that exist
but will remain hidden because the experiments will be look-
ing in the wrong place. Therefore, having an improved model
for the PPI networks is crucial for effective experimental
planning.

3513

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/20/18/3508/202438 by guest on 15 February 2019



N.Pržulj et al.

We have shown compelling evidence that the structure
of yeast PPI networks is closer to the geometric random
graph model than to the currently accepted scale-free model.
For yeast PPI networks, three out of four of the commonly
studied statistical properties of global network structure, as
well as the newly introduced graphlet frequency parameter
describing local structural properties of large networks, were
closer to geometric random graphs than to scale-free or
Erdös–Rényi random graphs. In addition, despite the noise
present in their PPI detection techniques and the lack of
independent verification of its PPIs by various laboratories,
fruitfly PPI networks do show properties of geometric ran-
dom graphs. Other designed and optimized communication
networks, such as wireless multihop networks (Bettstetter,
2002), electrical power-grid and protein structure networks
(Milo et al., 2004), have been modeled by geometric random
graphs as well. Thus, it is plausible that PPI networks, which
possibly emerged, similar to the World Wide Web, through
stochastic growth processes, but unlike the World Wide Web
have gone through millions of years of evolutionary optimiza-
tion, are better modeled by the geometric random graph model
than by the scale-free model (the scale-free model seems to be
appropriate for networks that have emerged through stochastic
growth processes and have not been optimized, such as the
World Wide Web). Also, similar to the limited coverage that
wireless networks have, currently available PPI data cover
only a portion of the interactome. Once a more complete inter-
actome data becomes available, we will be able to validate the
correctness of the current model and possibly design better
models for PPI networks.
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