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Introduction: Networks and Communities
“But although, as a matter of history, statistical
mechanics owes its origin to investigations in
thermodynamics, it seems eminently worthy of
an independent development, both on account of
the elegance and simplicity of its principles, and
because it yields new results and places old truths
in a new light in departments quite outside of
thermodynamics.”

— Josiah Willard Gibbs,
Elementary Principles in Statistical Mechanics,

1902 [47]

F
rom an abstract perspective, the term
network is used as a synonym for a math-
ematical graph. However, to scientists
across a variety of fields, this label means
so much more [13,20,44,83,88,120,124].

In sociology, each node (or vertex) of a network
represents an agent, and a pair of nodes can be
connected by a link (or edge) that signifies some
social interaction or tie between them (see Figure 1
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for an example). Each node has a degree given by

the number of edges connected to it and a strength

given by the total weight of those edges. Graphs

can represent either man-made or natural con-

structs, such as the World Wide Web or neuronal

synaptic networks in the brain. Agents in such

networked systems are like particles in traditional

statistical mechanics that we all know and (pre-

sumably) love, and the structure of interactions

between agents reflects the microscopic rules that

govern their behavior. The simplest types of links

are binary pairwise connections, in which one only

cares about the presence or absence of a tie. How-

ever, in many situations, links can also be assigned

a direction and a (positive or negative) weight to

designate different interaction strengths.

Traditional statistical physics is concerned with

the dynamics of ensembles of interacting and

noninteracting particles. Rather than tracking the

motion of all of the particles simultaneously, which

is an impossible task due to their tremendous num-

ber, one averages (in some appropriate manner)

the microscopic rules that govern the dynamics

of individual particles to make precise statements

of macroscopic observables such as temperature

and density [112]. It is also sometimes possible

to make comments about intermediate (mesoscop-

ic) structures, which lie between the microscopic

and macroscopic worlds; they are large enough

that it is reasonable to discuss their collective

properties but small enough so that those proper-

ties are obtained through averaging over smaller

numbers of constituent items. One can similarly

take a collection of interacting agents, such as

the nodes of a network, with some set of micro-

scopic interaction rules and attempt to derive the

resulting mesoscopic and macroscopic structures.
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Figure 1. The largest connected component of
a network of network scientists. This network
was constructed based on the coauthorship of
papers listed in two well-known review
articles [13,83] and a small number of
additional papers that were added
manually [86]. Each node is colored according
to community membership, which was
determined using a leading-eigenvector
spectral method followed by Kernighan-Lin
node-swapping steps [64,86,107]. To
determine community placement, we used the
Fruchterman-Reingold graph
visualization [45], a force-directed layout
method that is related to maximizing a quality
function known as “modularity” [92]. To apply
this method, we treated the communities as if
they were themselves the nodes of a
(significantly smaller) network with
connections rescaled by inter-community
links. We then used the Kamada-Kawaii
spring-embedding graph visualization
algorithm [62] to place the nodes of each
individual community (ignoring
inter-community links) and then to rotate and
flip the communities for optimal placement
(including inter-community links). See the
main text for further details on some of the
ideas in this caption. (We gratefully
acknowledge Amanda Traud for preparing this
figure.)

One mesoscopic structure, called a community,
consists of a group of nodes that are relatively
densely connected to each other but sparsely con-
nected to other dense groups in the network [39].
We illustrate this idea in Figure 2 using a well-
known benchmark network from the sociology
literature [131].

The existence of social communities is intu-
itively clear, and the grouping patterns of humans
have been studied for a long time in both sociol-
ogy [25,44,79] and social anthropology [66,113].
For example, Stuart Rice clustered data by hand
to investigate political blocs in the 1920s [106],
and George Homans illustrated the usefulness
of rearranging the rows and columns of data
matrices to reveal their underlying structure in
1950 [60]. Robert Weiss and Eugene Jacobson per-
formed (using organizational data) what might
have been the first analysis of network commu-
nity structure in 1955 [126], and Herbert Simon
espoused surprisingly modern views on communi-
ty structure and complex systems in general in the
1960s [117]. Social communities are ubiquitous,
arising in the flocking of animals and in so-
cial organizations in every type of human society:
groups of hunter-gatherers, feudal structures, roy-
al families, political and business organizations,
families, villages, cities, states,nations, continents,
and even virtual communities such as Facebook
groups [39, 88]. Indeed, the concept of commu-
nity is one of everyday familiarity. We are all
connected to relatives, friends, colleagues, and
acquaintances who are in turn connected to each
other in groups of different sizes and cohesions.
The goals of studying social communities have
aligned unknowingly with the statistical physics
paradigm. As sociologist Mark Granovetter wrote
in his seminal 1973 paper [51] on weak ties, “Large-
scale statistical, as well as qualitative, studies offer
a good deal of insight into such macro phenomena
as social mobility, community organization, and
political structure... But how interaction in small
groups aggregates to form large-scale patterns
eludes us in most cases.”

Sociologists recognized early that they need-
ed powerful mathematical tools and large-scale
data manipulation to address this challenging
problem. An important step was taken in 2002,
when Michelle Girvan and Mark Newman brought
graph-partitioning problems to the broader atten-
tion of the statistical physics and mathematics
communities [48]. Suddenly, community detec-
tion in networks became hip among physicists
and applied mathematicians all over the world,
and numerous new methods were developed to
try to attack this problem. The amount of research
in this area has become massive over the past
seven years (with new discussions or algorithms
posted on the arXiv preprint server almost every
day), and the study of what has become known
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Figure 2. (Top) The Zachary Karate Club
network [131], visualized using the

Fruchterman-Reingold method [45]. Nodes are
colored black or white depending on their
later club affiliation (after a disagreement

prompted the organization’s breakup). The
dashed lines separate different communities,

which were determined using a
leading-eigenvector spectral maximization of

modularity [86] with subsequent
Kernighan-Lin node-swapping steps (see the
discussion in the main text). (Bottom) Polar

coordinate dendrogram representing the
results of applying this community-detection
algorithm to the network. Nodes are grouped

into the communities indicated in the top
panel. One can see the initial split of the

network into two groups (identical to the
actual membership of the new clubs) by

moving outward from the center of the ring.
Moving farther outward culminates in the final

partition of the network into four
communities.

as community structure is now one of the most

prominent areas of network science [26,39,110].

Although a rigorous notion of community struc-

ture remains elusive, one can clarify some issues

through the notions of modules and hierarchies. In

general, a network’s community structure encom-

passesa potentially complicated set of hierarchical

and modular components [39, 48, 117]. In this

context, the term module is typically used to re-

fer to a single cluster of nodes. Given a network

that has been partitioned into nonoverlapping

modules in some fashion (although some meth-

ods also allow for overlapping communities), one

can continue dividing each module in an iterative

fashion until each node is in its own singleton

community. This hierarchical partitioning process

can then be represented by a tree, or dendro-

gram (see Figure 2). Such processes can yield

a hierarchy of nested modules (see Figure 3),

or a collection of modules at one mesoscopic

level might be obtained in an algorithm inde-

pendently from those at another level. However

obtained, the community structure of a network

refers to the set of graph partitions obtained at

each “reasonable” step of such procedures. Note

that community structure investigations rely im-

plicitly on using connected network components.

(We will assume such connectedness in our discus-

sion of community-detection algorithms below.)

Community detection can be applied individually

to separate components of networks that are not

connected.

Many real-world networks possess a natural hi-

erarchy. For example, the committee assignment

network of the U.S. House of Representatives in-

cludes the House floor, groups of committees, com-

mittees, groups of subcommittees within larger

committees, and individual subcommittees [100,

101]. As shown in Figure 4, different House com-

mittees are resolved into distinct modules within

this network. At a different hierarchical level, small

groups of committees belong to larger but less

densely connected modules. To give an example

closer to home, let’s consider the departmental

organization at a university and suppose that

the network in Figure 3 represents collaborations

among professors. (It actually represents grass-

land species interactions [23].) At one level of

inspection, everybody in the mathematics depart-

ment might show up in one community, such

as the large one in the upper left. Zooming in,

however, reveals smaller communities that might

represent the department’s subfields.

Although network community structure is al-

most always fairly complicated, several forms of

it have nonetheless been observed and shown

to be insightful in applications. The structures

of communities and between communities are

important for the demographic identification of

network components and the function of dynami-

cal processes that operate on networks (such as the

spread of opinions and diseases) [39]. A commu-

nity in a social network might indicate a circle of

friends, a community in the World Wide Web might

indicate a group of pages on closely related topics,

and a community in a cellular or genetic network

might be related to a functional module. In some

1084 Notices of the AMS Volume 56, Number 9



Figure 3. A network with both hierarchical and
modular structure. This image, courtesy of
Aaron Clauset, is an adaptation of a figure
from [23].

cases, a network can contain several identical repli-

cas of small communities known as motifs [75].

Consider a transcription network that controls

gene expression in bacteria or yeast. The nodes

represent genes or operons, and the edges rep-

resent direct transcriptional regulation. A simple

motif called a “feed-forward loop” has been shown

both theoretically and experimentally to perform

signal-processing tasks such as pulse generation.

Naturally, the situation becomes much more com-

plicated in the case of people (doesn’t it always?).

However, monitoring electronically recorded be-

havioral data, such as mobile phone calls, allows

one to study underlying social structures [49,95].

Although these pairwise interactions (phone calls)

are short in duration, they are able to uncover

social groups that are persistent over time [97].

One interesting empirical finding, hypothesized by

Granovetter [51], is that links within communities

tend to be strong and links between them tend

to be weak [95]. This structural configuration has

important consequences for information flow in

social systems [95] and thus affects how the un-

derlying network channels the circulation of social

and cultural resources. (See below for additional

discussion.)

With methods and algorithms drawn from sta-

tistical physics, computer science, discrete math-

ematics, nonlinear dynamics, sociology, and other

subjects, the investigation of network community

structure (and more general forms of data cluster-

ing) has captured the attention of a diverse group

of scientists [39, 54, 88, 110]. This breadth of in-

terest has arisen partly because the development
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Figure 4. (Top) The network of committees
(squares) and subcommittees (circles) in the
108th U.S. House of Representatives
(2003–04), color-coded by the parent standing
and select committees and visualized using
the Kamada-Kawai method [62]. The darkness
of each weighted edge between
committees/subcommittees indicates how
strongly they are connected. Observe that
subcommittees of the same parent committee
are closely connected to each other. (Bottom)
Coarse-grained plot of the communities in this
network. Here one can see some close
connections between different committees,
such as Veterans Affairs/ Transportation and
Rules/Homeland Security.

of community-detection methods is an inherently

interdisciplinary endeavor and partly because in-

terpreting the structure of a community and its

function often requires application-specific knowl-

edge. In fact, one aspect that makes the problem

of detecting communities so challenging is that

the preferred formulation of communities is of-

ten domain-specific. Moreover, after choosing a

formulation, one still has to construct the desired
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communities by solving an optimization prob-

lem that is known to be NP-complete in at least

one family of formulations [17]. This has neces-

sitated the adaptation of classical computational-

optimization heuristics and the development of
new ones.

A Simple Example
To set the stage for our survey of community-

detection algorithms below, consider the ubiqui-
tous but illustrative example of the Zachary Karate

Club, in which an internal dispute led to the schism

of a karate club into two smaller clubs [131]. We

show a visualization of the friendships between
members of the original club in Figure 2. When the

club split in two, its members chose preferentially

to be in the one with most of their friends. Sociolo-

gist Wayne Zachary, who was already studying the

club’s friendships when the schism occurred, re-
alized that he might have been able to predict the

split in advance. This makes the Zachary Karate

Club a useful benchmark for community-detection

algorithms, as one expects any algorithmically pro-

duced division of the network into communities
to include groups that are similar to the actual

memberships of the two smaller clubs.

InFigure 2,we showthe communities thatwe ob-

tained using a spectral-partitioning optimization
of a quality function known as modularity [86].

(This method is described below.) Keeping in mind

the hierarchical organization that often occurs as

part of network community structure, we visualize

the identified divisions using a polar coordinate
dendrogram and enumerate the network’s nodes

around its exterior. Each distinct radius of the

dendrogram corresponds to a partition of the

original graph into multiple groups. That is, the
community assignments at a selected level of the

dendrogram are indicated by a radial cut in the

bottom panel of Figure 2; one keeps only connec-

tions (of nodes to groups) that occur outside this

cut. The success of the community identification
is apparent in the Zachary Karate Club example, as

the two main branches in the dendrogram reflect

the actual memberships of the new clubs.

As shown in Figure 2, this community-detection
method subsequently splits each of the two main

branches. Hence, we see that the Zachary Karate

Club network has a natural hierarchy of decom-

positions: a coarse pair of communities that cor-

respond precisely to the observed membership
split and a finer partition into four communi-

ties. In larger networks, for which algorithmic

methods of investigation are especially important,

the presence of multiple such partitions indicates

network structures at different mesoscopic reso-
lution levels. At each level, one can easily compare

the set of communities with identifying charac-

teristics of the nodes (e.g., the post-split Zachary

Karate Club memberships) by drawing a pie chart

for each community, indicating the composition
of node characteristics in that community, and

showing the strength of inter-community connec-
tions as ties between the pies (as in Figure 4 for
Congressional committees).

Identifying Communities
Intuitively, a community is a cohesive group of
nodes that are connected “more densely" to each

other than to the nodes in other communities. The
differences between many community-detection
methods ultimately come down to the precise

definition of “more densely" and the algorithmic
heuristic employed to identify such sets. As dif-
ferent scientific fields have different needs, it is

not surprising that a wide variety of community-
detection methods have been developed to serve

those needs [39]. These differing needs have also
resulted in the deployment of different real and
computer-generated benchmark networks to test

community-finding algorithms [39,70]. A 2005 re-
view article [26] compared the performance of
several of the (then-)available methods in terms of

both computation time and output. A thorough,
more recent discussion is available in [39].

Rather than attempting a similar comparison

using every available algorithm, our aim is in-
stead to expose a larger readership to many of
the most popular methods (as well as a few of

our personal favorites), while contrasting their
different perspectives and revealing a few im-

portant (and sometimes surprising) similarities.
Although we will highlight an extensive suite
of techniques in our survey below, there are of

course numerous other methods—including ones
based on maximum likelihood [23], mathematical
programming [1], block modeling [105,127], link

partitioning [2,33], inference [56,91], latent space
clustering [55], and more—that we unfortunate-
ly neglect here because of space considerations.

Many of them are discussed in other review articles
[26,39,110].

Traditional Clustering Techniques

The idea of organizing data by coarse grain-

ing according to common features is a very old
one [39,119]. The original computational attempts
to find clusters of similar objects are rooted

in statistics and data mining. Important meth-
ods include partitional clustering techniques such
as k-means clustering, neural network clustering

techniques such as self-organizing maps, and
multidimensional scaling (MDS) techniques such
as singular value decomposition (SVD) and princi-

pal component analysis (PCA) [46]. For example,
MDS algorithms of various levels of sophistica-
tion have proven to be amazingly successful at

finding clusters of similar data points in myriad

1086 Notices of the AMS Volume 56, Number 9



applications, such as voting patterns of legislators
and Supreme Court justices [99–101, 118]. Such
techniques start with a matrix that indicates sim-
ilarities (e.g., a tabulation of how every legislator
voted on every bill) and return a coordinate ma-
trix that minimizes an appropriate loss function.
In the U.S. Congress, this allows one to see that
the most important dimensions correspond to the
liberal-conservative axis (“partisanship") and how
well a given legislator plays with others (“bipar-
tisanship"). During periods of heightened racial
tension, such analyses have also revealed a third
dimension corresponding to the division between
North and South [99].

Another prominent set of classical techniques
todetectcohesive groups ingraphsare hierarchical
clustering algorithms such as the linkage cluster-
ing methods used in phylogenetic biology [46,61].
One starts with the complete set of N individual
nodes in a weighted network, represented by an
adjacency matrix A whose elements (links) Aij
indicate how closely nodes i and j are related to
each other. For the purpose of our presentation,
we will only consider undirected networks, which
implies that A is symmetric (a few algorithms can
also handle directed networks [39, 53, 72]). Link-
age clustering is an example of an agglomerative
method, as it starts from individual nodes and
ultimately connects the entire graph. The nodes
are conjoined sequentially into larger clusters,
starting with the pair with maximal Aij (i.e., the
most strongly connected pair). At each step, one
recomputes the similarities between the new clus-
ter and each of the old clusters and again joins
the two maximally similar clusters, and one con-
tinues iteratively until all clusters with nonzero
similarity are connected. Different linkage clus-
tering methods utilize different measures of the
similarity between clusters. For instance, in single
linkage clustering, the similarity of two clusters
X and Y is defined as the greatest similarity be-
tween any pair of nodes x ∈ X and y ∈ Y . Joining
nodes using single linkage clustering essentially
mirrors Joseph Kruskal’s algorithm for comput-
ing minimum spanning trees (MSTs) [31,50]. With
clustering, however, the order of cluster forma-
tion is important and can be represented as a
dendrogram, whose depths indicate the steps at
which two clusters have been combined. More
sophisticated techniques that build on these ideas
are discussed in [46].

There are also a few classical divisive tech-
niques, in which one starts with the full graph
and breaks it up to find communities [39,46,110].
(As with agglomerative techniques, one can visu-
alize the results using dendrograms.) The most
prominent examples are spectral methods, which
we discuss in detail below. New data clustering
methods, which are applicable both to networks
and to more general data structures, continue

to be developed very actively [46,110]. Scientists

studying community detection and those studying
data clustering are obviously looking at the same
coin. The two fields are advancing in parallel, and
there are numerous deep connections between
them (including, we suspect, far more than are

already known).

The Kernighan-Lin Algorithm

An algorithm from computer science, which can
be combined with other methods, was proposed

by Brian Kernighan and Shen Lin (KL) in 1970 in
their study of how to partition electric circuits into
boards so that the nodes in different boards can
be linked to each other using the fewest number
of connections [64]. To do this, they maximized a

quality function Q̃ that relates the number of edges
inside each group of nodes to the number between
different groups. Starting with an initial partition
of a graph into two groups of predefined size, KL

steps swap subsets containing equal numbers of
vertices between the two groups. To reduce the
chance of getting stuck at a local maximum, the
KL method permits swaps that decrease Q̃. After

a specified number of swaps, one keeps the parti-
tion with maximal Q̃ to use as the initial condition
for a new set of KL steps. When the number and

sizes of communities are not specified, a natural
generalization of the KL method is to move a single
node at a time [12,86,87,107]. Unsurprisingly, the
partitions of networks into communities that are
obtained using the KL algorithm depend strongly

on one’s initial partition and, therefore, it is best
used as a supplement to high-quality partitions
obtained using other methods [39,86,87]. In typ-
ical situations, both the KL swaps and the other

method would seek to optimize the same Q̃.

Centrality-Based Community Detection

Michelle Girvan and Mark Newman generated a
great deal of attention in mathematics and sta-

tistical physics for network community structure
in [48] when they devised a community-finding
algorithm based on the sociological notion of be-
tweenness centrality [4,42,124]. An edge has high
betweenness if it lies on a large number of short

paths between vertices. (Note that betweenness
can also be defined for nodes.) If one starts at a
node and wants to go to some other node in the
network, it is clear that some edges will experience
a lot more traffic than others. The betweenness

of an edge quantifies such traffic by considering
strictly shortest paths (geodesic betweenness) or
densities of random walks (random walk between-
ness) [85] between each pair of nodes and taking
into account all possible pairs. One can identify
communities through a process of ranking all of

the edges based on their betweenness, removing
the edge with the largest value, and recalculating

October 2009 Notices of the AMS 1087



betweenness for the remaining edges. The recal-

culation step is important because the removal of

an edge can cause a previously low-traffic edge to

have much higher traffic. An iterative implemen-

tation of these steps gives a divisive algorithm for

detecting community structure, as it deconstructs

the initial graph into progressively smaller con-

nected chunks until one obtains a set of isolated

nodes.

Betweenness-based methods have been gener-

alized to use network components other than

edges, to bipartite networks [100], and to use

other sociological notions of centrality [39]. Note,

however, that although centrality-based commu-

nity detection is intuitively appealing, it can be

too slow for many large networks (unless they are

very sparse), and it tends to give relatively poor

results for dense networks.

k-Clique Percolation and Other Local Methods

The method of k-clique percolation [97] is based

on the concept of a k-clique, which is a complete

subgraph of k nodes that are connected with all

k(k − 1)/2 possible links. The method relies on

the observation that communities seem to consist

of several small cliques that share many of their

nodes with other cliques in the same community. A

k-clique community is then defined as the union of

all “adjacent” k-cliques, which by definition share

k− 1 nodes. One can also think about “rolling” a

k-clique template from any k-clique in the graph

to any adjacent k-clique by relocating one of its

nodes and keeping the other k−1 nodes fixed [28].

A community, defined through the percolation of

such a template, then consists of the union of all

subgraphs that can be fully explored by rolling a

k-clique template. As k becomes larger, the notion

of a community becomes more stringent. Values of

k = 3, . . . ,6 tend to be most appropriate because

larger values become unwieldy. The special case

of k = 2 reduces to bond (link) percolation and

k = 1 reduces to site (node) percolation.

The k-clique percolation algorithm is an ex-

ample of a local community-finding method. One

obtains a network’s global community structure

by considering the ensemble of communities ob-

tained by looping over all of its k-cliques. Some

nodes might not belong to any community (be-

cause they are never part of any clique), and

others can belong to several communities (if they

are located at the interface between two or more

communities). The nested nature of communities

is recovered by considering different values of k,

although k-clique percolation can be too rigid be-

cause focusing on cliques typically causes one to

overlook other dense modules that aren’t quite as

well connected. On the other hand, the advantage

of k-clique percolation and other local methods is

that they have to date provided some of the most

successful ways to consider community overlap.

Allowing the detection of network commu-

nities that overlap is especially appealing in the

social sciences, as people belong simultaneously to

several communities (constructed via colleagues,

family, hobbies, etc.) [78,79]. Purely agglomerative

or divisive techniques do not allow communi-

ties to overlap, so it is important to consider

local methods as well. Several such methods have

now been developed [2, 7, 8, 14, 22, 28, 33, 39, 74,

114, 129], including one that enables the consid-

eration of overlapping communities at multiple

resolution levels [69]. We believe that further de-

velopment of global clustering algorithms that

take community overlap explicitly into account is

essential to complement the insights from these

local approaches.

Modularity Optimization

One of the most popular quality functions is mod-

ularity, which attempts to measure how well a

given partition of a network compartmentalizes

its communities [84, 86, 87, 89, 90]. The problem

of optimizing modularity is equivalent to an in-

stance of the famous MAX-CUT problem [86], so

it is not surprising that it has been proven to

be NP-complete [17]. There are now numerous

community-finding algorithms that try to opti-

mize modularity or similarly constructed quality

functions in various ways [6, 12, 26, 39]. In the

original definition of modularity, an unweighted

and undirected network that has been partitioned

into communities has modularity [84,90]

(1) Q =
∑

i

(eii − b
2
i ),

where eij denotes the fraction of ends of edges in

group i for which the other end of the edge lies in

group j, and bi =
∑
j eij is the fraction of all ends

of edges that lie in group i. Modularity is closely

related to the Freeman segregation index [43]; a

key difference is that Q = 0 when all nodes are

assigned to the same community, which enforces

the existence of a nontrivial partition with Q > 0.

Modularity explicitly takes degree heterogeneity

into account, as it measures the difference between

the total fraction of edges that fall within groups

versus the fraction one would expect if edges were

placed at random (respecting vertex degrees).1

Thus, high values ofQ indicate network partitions

in which more of the edges fall within groups than

expected by chance (under a specified null model,

as discussed further below). This, in turn, has been

1Interest in degree heterogeneity exploded in the late

1990s with the sudden wealth of empirical data and

the seemingly ubiquitous manifestation of heavy-tailed

degree distributions such as power laws [3,83].
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found to be a good indicator of functional network

divisions in many cases [86,87].

For weighted networks, one counts the sums

of the weights of edges instead of the number

of edges, so heavily weighted edges contribute

more than lightly weighted ones. Both eij and bi
are thus straightforwardly generalized, and then

the modularity is again calculated from (1). The

meaning of modularity remains essentially the

same: It measures when a particular division of

the network has more edge weight within groups

than one would expect by chance.

Quality functions such as modularity provide

precise measures of how to count the total strength

of connections within communities versus those

between communities [87, 89]. Modularity is a

scaled assortativity measure based on whether

high-strength edges are more or less likely to be

adjacent to other high-strength edges [84,89,90].

Because communities are supposed to have high

edge density relative to other parts of the graph,

a high-modularity partition tends to have high

edge-strength assortativity by construction. More

generally, assortativity notions can be used to

partition a graph into groups according to any

characteristic by examining whether nodes are

more likely (in assortative graphs) or less likely (in

disassortative graphs) to be connected to nodes of

the same type [83].

Interestingly, maximizing modularity is closely

related to the energy models of pairwise attraction,

such as the Fruchterman-Reingold method, that

are commonly used for graph visualization [92].

While this isn’t necessarily surprising given the

clusters that one can typically observe with good

graph visualization tools, this recent insight does

suggest that such tools may also help lead to the

development of better community-detection meth-

ods. Conversely, the analysis and construction of

algorithms to find network communities might

help lead to better graph-visualization techniques.

It is typically impossible computationally to

sample a desired quality function by exhaus-

tively enumerating the nonpolynomial number

of possible partitions of a network into com-

munities [17]. A number of different methods

have thus been proposed to balance the typi-

cal quality of their identified optima with the

computational costs. Some methods, such as the

greedy algorithms in [24, 84], are fast heuristics

intended to be applied to networks with mil-

lions of nodes or more. Other methods—such

as spectral partitioning [86, 87] (discussed be-

low), refined greedy algorithms [111], simulated

annealing [52], extremal optimization [30], and

others [93]—provide more sophisticated but slow-

er means to identify high-modularity partitions.2

We discuss the spectral partitioning method below,
in part because of its interesting reformulation of
the modularity scalar as a matrix, but we note
that other algorithmic choices might be superi-
or in many situations. We believe that there is
considerable value in having multiple computa-
tional heuristics available, as this provides greater
flexibility to compare and contrast the identified
communities.

Importantly, many modularity-maximization
techniques are easy to generalize for use with
other related quality functions because it is far
from clear that modularity is the best function
to optimize. For example, modularity has a
known resolution limit (see below) that might
cause one to miss important communities [38].
A few alternatives to modularity have been
considered [6,39,57,69,121], and it is ultimately
desirable to optimize a quality function that
includes not only information about the network
structure but also other information (such as
node characteristics or relevant time-dependence)
that would allow one to incorporate functionality
directly [116]. Such consideration of additional
information is one of the most important open
issues in community detection [88,122].

Spectral Partitioning

The method of spectral partitioning arose most
prominently in the development of algorithms for
parallel computation [35,102]. In traditional spec-
tral partitioning, network properties are related to
the spectrum of the graph’s Laplacian matrix L,
which has components Lij = kiδ(i, j)−Aij , where
ki is the degree of node i (or, in a weighted net-
work, its strength), and δ(i, j) is the Kronecker
delta (i.e., δ(i, j) = 1 if i = j and 0 otherwise).

The simplest such method starts by splitting a
network into two components. One then applies
two-group partitioning recursively to the smaller
networks one obtains as long as it is desirable to
do so. (One can also partition networks into more
than two groups during each step [21,29,86,107].)
For a single partitioning step, one defines an index
vector s whose components take the value +1 if
they belong to group 1 and −1 if they belong
to group 2. The total edge weight between the
two groups of nodes can then be expressed as

R =
1

4
sTLs. The “best” partition of the network

seemingly results from choosing s to minimize R
(called the “cut size") and hence the total strength
of inter-group edges. (Recall the max-flow min-cut
theorem, which states that the minimum cut be-
tween any two vertices of a graph—that is, the
minimum set of edges whose deletion places the

2As we have discussed, one can also supplement any of

these methods with KL swapping steps [12, 64, 86, 87, 93,

107].
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two vertices in disconnected components of the

graph—carries the maximum flow between the two
vertices [32,37].) Unfortunately, this minimization
is easily accomplished by choosing the trivial (and
useless) partition of a single group containing

every node. The most common solution to this
situation is to fix the sizes of the two groups in
advance and incorporate this information in the
partitioning procedure (as described in, e.g., [86]).
This solution is perfectly reasonable for some

applications, such as load balancing in parallel
computing. However, this approach is neither ap-
propriate nor realistic for community detection in
most other contexts because one typically does
not know the number or sizes of communities in

advance, so choosing arbitrary sizes at the outset
precludes attacking the main problem of interest.

Fortunately, one can use the idea of modularity
to obtain spectral partitioning algorithms that are

appropriate for a broader class of problems [87]
(see also the earlier publication [29] and a spiri-
tually similar approach based on peer influences
in the sociology literature [77]). By reformulating
the scalar quantity of modularity in terms of a

modularity matrix B, with components

(2) Bij = Aij − Pij ,

spectral partitioning can be directly applied [87] as
a means of heuristically optimizing the modularity

(3) Q =
1

2W

∑

i,j

Bijδ(Ci , Cj) ,

where δ(Ci , Cj) indicates that the Bij components
are only summed over cases in which nodes i
and j are assigned to the same community. The

factor W =
1

2

∑
ij Aij is the total edge strength in

the network (equal to the total number of edges

for unweighted networks), where ki denotes the
strength of node i. In (2), Pij denotes the com-
ponents of a null model matrix, which specifies
the relative value of intra-community edges in
assessing when communities are tightly connect-

ed [9, 86]. In general, one is free to specify any
reasonable null model. The most popular choice,
proposed by Newman and Girvan [86,87,89,90], is

(4) Pij =
kikj

2W
.

This recovers the definition of modularity in (1),

specified in terms of edge-weight deviations from
a network chosen randomly from the set of all
graphs with the same expected strength distri-
bution as the actual network. This null model is

closely related to the configuration model [76],
which (as with Erdös-Renyi random graphs) yields
networks that aren’t expected to have a natural
hierarchy [76,83,90]. The difference is that (4) is
conditioned on the expected degree (or strength)

sequence, whereas the configuration model is
conditioned on the actual observed sequence.

In spectral partitioning, one can use as many

eigenvectors of B as there are positive eigenval-

ues, but it is effective (and simplest) to recursively

subdivide a network using only the “leading eigen-

vector” v , which is paired with the largest positive

eigenvalue of B. One can then separate the net-

work into two communities according to the signs

si = sgn(vi). The magnitude of vi indicates the

strength to which the ith node belongs to its

assigned community [86]. For vi = 0, one can

assign node i to a community based on which

choice produces the higher modularity, changing

si = 0 to +1 or −1 as appropriate. The modu-

larity of the resulting two-group partition of the

network is Q =
1

4W
sTBs. After this bipartition,

one then repeats the partitioning procedure for

each graph component, keeping track of the fact

that they are actually part of a larger network.

One continues recursively until the modularity

can no longer be increased with additional subdi-

visions [86,87]. The final network partition gives

the community structure at a specific resolution

level (e.g., committees in the U.S. House of Repre-

sentatives committee assignment network). This

method can be generalized by considering dif-

ferent quality functions [39, 107], allowing steps

that decrease global quality in order to further

subdivide the communities [107,133], using more

eigenvectors [107,123], or including a resolution

parameter [6, 104] that allows one to examine

the network’s community structure at different

mesoscopic scales.

The Potts Method

Particles that possess a magnetic moment are

often called spins [112, 130]. Such spins interact

with other spins either ferromagnetically (they

seek to align) or antiferromagnetically (they seek

to have different orientations). A spin glass is

a system that encompasses both disorder and

competing ferromagnetic and antiferromagnetic

interactions. This leads to a very large number

of metastable spin configurations separated by

energy barriers with long, glass-like characteristic

relaxation times [36, 130]. An important recent

insight, inspired by earlier work on data clustering

based on the physical properties of an inhomoge-

neous ferromagnetic model [11], is that optimizing

modularity is mathematically equivalent to mini-

mizing the energy (i.e., finding the ground state of

the Hamiltonian) of an infinite-range q-state Potts

model [103,104].

In a q-state Potts spin glass, each spin can be

in one of q states. The interaction energy between

spins i and j is given by −Jij if the spins are in

the same state and zero if they are not [104,130].

The Hamiltonian of the system is given by the sum
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over all of the pairwise interaction energies:

(5) H({σ}) = −
∑

ij

Jijδ(σi , σj) ,

where σl indicates the state of spin l and {σ}

denotes the configuration of spins (i.e., the state

of each of the system’s N spins). There are a total

of qN such configurations.

We map the problem of minimizing (5) to a net-

work community-detection problem by assigning

a spin to each node and letting q = N. In this

language, one adds the interaction energy −Jij if

and only if nodes i and j are placed in the same

community. Two nodes that are connected by an

edge interact ferromagnetically (Jij > 0) when the

weight of the edge is greater than expected (given

a specific null model) and interact antiferromag-

netically (Jij < 0) when it is less than expected. If

Jij = 0, spins i and j do not interact with each

other. Hence, two nodes want to be in the same

community if they interact ferromagnetically and

in different ones if they interact antiferromagneti-

cally. One cannot in general find any arrangement

of spins (i.e., any partition of a graph into commu-

nities) that simultaneously minimizes all of the

pairwise interaction energies. Regardless of this

inability to satisfy all of the bonds simultaneously,

a phenomenon termed “frustration” [36], one can

still try to minimize H globally to find the ground

state of the system. The choice of interaction

matrix elements given by

(6) Jij =
Aij − Pij

W

implies thatH = −Qand recovers modularity max-

imization [104]. (Division by W is a normalization

and does not affect the optimization algorithms.)

Alternative interaction models can also be used to

partition networks (see, e.g., [57]).

Resolution Parameters

In 2007, Santo Fortunato and Marc Barthélemy

demonstrated, using both real and computer-

generated networks, that modularity suffers from

a resolution limit in its original formulation [38],

as it misses communities that are smaller than a

certain threshold size that depends on the size of

the network and the extent of interconnectedness

of its communities. Communities smaller than

the threshold tend to be merged into larger com-

munities, thereby missing important structures.

We have seen this in our own work on the U.S.

House committee assignment network, as detect-

ing communities by maximizing modularity can

group multiple standing committees (with their

subcommittees) into a single community [100].

One way to address this resolution limit is to in-

corporate an explicit resolution parameter directly

into equations like (6) to obtain [104]

(7) Jij =
Aij − λPij

W
.

One can alternatively incorporate a resolution pa-
rameter into Aij or elsewhere in the definition
of a quality function (see, e.g., [6]). This allows
one to zoom in and out in order to find com-
munities of different sizes and thereby explore
both the modular and the hierarchical structures
of a graph. Fixing λ in (7) corresponds to set-
ting the scale at which one is examining the
network: Larger values of λ yield smaller com-
munities (and vice versa). Resolution parameters
have now been incorporated (both explicitly and
implicitly) into several methods that use modu-
larity [12,104], other quality functions [6,69], and
other perspectives [8,97].

Although introducing a resolution parameter
using equations like (7) seems ad hoc at first, it
can yield very interesting insights. For example,
Jij = (Aij − λ)/W gives a uniform null model in
which a given fixed average edge weight occurs
between each node. This can be useful for cor-
relation and similarity networks, such as those
produced from matrices of yea and nay votes.
Nodes i and j want to be in the same community
if and only if they voted the same way more than
some threshold fraction of times that is specified
by the value of λ.

Even more exciting, one can relate resolution
parameters to the time scales of dynamical pro-
cesses unfolding on a network [27,68,98,108]. Just
as we can learn about the behavior of a dynamical
system by studying the structural properties of
the network on which it is occurring, we can also
learn about the network’s structural properties
by studying the behavior of a given dynamical
process. This suggests the intuitive result that the
choice of quality function should also be guided by
the nature of the dynamical process of interest. In
addition to revealing that resolution parameters
arise naturally, this perspective shows that the
Potts method arises as a special case of placing
a continuous time random walk with Poisson-
distributed steps on a network [27]. Freezing the
dynamics at a particular point in time yields the
modularity-maximizing partition. Freezing at ear-
lier times yields smaller communities (because
the random walker hasn’t explored as much of
the graph), and waiting until later times results in
larger communities. The t → ∞ limit reproduces
the partitioning from Miroslav Fiedler’s original
spectral method [35].

Applications
Armed with the above ideas and algorithms, we
turn to selected demonstrations of their efficacy.
The increasing rapidity of developments in net-
work community detection has resulted in part
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Figure 5. The largest connected component
(379 nodes) of the network of network

scientists (1,589 total nodes), determined by
coauthorship of papers listed in two

well-known review articles [13,83] and a small
number of papers added manually [86]. Each
of the nodes in the network, which we depict

using a Kamada-Kawai visualization [62], is
colored according to its community

assignment using the leading-eigenvector
spectral method [86].

from the ever-increasing abundance of data sets

(and the ability to extract them, with user clev-

erness). This newfound wealth—which includes

large, time-dependent data sets—has, in turn,

arisen from the massive amount of information

that is now routinely collected on websites and by

communication companies, governmental agen-

cies, and others. Electronic databases now provide

detailed records of human activity patterns, of-

fering novel avenues to map and explore the

structure of social, communication, and collab-

oration networks. Biologists also have extensive

data on numerous systems that can be cast in-

to network form and which beg for additional

quantitative analyses.

Because of space limitations, we restrict our

discussion to five example applications in which

community detection has played a prominent role:

scientific coauthorship, mobile phone communi-

cation, online social networking sites, biological

systems, and legislatures. We make no attempt

to be exhaustive for any of these examples; we

merely survey research (both by others and by

ourselves) that we particularly like.

Scientific Collaboration Networks

We know from the obsessive computation of Erdös

numbers that scientists can be quite narcissistic.

(If you want any further evidence, just take a look

at the selection of topics and citations in this sec-

tion.) In this spirit, we use scientific coauthorship
networks as our first example.

A bipartite (two-mode) coauthorship network—
with scientists linked to papers that they authored

or coauthored—can be defined by letting δ
p
i = 1

if scientist i was a coauthor on paper p and
0 otherwise. Such a network was collected and
examined from different databases of research

papers in [80–82]. To represent the collaboration
strength between scientists i and j, one can define

(8) Aij =
∑

p

δ
p
i δ

p
j

np − 1

as the components of a weighted unipartite (one-
mode) network, where np is the number of authors
of paper p and the sum runs over multiple-author
papers only. Applying betweenness-basedcommu-

nity detection to a network derived from Santa Fe
Institute working papers using (8) yields commu-
nities that correspond to different disciplines [48].
The statistical physics community can then be fur-

ther subdivided into three smaller modules that
are each centered around the research interests
of one dominant member. Similar results have
been found using various community-finding al-

gorithms and numerous coauthorship networks,
such as the network of network scientists [86]
(see Figures 1 and 5), which has become one of
the standard benchmark examples in community-

detection papers.

Mobile Phone Networks

Several recent papers have attempted to uncover

the large-scale characteristics of communication
and social networks using mobile phone data
sets [49, 95, 96]. Like many of the coauthorship
data sets studied recently [96], mobile phone net-

works are longitudinal (time-dependent). However,
in contrast to the ties in the coauthorship networks
above, links in phone networks arise from instant

communication events and capture relationships
as they happen. This means that at any given in-
stant, the network consists of the collection of ties
connecting the people who are currently having a

phone conversation. To probe longer-term social
structures, one needs to aggregate the data over a
time window.

In 2007 one research group used a society-wide

communication network containing the mobile
phone interaction patterns of millions of individu-
als in an anonymous European country to explore
the relationship of microscopic, mesoscopic, and

macroscopic network structures to the strength
of ties between individuals on a societal level [95].
They obtained very interesting insights into Mark
Granovetter’s famous weak tie hypothesis, which

states that the relative overlap of the friendship cir-
cles of two individuals increases with the strength
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of the tie connecting them [51]. At the mesoscopic

level, this leads to a structure in which individuals

within communities tend to be linked via strong
ties, whereas communities tend to be connected

to other communities via weak ties. Because of

this coupling between link strength and function,
the weak ties are responsible for the structural

integrity of the communication network: It is ro-

bust to the removal of the strong ties but breaks
up if the weak ties are removed (see Figure 6). In

fact, one can even show that the removal of weak
ties leads to a (phase) transition from a regime in

which the network remains globally connected to

one in which the network essentially consists of
insular communities. However, there is no phase

transition if the strong ties are removed, so the

network remains globally connected. The location
of the transition also suggests a natural quanti-

tative demarcation between weak and strong ties.
This mesoscopic organization of social networks

has important consequences for the flow of infor-

mation. If one assumes that every tie (regardless
of strength) is equally efficient in transferring

information, one recovers the classical result of

Granovetter that weak ties are mostly respon-
sible for information diffusion [51]. However, if

one assumes that the rate of information transfer

is proportional to the strength of the tie, then
neither weak nor strong ties are as effective as

intermediate ties for information diffusion [95].
To help develop methods that can be applied to

time-dependent networks, another research group

has recently applied k-clique percolation to a large
mobile phone data set to investigate community

formation, evolution, and destruction [96]. They

found that large communities persist longer if
they are capable of dynamically altering their

membership (suggesting that an ability to change

the group composition results in better adaptabil-
ity), whereas small groups last longer if they stay

virtually unchanged. We’ve all seen examples of
such dynamics in real life: A mathematics depart-

ment at a university will last a long time and will

still be identified as fundamentally the same com-
munity even though its membership can change

quite drastically over time. On the other hand, an

individual research group might rely on only one
or two of its members for its existence.

Online Social Networks

Social networking sites (SNSs) have become a per-
vasive part of everyday life. They allow users to

construct a public or semi-public online profile

within a bounded system, articulate a list of other
users (called “friends”) with whom they share a

connection, and view and traverse their network

of connections [16,122]. Since their introduction,
SNSs such as Facebook, LinkedIn, MySpace, and

hundreds of others have collectively attracted over

Figure 6. (Left) A sample of a mobile phone
network studied in [94,95]. After the strong
ties have been removed, the network still
retains its global connectivity. (Right) Removal
of weak ties leads, through a phase transition,
to a disintegration of the network. (Figure
adapted from [94].)

one billion users [128]. People have integrated SNSs
into their daily lives, using them to communicate
with friends, send emails, solicit opinions or votes,

organize events, spread ideas, find jobs, and more.
The emergence of SNSs has also revolutionized

the availability of quantitative social and demo-
graphic data, which has in turn transformed the
study of social networks [16]. This has obvious-

ly been a big deal for social scientists (see [73]
for an excellent recent example), but numerous
mathematicians, computer scientists, physicists,
and more have also had a lot of fun with this new
wealth of data. This has included investigations

of attachment mechanisms to determine how SNS
network structure might develop [67], the forma-
tion of friends, allies, and nemeses [18, 59], and
much more [16,122].

In a recent paper [122], we used anonymous
Facebook data from September 2005 to compare
the friendship networks of several American uni-
versities. This data yields networks in which each
node representsa person and each edge represents

a self-identified, reciprocal online friendship. The
institutions we considered ranged from small tech-
nical universities such as Caltech (1,089 nodes) to
large state universities such as the University of
Oklahoma (about 24,000 nodes). Our data also in-

cludes limited demographic information for each
user: gender, high school, class year, major, and
dormitory residence. Using permutation tests, we
developed tools that allow one to quantitatively

compare different network partitions, which can
be obtained from any desired method—including,
in particular, community-detection algorithms and
user demographics. This enables one to investi-
gate the demographic organization of different

universities and compare the results of different
community-detection algorithms. We found, for
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Figure 7. (Top) Caltech friendship network
based on Facebook data from September 2005
using the Fruchterman-Reingold visualization

method [45]. The colors (and shapes)
correspond to self-identified House

(dormitory) affiliation. (Bottom) Communities
in the Caltech network. We obtained this

community structure, which accurately
matches the Caltech House structure, using a

slight modification of Newman’s
leading-eigenvector algorithm [86] and

subsequent KL node-swapping
steps [107,122,133]. It also gives some
indication of the most probable House

affiliations of the people in white, who did not
identify their House [122].

example, that communities at Princeton, George-

town, and the University of North Carolina at

Chapel Hill are organized predominantly by class

year, whereas those at Caltech are based almost

exclusively on House (dormitory) affiliation. As

we illustrate in Figure 7, community structure can

also be used to make simple yet intelligent guesses

about withheld user characteristics. Naturally, this

opens up significant privacy issues when data is

not fully anonymous.

Biological Networks

One of the paramount goals of studying biological
networks is to determine the principles governing

their evolution. It is hoped that finding impor-
tant network structures might give some insights

into the mechanisms (and, ideally, the natural

design principles) that control the flow of bio-
logical information. Thus, it is unsurprising that

clustering methods form a core part of bioinfor-

matics [15,63], and there is simply no way to do
justice to this vast literature here. Accordingly, we

only present a couple of our favorite examples.

In 2002 Ron Milo et al. investigated a plethora
of directed networks to develop the idea of minia-

ture communities known as motifs [75], which are
used to describe patterns of nodes and edges that

occur significantly more prevalently than expected

in a network. Motifs can be interpreted as basic
building blocks of complex networks, perhaps rep-

resenting small functional modules that arose via

evolutionary mechanisms. The simplest motifs—
triangles (3-cliques), in which three nodes are all

mutually interconnected—have long been studied

in social networks [44,124]. The amazing discovery
of Milo et al. is that different types of motifs are, in

fact, prevalent universally in many different types
of networks. Among the omnipresent motifs they

observed are 3-chains in ecological networks (in

which a prey node is connected by a directed edge
to a predator node, which is in turn connected by

a directed edge to another predator); diamonds

in ecological networks, neural networks, and logic
chips; feed-forward loops in gene regulation net-

works, neural networks, and logic chips; triangles

in the World Wide Web; and more.
Numerous scientists have built on this foun-

dation of motifs, and several investigations have
provided fascinating connections between motifs

and larger mesoscopic structures. For example,

one team investigated three-node and four-node
motifs in an integrated Saccharomyces cerevisi-

ae network, which they constructed using in-

formation from protein interactions, genetic in-
teractions, transcriptional regulation, sequence

homology, and expression correlation [132]. Their
primary finding was that most motifs form larg-

er “network themes" of recurring interconnection

patterns that incorporate multiple motif occur-
rences. They were also able to tie some of these

mesoscopic themes to specific biological phenom-

ena, such as a pair of protein complexes with many
genetic interactions between them. The notion of

motifs has also recently been used to develop

generalizations of graph modularity [5].
One can imagine constructing a course-grained

network consisting of interconnected network
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themes. For example, in a seminal 2005 paper,

Roger Guimerà and Luís Amaral used communities

to try to construct a “functional cartography”

of biological networks in order to employ nodes

and modules with known roles to try to obtain

interesting insights on nodes and modules with

unknown functionality [52]. To understand their

perspective, consider the prototypical maps of

countries in which important cities are marked by

special symbols, other cities are marked with dots,

and smaller towns are not shown. In the network

context, there is a one-to-one correspondence

between markers and communities, and the

symbols are determined according to structural

and/or functional roles. The connections between

communities are analogous to major highways. In

fact, our coloring of community ties according to

the demographic composition of their nodes (see

Figures 4 and 7) was originally inspired by [52].

To illustrate their idea, Guimerà and Amar-

al considered the metabolic networks of twelve

different organisms. They started by detecting

communities by maximizing modularity using sim-

ulated annealing and then (following a suggestion

from social scientist Brian Uzzi) calculated appro-

priate properties of each node to determine their

role in their assigned community. After finding

communities, they calculated for each node i the

within-module degree, given by the number of its

edges that connect to other nodes in the same

community, and a participation ratio Pi , which

measures the extent to which links are distribut-

ed among all network communities. Guimerà and

Amaral then interpreted the role of each node

based on its location in the plane determined by

Pi and the z-score zi of the within-module de-

gree. They thereby found that “non-hub connector

nodes” (which have low zi and moderately high Pi ,

indicating a preferential connectivity to a subset

of the network’s communities) are systematical-

ly more conserved across species than “provincial

hubs” (which have high zi and low Pi). This appears

to be related to the role of non-hub connectors in

describing the global structure of fluxes between

different network modules. Importantly, one can

follow a similar procedure using other measures,

such as betweenness centrality [34], as the essen-

tial insight—which, we stress, was borrowed from

ideas in the social sciences—is to calculate network

quantities relative to community assignment.

Legislative Networks

Advances in network science have also begun to

uncover the ways in which social relationships

shape political outcomes [40,41,101]. In this sec-

tion, we describe our own work on legislative

networks [100,101,125,133], in which community

detection has played a central role.

Consider a bipartite graph that is constructed

using Representatives and their committee and

subcommittee (henceforth called simply “com-

mittee") assignments during a single two-year

term of the U.S. House of Representatives. Each

edge represents a committee assignment and con-

nects a Representative to a committee. We project

each such network onto a weighted unipartite

graph of committees (see Figure 4), in which the

nodes are now committees and the value of each

edge gives the normalized connection strength

between two committees. By computing the com-

munity structure of these networks and analyzing

legislator ideology, we investigated correlations

between the political and organizational structure

of House committees. This revealed close ties be-

tween the House Rules Committee and the Select

Committee on Homeland Security in the 107th

(2001–02) and 108th (2003–04) Congresses that

broke the established procedures for determining

the composition of select committees [100, 101].

(Figure 4 shows the 108th Congress.) We also

showed that the modularity of good network par-

titions increased following the 1994 elections, in

which the Republican party earned majority status

in the House for the first time in more than forty

years.

Studying networks constructed from legislation

cosponsorship can help uncover social connec-

tions between politicians, as legislators who work

together closely on pieces of legislation are like-

ly to have friendly (or at least cordial) relations.

Computing centrality measures in these networks

gives a who’s who list of American politics, as

it reveals important players like Bob Dole [R-KA],

John McCain [R-AZ], and Ted Kennedy [D-MA] [40].

The longitudinal study of community structure in

Congressional legislation cosponsorship [133] and

roll-call voting [125] networks shows that graph

modularity can be used to study partisan polariza-

tion and political party realignments. This reveals

patterns suggesting that political parties were not

the most significant communities in Congress for

certain periods of U.S. history and that the 1994

party-changing elections followed a rise in partisan

polarization rather than themselves leading to an

abrupt polarization in America.

Summary and Outlook
With origins in sociology, computer science, sta-

tistics, and other disciplines, the study of network

communities is in some respects quite old. Never-

theless, it has experienced incredible growth since

the seminal 2002 paper [48] that brought greater

attention to the problem, particularly among sta-

tistical physicists [39]. In this survey, we have

highlighted an extensive suite of techniques, and

there are numerous other methods that we simply
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haven’t had space to discuss (see the review arti-
cles [26,39,110] for more information on many of
them). Despite this wealth of technical advances,
much work remains. As Mark Newman recent-
ly wrote [88], “The development of methods for
finding communities within networks is a thriving
sub-area of the field, with an enormous num-
ber of different techniques under development.
Methods for understanding what the communities
mean after you find them are, by contrast, still
quite primitive, and much needs to be done if
we are to gain real knowledge from the output
of our computer programs.” One of our primary
purposes in writing this article is as a “call to
arms” for the mathematics community to be a
part of this exciting endeavor. Accordingly, we
close our discussion with additional comments
about important unresolved issues.

The remarkable advances of the past few years
have been driven largely by a massive influx
of data. Many of the fascinating networks that
have been constructed using such data are enor-
mous (with millions of nodes or more). Given
that optimization procedures, such as maximiz-
ing graph modularity, have been proven to be
NP-complete [17], much of the research drive has
been to formulate fast methods that still find
a reasonable community structure. Some of the
existing algorithms scale well enough to be used
on large networks, whereas others must be re-
stricted to smaller ones. The wealth of data has
also led to an increasing prevalence (and, we hope,
cognizance) of privacy issues. However, although
the study of network communities has become so
prominent, this research area has serious flaws
from both theoretical and applied perspectives:
There are almost no theorems, and few methods
have been developed to use or even validate the
communities that we find.

We hope that some of the mathematically-
minded Notices readers will be sufficiently excited
by network community detection to contribute
by developing new methods that address impor-
tant graph features and make existing techniques
more rigorous. When analyzing networks con-
structed from real-world data, the best practice
right now is to use several of the available com-
putationally tractable algorithms and trust only
those structures that are similar across multiple
methods in order to be confident that they are
properties of the actual data rather than byprod-
ucts of the algorithms used to produce them.
Numerous heuristics and analytical arguments
are available, but there aren’t any theorems, and
even the notion of community structure is itself
based on the methodology selected to compute
it. There also appear to be deep but uncharac-
terized connections between methods that have
been developed in different fields [39, 110]. Ad-
ditionally, it would be wonderful if there were a

clearer understanding of which notions of com-

munity and which community-detection methods

might be especially appropriate for networks with

specific properties and for networks belonging to

a specific domain.

At the same time, the problem of how to validate

and use communities once they are identified is

almost completely open. Fortunately, recent work

offers some hope, as new methods have been

developed to infer the existence of missing edges

from network data [23] and relate the composition

of communities to intelligent guesses about the

demographic characteristics of nodes [122]. (As

with social networks more generally, sociologists

have already been considering these issues for a

long time [19, 44]. What we need are techniques

that allow us to do this even more effectively.)

In [23], Aaron Clauset, Cris Moore, and Mark New-

man drew on the insight that real-world networks

should not be expected to have a unique com-

munity structure (despite the output produced by

almost all of the available methods) and formu-

lated a new hierarchical random graph model to

develop a method for inferring hierarchical struc-

ture from network data. (A different hierarchical

random graph model was formulated for com-

munity detection in [109].) Their method, which

shows excellent promise for future development,

allowed them to make accurate predictions about

missing connections in partially known networks.

In our own work on Facebook networks [122], we

used permutation tests to advance methods for

the quantitative comparison of network partitions.

Because one can obtain such partitions either from

algorithmic community-detection methods or by

hand (from external demographics or other prop-

erties), this provides a mechanism to compare the

results of different community-finding algorithms

and to try to infer node characteristics given

partial demographic information.

It is also important to develop community-

detection techniques that can be applied to more

complicated types of graphs. As we saw in our dis-

cussion of legislative and coauthorship networks,

collaboration networks have a bipartite structure.

However, there has been seemingly only limited

work thus far on community finding that works

directly on bipartite networks rather than on their

unipartite projections [10,53,71,100]. Even fewer

community-detection methods are able to handle

directed networks (whose adjacency matrices are

asymmetric) [53, 72] or signed networks (whose

connections might be construed as “attracting”

or “repelling”) [121]. Moreover, agents in social

networks are typically connected in several differ-

ent manners—for example, Representatives can

be connected using voting similarities, common

committee assignments, common financial con-

tributors, and more—but there are presently very
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few algorithms that can be applied to such mul-

tiplex situations without constructing individual

graphs for each category, and further develop-

ment will likely require the application of ideas

from multilinear algebra [65,115]. It would also be

desirable to detect communities in hypergraphs

and to be able to consider connections between

agents that are given by interval ranges rather

than precise values. Finally, to be able to study

interactions between dynamical processes on net-

works and the structural dynamics of networks

themselves (e.g., if somebody spends a day at

home with the flu, the network structure in the

workplace is different than usual that day), a lot

more work is needed on both overlap between

communities and on the community structure

of time-dependent and parameter-dependent net-

works. Analyzing time- and parameter-dependent

networks currently relies on ad hoc amalgamation

of different snapshots rather than on a systematic

approach, so it is necessary to develop community-

detection methods that incorporate the network

structure at multiple times (or parameter values)

simultaneously [58, 96, 116]. More generally, this

will also have important ramifications for studies

of clustering in correlated time series.

We stress that research on network commu-

nities has focused on using exclusively struc-

tural information (i.e., node connectivity and link

weights) to deduce structural communities as im-

perfect proxies for functional communities [39,

116, 122]. While this seems to be sufficient for

some applications [39], in most situations it is

not at all clear that structural communities ac-

tually map well to the organization of actors in

social networks, functions in biological networks,

etc. Hence, it is necessary to develop tools for the

detection of functional communities that, whenev-

er possible, incorporate node characteristics and

other available information along with the net-

work’s structural information. The elephant in the

literature is simply elucidated with just one ques-

tion: Now that we have all these ways of detecting

communities, what do we do with them?

Acknowledgements

Our views on network community structure have

been shaped by numerous discussions with our

colleagues and students over the last several years.

We particularly acknowledge Aaron Clauset, Santo

Fortunato, Nick Jones, Eric Kelsic, Mark New-

man, Stephen Reid, and Chris Wiggins. We also

thank Joe Blitzstein, Tim Elling, Santo Fortuna-

to, James Fowler, A. J. Friend, Roger Guimerà,

Nick Jones, David Kempe, Franziska Klingner, Re-

naud Lambiotte, David Lazer, Sune Lehmann, Jim

Moody, and David Smith for useful comments on

this manuscript, and Christina Frost and Amanda

Traud for assistance in preparing some of the fig-

ures. We obtained data from Adam D’Angelo and

Facebook, the House of Representatives Office of

the Clerk (Congressional committee assignments),

Mark Newman (network scientist coauthorship),

James Fowler (Congressional legislation cospon-

sorship), and Keith Poole (Congressional roll call

votes). PJM was funded by the NSF (DMS-0645369)

and by start-up funds provided by the Institute

for Advanced Materials, Nanoscience and Tech-

nology and the Department of Mathematics at

the University of North Carolina at Chapel Hill.

MAP acknowledges a research award (#220020177)

from the James S. McDonnell Foundation. JPO is

supported by the Fulbright Program.

References
[1] G. Agarwal and D. Kempe, Modularity-

maximizing network communities using mathe-

matical programming, The European Physical

Journal B, 66 (2008), 409–418.

[2] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Com-

munities and hierarchical organization of links in

complex networks. arXiv:0903.3178 (2009).

[3] R. Albert and A.-L. Barabási, Statistical me-

chanics of complex networks, Reviews of Modern

Physics, 74 (2002), 47–97.

[4] J. M. Anthonisse, The rush in a graph. Tech-

nical Report BN 9/71, Stichting Mathematische

Centrum, Amsterdam, 1971.

[5] A. Arenas, A. Fernández, S. Fortunato, and

S. Gómez, Motif-based communities in complex net-

works, Journal of Physics A: Mathematical and

Theoretical, 41, 224001 (2008).

[6] A. Arenas, A. Fernández, and S. Gómez, Analysis

of the structure of complex networks at differ-

ent resolution levels, New Journal of Physics, 10,

053039 (2008).

[7] J. P. Bagrow, Evaluating local community meth-

ods in networks, Journal of Statistical Mechanics:

Theory and Experiment, P05001 (2008).

[8] J. P. Bagrow and E. M. Bollt, A local method

for detecting communities, Physical Review E, 72,

046108 (2005).

[9] S. Bansal, S. Khandelwal, and L. A. Meyers,

Evolving clustered random networks. arXiv:

0808.0509 (2008).

[10] M. J. Barber, Modularity and community detec-

tion in bipartite networks, Physical Review E, 76,

066102 (2007).

[11] M. Blatt, S. Wiseman, and E. Domany, Super-

paramagnetic clustering of data, Physical Review

Letters, 76 (1996), 3251–3254.

[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte,

and E. Lefebvre, Fast unfolding of communities

in large network, Journal of Statistical Mechanics:

Theory and Experiment, P10008 (2008).

[13] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez,

and D.-U. Hwang, Complex networks: Struc-

ture and dynamics, Physics Reports, 424 (2006),

175–308.

References continued on page 1164.

October 2009 Notices of the AMS 1097

http://www.ams.org/notices/200909/rtx090901164p.pdf


References (Continued from page 1097)

[14] S. P. Borgatti, M. G. Everett, and P. R. Shirey, LS

Sets, Lambda Sets and other cohesive subsets, Social

Networks, 12 (1990), 337-357.

[15] J. M. Bower and H. Bolouri, eds., Computational

modeling of genetic and biochemical networks, The

MIT Press, Cambridge, Massachusetts, 2001.

[16] D. M. Boyd and N. B. Ellison, Social network

sites: Definition, history, and scholarship, Journal of

Computer-Mediated Communication, 13, 11 (2007).

[17] U. Brandes, D. Delling, M. Gaertler, R. Goerke,

M. Hoefer, Z. Nikoloski, and D. Wagner, On mod-

ularity clustering, IEEE Transactions on Knowledge

and Data Engineering, 20 (2008), 172–188.

[18] M. Brzozowski, T. Hogg, and G. Szabo, Friends

and foes: Ideological social networking, in Proceed-

ings of the SIGCHI Conference on Human Factors in

Computing, ACM Press, New York, NY, 2008.

[19] C. T. Butts, Network inference, error, and informant

(in)accuracy: a Bayesian approach, Social Networks,

25 (2003), 103–140.

[20] G. Caldarelli, Scale-free networks: Complex webs

in nature and technology, Oxford University Press,

Oxford, 2007.

[21] A. Capocci, V. D. P. Servedio, G. Caldarelli,

and F. Colaiori, Detecting communities in large

networks, Physica A, 352 (2004), 669–676.

[22] A. Clauset, Finding local community structure in

networks, Physical Review E, 72, 026132 (2005).

[23] A. Clauset, C. Moore, and M. E. J. Newman, Hier-

archical structure and the prediction of missing links

in networks, Nature, 453 (2008), 98–101.

[24] A. Clauset, M. E. J. Newman, and C. Moore, Find-

ing community structure in very large networks,

Physical Review E, 70, 066111 (2004).

[25] J. S. Coleman, An introduction to mathematical

sociology, Collier-Macmillan, London, 1964.

[26] L. Danon, A. Diaz-Guilera, J. Duch, and A. Are-

nas, Comparing community structure identification,

Journal of Statistical Mechanics: Theory and Experi-

ment, P09008 (2005).

[27] J.-C. Delvenne, S. N. Yaliraki, and M. Barahona,

Stability of graph communities across time scales.

arXiv:0812.1811 (2008).

[28] I. Derényi, G. Palla, and T. Vicsek, Clique perco-

lation in random networks, Physical Review Letters,

94, 160202 (2005).

[29] L. Donetti and M. A. Muñoz, Detecting network

communities: A new systematic and efficient algo-

rithm, Journal of Statistical Mechanics: Theory and

Experiment, P10012 (2004).

[30] J. Duch and A. Arenas, Community detection

in complex networks using extremal optimization,

Physical Review E, 72, 027104 (2005).

[31] J. Eisner, State-of-the-art algorithms for minimum

spanning trees: A tutorial discussion. Manuscript

available at http://cs.jhu.edu/~jason/papers/

#ms97 (1997).

[32] P. Elias, A. Feinstein, and C. E. Shannon, A

note on the maximum flow through a network, IRE

Transactions on Information Theory, 2, 4 (1956),

117–119.

[33] T. S. Evans and R. Lambiotte, Line graphs, link

partitions and overlapping communities, Physical

Review E, 80, 016105 (2009).

[34] D. J. Fenn, M. A. Porter, M. McDonald,

S. Williams, N. F. Johnson, and N. S. Jones,

Dynamic communities in multichannel data: An

application to the foreign exchange market during

the 2007–2008 credit crisis, Chaos, 19:3, 033119

(2009).

[35] M. Fiedler, Algebraic connectivity of graphs,

Czechoslovak Mathematical Journal, 23 (1973),

289–305.

[36] K. H. Fischer and J. A. Hertz, Spin glasses,

Cambridge University Press, Cambridge, 1993.

[37] L. R. Ford and D. R. Fulkerson, Maximal

flow through a network, Canadian Journal of

Mathematics, 8 (1956), 399–404.

[38] S. Fortunato and M. Barthélemy, Resolution limit

in community detection, Proceedings of the National

Academy of Sciences, 104 (2007), 36–41.

[39] S. Fortunato, Community detection in graphs.

arXiv:0906.0612 (2009).

[40] J. H. Fowler, Legislative cosponsorship networks

in the U.S. House and Senate, Social Networks, 28

(2006), 456–487.

[41] J. H. Fowler and S. Jeon, The authority of Supreme

Court precedent, Social Networks, 30 (2008), 16–30.

[42] L. C. Freeman, A set of measures of centrality based

upon betweenness, Sociometry, 40 (1977), 35–41.

[43] , Segregation in social networks, Sociological

Methods Research, 6 (1978), 411–429.

[44] , The development of social network analysis:

A study in the sociology of science, Empirical Press,

Vancouver, Canada, 2004.

[45] T. M. J. Fruchterman and E. M. Reingold, Graph

drawing by force-directed placement, Software–

Practice and Experience, 21 (1991), 1129–1164.

[46] G. Gan, C. Ma, and J. Wu, Data clustering: Theory,

algorithms, and applications, Society for Industrial

and Applied Mathematics, Philadelphia, 2007.

[47] J. W. Gibbs, Elementary principles in statistical me-

chanics, Charles Scribner’s Sons, New York, NY,

1902.

[48] M. Girvan and M. E. J. Newman, Community struc-

ture in social and biological networks, Proceedings

of the National Academy of Sciences, 99 (2002),

7821–7826.

[49] M. C. González, C. A. Hidalgo, and A.-L.

Barabási, Understanding individual human mobil-

ity patterns, Nature, 453 (2008), 779–782.

[50] J. C. Gower and G. J. S. Ross, Minimum spanning

trees and single linkage cluster analysis, Applied

Statistics, 18 (1969), 54–64.

[51] M. Granovetter, The strength of weak ties,

The American Journal of Sociology, 78 (1973),

1360–1380.

[52] R. Guimerà and L. A. N. Amaral, Functional cartog-

raphy of complex metabolic networks, Nature, 433

(2005), 895–900.

[53] R. Guimerà, M. Sales-Pardo, and L. A. N. Ama-

ral, Module identification in bipartite and directed

networks, Physical Review E, 76, 036102 (2007).

[54] N. Gulbahce and S. Lehmann, The art of

community detection, Bioessays, 30 (2008), 934–938.

[55] M. S. Handcock, A. E. Rafter, and J. M. Tantrum,

Model-based clustering for social networks, Jour-

nal of the Royal Statistical Society A, 170 (2007),

301–354.

[56] M. B. Hastings, Community detection as an in-

ference problem, Physical Review E, 74, 035102

(2006).

1164 Notices of the AMS Volume 56, Number 9



[57] J. M. Hofman and C. H. Wiggins, Bayesian ap-

proach to network modularity, Physical Review

Letters, 100, 258701 (2008).

[58] J. Hopcroft, O. Khan, B. Kulis, and B. Selman,

Tracking evolving communities in large linked net-

works, Proceedings of the National Academy of

Sciences, 101 (2004), 5249–5253.

[59] T. Hogg, D. Wilkinson, G. Szabo, and M. Br-

zozowski, Multiple relationship types in online

communities and social networks, in Proceedings of

the AAAI Spring Symposium on Social Information

Processing, AAAI Press (2008).

[60] G. C. Homans, The human group, Harcourt, Brace,

New York, 1950.

[61] S. C. Johnson, Hierarchical clustering schemes,

Psychometrica, 32 (1967), 241–254.

[62] T. Kamada and S. Kawai, An algorithm for drawing

general undirected graphs, Information Processing

Letters, 31 (1989), 7–15.

[63] F. Képès, ed., Biological networks, Complex Sys-

tems and Interdisciplinary Science, Vol. 3, World

Scientific, Hackensack, NJ, 2007.

[64] B. W. Kernighan and S. Lin, An efficient heuristic

procedure for partitioning graphs, The Bell System

Technical Journal, 49 (1970), 291–307.

[65] T. G. Kolda and B. W. Bader, Tensor decomposi-

tions and applications, SIAM Review, 51:3 (2009), in

press.

[66] C. P. Kottak, Cultural anthropology, McGraw-Hill,

New York, 5th ed., 1991.

[67] R. Kumar, J. Novak, and A. Tomkins, Structure

and evolution of online social networks. 12th Interna-

tional Conference on Knowledge Discovery and Data

Mining (2006).

[68] R. Lambiotte, J.-C. Delvenne, and M. Bara-

hona, Dynamics and modular structure in networks.

arXiv:0812.1770 (2008).

[69] A. Lancichinetti, S. Fortunato, and J. Kertesz,

Detecting the overlapping and hierarchical commu-

nity structure of complex networks, New Journal of

Physics, 11, 033015 (2009).

[70] A. Lancichinetti, S. Fortunato, and F. Radicchi,

Benchmark graphs for testing community detection

algorithms, Physical Review E, 93, 046110 (2008).

[71] S. Lehmann, M. Schwartz, and L. K. Hansen, Bi-

clique communities, Physical Review E, 78, 016108

(2008).

[72] E. A. Leicht and M. E. J. Newman, Community struc-

ture in directed networks, Physical Review Letters,

100, 118703 (2008).

[73] K. Lewis, J. Kaufman, M. Gonzalez, M. Wimmer,

and N. A. Christakis, Tastes, ties, and time: A

new (cultural, multiplex, and longitudinal) social net-

work dataset using Facebook.com, Social Networks,

30 (2008), 330–342.

[74] R. Luce and A. Perry, A method of matrix anal-

ysis of group structure, Psychometrika, 14 (1949),

95–116.

[75] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,

D. Chklovskii, and U. Alon, Network motifs: Sim-

ple building blocks of complex networks, Science, 298

(2002), 824–827.

[76] M. Molloy and B. Reed, A critical point for ran-

dom graphs with a given degree sequence, Random

Structures and Algorithms, 6 (1995), 161-180.

[77] J. Moody, Peer influence groups: Identifying dense

clusters in large networks, Social Networks, 23

(2001), 261–283.

[78] J. Moody and D. R. White, The cohesiveness of

blocks in social networks, Sociological Methodology,

31 (2001), 305–359.

[79] , Structural cohesion and embeddedness: A

hierarchical concept of social groups, American

Sociological Review, 68 (2003), 103–127.

[80] M. E. J. Newman, Scientific collaboration networks:

I. Network construction and fundamental results,

Physical Review E, 64, 016131 (2001).

[81] , Scientific collaboration networks: II. Shortest

paths, weighted networks, and centrality, Physical

Review E, 64, 016132 (2001).

[82] , The structure of scientific collaborations, Pro-

ceedings of the National Academy of Sciences, 98

(2001), 404–409.

[83] , The structure and function of complex

networks, SIAM Review, 45 (2003), 167–256.

[84] , Fast algorithm for detecting community

structure in networks, Physical Review E, 69, 066133

(2004).

[85] , A measure of betweeenness centrality based

on random walks, Social Networks, 27 (2005), 39–54.

[86] , Finding community structure in networks us-

ing the eigenvectors of matrices, Physical Review E,

74, 036104 (2006).

[87] , Modularity and community structure in net-

works, Proceedings of the National Academy of

Sciences, 103 (2006), 8577–8582.

[88] , The physics of networks, Physics Today,

61:11 (2008), pp. 33–38.

[89] M. E. J. Newman and M. Girvan, Mixing patterns

and community structure in networks, in Statistical

Mechanics of Complex Networks (R. Pastor-Satorras,

J. Rubi, and A. Diaz-Guilera, eds.), Springer-Verlag,

Berlin, 2003.

[90] , Finding and evaluating community structure

in networks, Physical Review E, 69, 026113 (2004).

[91] M. E. J. Newman and E. A. Leicht, Mixture models

and exploratory analysis in networks, Proceedings

of the National Academy of Sciences, 104 (2007),

9564–9569.

[92] A. Noack, Modularity clustering is force-directed

layout, Physical Review E, 79, 026102 (2009).

[93] A. Noack and R. Rotta, Multi-level algorithms

for modularity clustering, in Experimental Algo-

rithms: 8th International Symposium, SEA 2009,

Dortmund, Germany, June 4–6, 2009, Proceedings,

Springer-Verlag, New York, 2009, pp. 257–268.

[94] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó,

M. Argollo de Menezes, K. Kaski, A.-L. Barabási,

and J. Kertész, Analysis of a large-scale weighted

network of one-to-one human communication, New

Journal of Physics, 9 (2007), 179.

[95] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó,

D. Lazer, K. Kaski, J. Kertész, and A.-L. Barabási,

Structure and tie strengths in mobile communication

networks, Proceedings of the National Academy of

Sciences, 104 (2007), 7332–7336.

[96] G. Palla, A.-L. Barabási, and T. Vicsek, Quan-

tifying social group evolution, Nature, 446 (2007),

664–667.

[97] G. Palla, I. Derényi, I. Farkas, and T. Vicsek,

Uncovering the overlapping community structure of

October 2009 Notices of the AMS 1165



complex networks in nature and society, Nature, 435

(2005), 814–818.

[98] P. Pons and M. Latapy, Computing communities

in large networks using random walks, Journal

of Graph Algorithms and Applications, 10 (2006),

191–218.

[99] K. T. Poole and H. Rosenthal, Congress: A

political-economic history of roll call voting, Oxford

University Press, Oxford, 1997.

[100] M. A. Porter, P. J. Mucha, M. E. J. Newman, and A. J.

Friend, Community structure in the United States

House of Representatives, Physica A, 386 (2007),

414–438.

[101] M. A. Porter, P. J. Mucha, M. E. J. Newman, and

C. M. Warmbrand, A network analysis of commit-

tees in the United States House of Representatives,

Proceedings of the National Academy of Sciences,

102 (2005), 7057–7062.

[102] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning

sparse matrices with eigenvectors of graphs, SIAM

Journal on Matrix Analysis and Applications, 11

(1990), 430–452.

[103] J. Reichardt and S. Bornholdt, Detecting fuzzy

community structures in complex networks with a

Potts model, Physical Review Letters, 93, 218701

(2004).

[104] , Statistical mechanics of community detec-

tion, Physical Review E, 74, 016110 (2006).

[105] J. Reichardt and D. R. White, Role models for

complex networks, European Physical Journal B, 60

(2007), 217–224.

[106] S. A. Rice, The identification of blocs in small political

bodies, American Political Science Review, 21 (1927),

619–627.

[107] T. Richardson, P. J. Mucha, and M. A. Porter,

Spectral tripartitioning of networks, Physical Review

Letters E, in press (2009), arXiv:0812.2852.

[108] M. Rosvall and C. T. Bergstrom, Maps of ran-

dom walks on complex networks reveal community

structure, Proceedings of the National Academy of

Sciences, 105 (2008), 1118–1123.

[109] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and

L. A. N. Amaral, Extracting the hierarchical or-

ganization of complex systems, Proceedings of the

National Academy of Sciences, 104, 39 (2007),

15224–15229.

[110] S. E. Schaeffer, Graph clustering, Computer Science

Review, 1 (2007), 27–64.

[111] P. Schuetz and A. Caflisch, Efficient modularity

optimization by multistep greedy algorithm and ver-

tex mover refinement, Physical Review E, 77, 046112

(2008).

[112] F. Schwabl, Statistical mechanics, Springer-Verlag,

New York, NY, 2002.

[113] R. Scupin, Cultural anthropology—a global perspec-

tive, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[114] S. Seidman and B. Foster, A graph theoretic

generalization of the clique concept, Journal of

Mathematical Sociology, 6 (1978), 139–154.

[115] T. M. Selee, T. G. Kolda, W. P. Kegelmeyer, and

J. D. Griffin, Extracting clusters from large datasets

with multiple similarity measures using IMSCAND, in

CSRI Summer Proceedings 2007, Technical Report

SAND2007-7977, Sandia National Laboratories, Al-

buquerque, NM and Livermore, CA (M. L. Parks and

S. S. Collis, eds.), 2007, pp. 87–103.

[116] C. R. Shalizi, M. F. Camperi, and K. L. Klinkn-

er, Discovering functional communities in dynamical

networks, in Statistical Network Analysis: Models,

Issues, and New Directions, Springer-Verlag, New

York, NY (E. M. Airoldi, D. M. Blei, S. E. Feinberg,

A. Goldenberg, E. P. Xing, and A. X. Zheng, eds.),

2007, pp. 140–157.

[117] H. Simon, The architecture of complexity, Proceed-

ings of the American Philosophical Society, 106

(1962), 467–482.

[118] L. Sirovich, A pattern analysis of the sec-

ond Renquist U.S. Supreme Court, Proceedings of

the National Academy of Sciences, 100 (2003),

7432–7437.

[119] P. B. Slater, Established clustering procedures for

network analysis. arXiv:0806.4168 (2008).

[120] S. H. Strogatz, Exploring complex networks, Nature,

410 (2001), 268–276.

[121] V. A. Traag and J. Bruggeman, Community de-

tection in networks with positive and negative links.

arXiv:0811.2329 (2008).

[122] A. L. Traud, E. D. Kelsic, P. J. Mucha, and M. A.

Porter, Community structure in online collegiate

social networks. arXiv:0809.0960 (2008).

[123] G. Wang, Y. Shen, and M. Ouyang, A vector parti-

tioning approach to detecting community structure

in complex networks, Computers & Mathematics

with Applications, 55 (2007), 2746–2752.

[124] S. Wasserman and K. Faust, Social network anal-

ysis: Methods and applications, Structural Analysis

in the Social Sciences, Cambridge University Press,

Cambridge, 1994.

[125] A. S. Waugh, L. Pei, J. H. Fowler, P. J. Mucha,

and M. A. Porter, Party polarization in Congress: A

social networks approach. arXiv:0907.3509 (2009).

[126] R. S. Weiss and E. Jacobson, A method for the

analysis of the structure of complex organizations,

American Sociological Review, 20 (1955), 661–668.

[127] H. C. White, S. A. Boorman, and R. L. Breiger,

Social structure from multiple networks. I. Blockmod-

els of roles and positions, The American Journal of

Sociology, 81, 4 (1976), 730–780.

[128] Wikipedia, List of social networking websites.

http://en.wikipedia.org/wiki/List_of_

social_networking_websites, accessed 13

February 2009.

[129] F. Wu and B. A. Huberman, Finding communities

in linear time: A physics approach, The European

Physical Journal B, 38 (2004), 331–338.

[130] F. Y. Wu, The Potts model, Reviews of Modern

Physics, 54 (1982), 235–268.

[131] W. W. Zachary, An information flow model for

conflict and fission in small groups, Journal of

Anthropological Research, 33 (1977), 452–473.

[132] L. V. Zhang, O. D. King, S. L. Wong, D. S. Goldberg,

A. H. Y. Tong, G. Lesage, B. Andrews, H. Bussey,

C. Boone, and F. P. Roth, Motifs, themes and

thematic maps of an integrated Saccharomyces cere-

visiae interaction network, Journal of Biology, 4, 6

(2005).

[133] Y. Zhang, A. J. Friend, A. L. Traud, M. A. Porter,

J. H. Fowler, and P. J. Mucha, Community structure

in Congressional cosponsorship networks, Physica A,

387 (2008), 1705–1712.

1166 Notices of the AMS Volume 56, Number 9


	rtx090901082p.pdf
	rtx090901164p.pdf

