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ABSTRACT

We provide a framework for modeling social network formation
through conditional multinomial logit models from discrete choice
and random utility theory, in which each new edge is viewed as
a “choice” made by a node to connect to another node, based on
(generic) features of the other nodes available to make a connec-
tion. This perspective on network formation unifies existing models
such as preferential attachment, triadic closure, and node fitness,
which are all special cases, and thereby provides a flexible means
for conceptualizing, estimating, and comparing models. The lens of
discrete choice theory also provides several new tools for analyzing
social network formation; for example, the significance of node
features can be evaluated in a statistically rigorous manner, and
mixtures of existing models can be estimated by adapting known
expectation-maximization algorithms. We demonstrate the flexi-
bility of our framework through examples that analyze a number
of synthetic and real-world datasets. For example, we provide rig-
orous methods for estimating preferential attachment models and
show how to separate the effects of preferential attachment and tri-
adic closure. Non-parametric estimates of the importance of degree
show a highly linear trend, and we expose the importance of look-
ing carefully at nodes with degree zero. Examining the formation
of a large citation graph, we find evidence for an increased role of
degree when accounting for age.
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1 INTRODUCTION

Understanding how networks form and evolve is an essential com-
ponent of understanding their structure, which in turn underlies
the basis for understanding the broad range of processes that oc-
cur on networks. Models of social network formation can largely
be decomposed into node formation and edge formation. In this
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work, we argue that edge formation can be effectively modeled as
a choice made by an actor (or actors) in the network to instantiate
a connection to another node. The diverse research on network
formation has led to many models and mechanisms of edge for-
mation, including preferential attachment [2], uniform attachment
[12], triadic closure [31], random walks [65, 78], homophily [55],
copying edges from existing nodes [35, 39], latent space structures
[22, 41, 55], inherent node fitness [7, 11], and combinations of all of
these [28, 40, 43]. Here, we frame edge formation as a discrete choice
process and derive a family of discrete choice models [47, 74] that
subsume a wide range of existing models in a unified framework
and also naturally opens up a host of powerful extensions.
Discrete choice models are commonly employed in economics,
social psychology, and statistics as a way to model how individuals
make choices from a slate of discrete alternatives [1]. Typically,
the alternatives have associated features, and statistical models of
discrete choice make it possible to estimate the relative importance
of such features. Such models have been used to answer questions
such as how consumers choose goods [67], how people choose
where they live [46], how students choose what college to attend
[21], and how commuters choose between different modes of trans-
portation [75]. Discrete choice analysis is also used to understand
how choices vary depending on the context in which they are
framed: in online commerce, this could be how web layouts lead
to different purchasing priorities [26]; for choosing colleges, this
could be incorporating the effect of the national economy. In this
paper, we demonstrate how discrete choice models can similarly
help us understand the factors driving social network evolution.
The starting point for the present work is the observation that
edge formation events in social networks are naturally viewed as
discrete choices. For simplicity, consider a directed graph where
edges are formed one by one, where we can think of the formation
of a directed edge (i, j) as i “choosing” to connect with j, where the
set of alternatives available to i is the set of all other nodes. (While
undirected graph models are common in social network analysis,
the underlying formation procedure is almost always asymmetric.
For example, the Facebook friendship graph is typically modeled as
an undirected graph [77], but the friendships are proposed by one
of the two nodes in an edge.) The key modeling question is easy to
state: why did i choose j? This question has long been the informal
subject of network formation modeling and at the same time the
exact question that discrete choice models and analysis have been
designed to answer. However, up to this point, network formation
models have largely been decoupled from discrete choice theory.
In employing discrete choice analysis, we focus on the condi-
tional multinomial logit model, commonly called the conditional
logit model for short, which is a foundational workhorse of discrete
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choice modeling. The model belongs to the family of random utility
models, where choices are interpretable as those of a rational actor
selecting the alternative with the largest “utility” sampled from
random variables that decompose into the inherent utility of the
alternative and a noise term. With the conditional logit model, we
can use existing optimization routines to estimate model parame-
ters and existing statistical methods to asses the uncertainty of the
estimates. Discrete choice models can also easily restrict the set of
available alternatives, where it might not be reasonable to assume
that the entire set of nodes is available for friendship. For example,
sometimes only “friends of friends” are considered [24, 28, 40].

In this paper, we first show that many popular network formation
mechanisms can be rewritten as conditional logit models, including
preferential attachment, uniform attachment, node fitness, latent
space models, and models of homophily. However, the real power
of discrete choice models for social network analysis is the ability
to combine different features (e.g., node degree and node age), as
well as different mechanisms (e.g., triadic closure and preferential
attachment) and estimate their relative roles. Social networks are
enormously varied in their structure [27], but existing methods
often do a poor job at modeling this diversity. Thus, beyond unify-
ing the network formation and discrete choice literature, we also
develop several new tools for social network analysis. For example,
we show how to estimate models to distinguish the effects of pref-
erential attachment and triadic closure. We demonstrate these tools
by analyzing the formation of the Flickr social network and the
formation of a citation network. We find on Flickr that accounting
for triadic closure greatly reduces the estimated role of degree in
choosing who to connect to, and that nodes with degree zero have a
remarkably high utility. Our estimates of preferential attachment in
the citation network are similar to those observed in prior studies.
When accounting for the age of a paper, we find evidence for linear
preferential attachment. However, for a fixed degree, we find that
age is negatively correlated with the likelihood of a new citation
(i.e., older papers are less likely to be cited).

The key assumption underlying our framework is that the avail-
able data actually captures edge formation events (either through
edge timestamps or other sequential information). In contrast, many
existing approaches to understanding network formation focus on
observing only the structural properties of a network at a single
point of observation, e.g., its degree distribution, and initiating a
deductive process to try and understand how variations in edge
formation would lead to different outcomes [2, 7, 28, 43]. This ap-
proach leads to tidy analyses and easy-to-characterize asymptotic
properties, but model selection in this context is strongly dependent
on what properties are compared. Different underlying formation
processes can lead to graphs with indistinguishable properties. For
example, many different formation processes result in the same
heavy-tailed degree distributions [52]. Thus, when “fitting” out-
come measurements in this way, one has to know (or posit), e.g.,
the relative rates of node formation and edge formation. However,
when temporal or sequential data is available [25, 56], our frame-
work overcomes these limitations by incorporating this structure.

Additional related work. There is a strong connection between
our work and work on link prediction and missing data methods us-
ing network features to predict edges [15, 42]. A network formation

model implicitly makes claims about what edges are most likely to
form next, and thus can be evaluated by the same metrics as link
prediction algorithms [44]. We use predictive accuracy as a measure
of goodness of fit, but our primary concern is interpretability of
the model and estimates, which is one of the advantages of the
conditional logit model.

In sociology, stochastic actor-oriented models (SAOMs) employ
a similar logit choice [69, 70]; however, these models are targeted
towards data collected as a few snapshots rather than edge-by-edge
formation. SAOMs also model the rate at which nodes form new
relationships, whereas we condition on the node initiating the new
edge, providing better estimates of model parameters. There are
also sociological models such as relational event models [10] and
dynamic network actor models [71] that use fine-grained temporal
information, yet these also do not condition on the initiator node as
we do. While these sociological models can incorporate notions of
network formation (e.g., preferential attachment), our conditional
logit framework actually cleanly subsumes a wide range of models
as special cases.

Finally, estimating the parameters that drive edge formation is
different from identifying the factors that could have lead to the
observed graph. The latter question is often pursued with so-called
exponential random graph models (ERGMs) [63, 79, 81]. However,
these models do not consider individual edge events, are hard to
estimate, and have known pathologies [13, 66].

2 DISCRETE CHOICE AND EDGE
FORMATION

We now develop network formation through the lens of discrete
choice. Throughout this paper, we assume that the networks are
directed. Again, while undirected graphs are common in social net-
work analysis, the actual edge formation process often has directed
initiation. In the common setting of “growing graphs,” nodes arrive
one at a time and form edges when arriving in a network. In these
cases, the newly arriving node is considered to be the node initi-
ating the connection; such analysis is standard with, e.g., classical
preferential attachment models [2].

When modeling the directed formation of an edge (i, j), two
processes need to be distinguished, roughly corresponding to the
questions “who is i?” (the chooser) and “who is j?” (the chosen). In
this paper, we focus on understanding the latter, i.e., the formation
of (i, j) as the selection of j conditional on knowing that i is ready to
form an edge. Thus, our discrete choice models of edge formation
can be readily estimated from data that implicitly or explicitly
contains a record of initiating i nodes and used for subsequent
analysis, as we show in Sections 3 and 4. Beyond the scope of this
work, our model of “j conditional on i” can be paired with a model of
“Initiations by i” for a full generative model of network formation.

2.1 Background on discrete choice models

We now review discrete choice models generically, which we will
then translate to the context of edge formation in Section 2.2. Con-
sider a universe of alternatives X and a dataset consisting of n
different choices, indexed by k = 1,.. ., n. Each choice (j, C) con-
sists of a choice set C C X and a chosen item j € C. The elements
in C are mutually exclusive choice alternatives, and exactly one



element from C is chosen. We consider each element j € C to be
represented by a vector of features x; (for example, in our analysis
in Section 2.2, x; will be the feature vector of a node in the graph,
and C will represent a set of nodes). We let D = {(jk,Ck)}Zzl
denote the choice data.

A broad family of discrete choice models is the family of random
utility models (RUMs), of which the conditional logit is an important
special case. Each alternative j has some inherent utility to the agent
i making the choice; with the conditional logit, we model this utility
as a linear function of j’s features x;:

ujj = HTxJ-,
for some (latent) parameter vector 0 that is fixed across individuals i.
Random utility models assume that agents make “rational” choices
by maximizing random utilities centered on these inherent utilities.
More formally, the utility U; j observed by the actor is given by
Ui,j = uj,j + & j, where & j is a noise term. The probability P;(j, C)
of i choosing option j from the choice set C is

P;i(j,C) = Pr(j = argmax U; ¢).
teC 7

When the ¢; j are i.i.d. standard Gumbel, the probability of choos-
ing each alternative is proportional to the exponentiated inherent
utility [1]:

exp 0T x j
YeecexpTx

The above model is the conditional multinomial logit model of
discrete choice, though it is often referred to simply as the condi-
tional logit or multinomial logit (MNL) model. If the noise terms
&;,j are distributed i.i.d. Normal, then the model is the independent
multinomial probit. In probit models, the choice probabilities are
no longer proportional to utilities as in Equation (1). The Gumbel
assumption is common in discrete choice theory and will facilitate
our connections to a variety of network formation mechanisms.
There are more complex random utility models that can impose
dependence between noise terms [74] and there also is a growing
literature of flexible choice models [4, 60, 76] designed to model
context effects and other varied violations of the independence of
irrelevant alternatives [45] (a storied axiom satisfied by the condi-
tional multinomial logit model). We leave the relationships of these
models to network formation as avenues for future research.

Pi(j.C) = ¢Y)

2.2 Edge formation as discrete choice

With the above formalisms in place, we now develop network for-
mation from a discrete choice perspective. We begin by showing
how several well-known models can be conveniently expressed as
conditional logit models, with a summary given in Table 1. All mod-
els are designed to grow simple graphs (i.e., without multi-edges),
and the choice set C excludes any nodes to which the chooser i is
already connected. Every item is represented by its features that,
importantly, can evolve over time. The features x;,; of node j at
time t are thus always time-indexed, but we often suppress the ¢ to
reduce notational clutter.

Preferential attachment. We start with the generalized Barabasi-
Albert model [2, 8, 36], also known as the generalized Price model [59],
one of the most studied models in the network formation literature.

It is typically stated as a growth model of a time-evolving graph
Gy = (V4,Ep),t = 1,2,3,.. ., and when a new node arrives it con-
nects to m distinct existing nodes j with a probability proportional
to a power of their degree d; ; at time ¢,
. djse
PG, V) = Sy A7 )
eV, 4y 4
The exponent parameter « controls the relative importance of de-
gree [36]. The case where @ = 1 is called linear preferential at-
tachment, and produces networks that can mimic a range of struc-
tural properties observed in empirical networks. If we represent
each potential neighbor j with the time-indexed one-dimensional
“feature vector” xj; = logd; ; and employ a conditional logit
model as in Equation (1), we obtain a utility of j for i at time ¢
of uj j,+ = 0logd; ;. Here the choice model parameter ¢ plays the
exact role of @, since ¢?1°89. = d.et.

Given a growing network Gy, we can construct a choice dataset
D from this network by extracting the node j;, node sets V;, and
degree sequence (d1,¢, - - -,d|y,|,;) at each time-step. The prefer-
ential attachment model has only one parameter, 6 = a. The log-
likelihood for that parameter given a dataset is then:

exp(alogd;)

la; D) = log __Xplalogd))
U,CZED & S rec explalogdy)

= Z alogd; —log Z exp(alogdy)|.
(.C)eD teC

We’ve suppressed the time-index ¢ from the features log d; to reduce
clutter, but emphasize that dy is the degree at the time of the choice.

Non-parametric preferential attachment. The above model as-
sumes an attachment kernel of a particular parametric form. From a
discrete choice perspective, one can also estimate the role of degree
in edge formation non-parametrically by estimating a coefficient 6y
for each degree k = 0, ..., n— 1 individually. This approach has the
added benefit of being able to assign positive probability to choos-
ing nodes with degree zero. Under this model, the log-likelihood of
the parameters 0 = (6o, ..., 0,—1) given the dataset is:

exp de
G0 = ) T ot
(j,C)eD 4
= Z (de —logz exp@df).
(G,C)eD e

Again we’ve suppressed time-indexing to simplify the presenta-
tion. Pham et al. [58] previously described a version of the above
likelihood as a means of measuring the attachment kernel using
maximum likelihood, albeit without making the connection to dis-
crete choice.

Uniform attachment. A simple edge formation model is to sam-
ple a new neighbor uniformly at random from all nodes [12]. There
are no parameters in this model, but we can still write down the
likelihood of the model given a dataset, which will be useful when
we later combine this model with others within a mixture model:

(D)= ) log exp (1 > —loglcl.

(,0eD 2eecexp(l) (,0eD



Table 1: Network formation models framed as utility func-
tions for a conditional logit. Where appropriate, we use the
traditional notation for the parameters of each process.

Process uj,j C
Uniform attachment [12] 1 \%
Preferential attachment [2, 36] alog d; \%
Non-parametric PA [54, 58, 62] Gd]. \%4
Triadic closure [61] 1 {j : FoF; ;}
FoF attachment [31, 65, 78] alogn;,j Vv
PA, FoFs only alogd; {j : FoF; ;}

Individual node fitness [11] 0

PA with fitness [6, 53] alogd; + 0;
Latent space [22, 41, 55] B-d(,j)
Stochastic block model [33] Wg;i,9;
Homophily [48] h-1{g; = g;}

<< < <<

Triadic closure. A variant of uniform attachment is for i to attach
to new neighbors uniformly at random from the set of their friends-
of-friends, as opposed to the set of all nodes. This process effectively
models triadic closure [61]. It has the same simple functional form of
the uniform model, but now the choice set C varies with each choice,
namely, the choice set is restricted to be only the friends of friends
of node i (the chooser) to which i is not already connected. This
change in choice set can also be achieved by assuming the utility
of j to i at time ¢ is u; j ; = log(1{FoF; j }), where 1{FoF; j ;} is
a boolean indicating whether i and j are friends of friends at time ¢,
and then letting the choice set revert to the full node set.

An additional model that naturally combines the ideas of pref-
erential attachment and befriending friends-of-friends takes the
number of friends in common between i and j as a feature. We
could define this feature as n; j,r = [{k : €; x ; A e j ;}|, where
e; .+ indicates whether there is an edge between i and k at time
t. The corresponding utility would be u; j ; = alogn; j ¢ This
model is similar (but not equivalent) to random walk-based forma-
tion models [31, 65, 78], which emphasize formation within a local
neighborhood.

Node fitness. Another line of formation models that is subsumed
by the discrete choice framework are those involving fitness. In
this work, nodes choose to connect to others based on some intrin-
sic latent fitness score. Certain distributions of fitness values lead
to a scale-free degree distribution [11], providing an alternative
explanation to preferential attachment for modeling such degree
distributions. We can express the node fitness model by a condi-
tional logit model with separate fixed effect 6; for each node j (so
the feature of a node is an indicator vector of its identity). The
likelihood of the fitness parameters 6 given the data is then:

exp 0;
1(6; = log =————
D) Z 8 S recexply

4, 0)eD
= Z (Oj —log Z exp 9{).
(J,C)eD teC

This formation model is equivalent to the classic Bradley-Terry-
Luce model of discrete choice for estimating the quality of alter-
natives [45]. Alternatively, one could replace the individual fixed
effects with surrogate features of node fitness such as an auxiliary

measure of gregariousness (in the case of social networks), or the
impact factor of a paper’s journal (in the case of citations networks).
A related model proposes selection probabilities proportional to
the product of node fitness and degree [6, 53]. This model can be
written as a conditional logit model with u; j ; = alogd; ; + 0;.

Latent space models. Another class of network formation mod-
els postulates the existence of a latent space that drives connec-
tions between nodes. Examples of latent spaces include Euclidean
space [22], hyperbolic space [37], a tree [41], a circle [55], or a set of
discrete classes [23]. While the conditional logit model in the form
that we describe it does not facilitate finding the best-fitting latent
space assignment to explain the data, it can be used to estimate
the relative importance of a known latent space given a distance
function d(i, j). As one example from the family of latent space
models, in the community-guided attachment (CGA) model [41] all
nodes have a distance derived from the height A(i, j) of common
parents in a latent tree structure situating all nodes i and j. Given
this tree as known, a node connects to another proportionally to
¢ -1 for some scalar ¢ > 0. As a conditional logit model, the cor-
responding utility function is u; j = —h(i, j) - log(c). The parameter
vector 6 = log ¢ can be retrieved by fitting a conditional logit with
a known h(i, j) as the only variable and transforming the estimated
parameter with ¢ = exp(0). Assuming that the latent space repre-
sentation is given is a strong assumption, and fitting such a model
while estimating the latent space representation (e.g. as done by
Hoff et al. [22] in Euclidean space) is much more difficult.

Additional models. Conditional logit models are very flexible
and can deal with multiple features and interactions between them.
Any number of features can be added, including node covariates
and structural features like a node’s clustering coefficient [3] or
age [12, 40]. Conditional logit models can also be used to investigate
the role of homophily [48] in edge formation, by adding a binary
feature indicating whether nodes i and j are part of the same class.

Table 1 summarizes how several network formation models fit
within the discrete choice framework via their corresponding utility
functions and choice sets. A major advantage of this framework is
that different features can easily be combined into a single model
and jointly estimated. Or, when suitable, one can employ a mixture
of conditional logit models, as we show in the next section.

2.3 Combining modes using Mixed Logit

So far we have written a range of existing and new edge formation
models as conditional logit models, a specific type of discrete choice
model. But several existing edge formation models that do not fit
neatly into the conditional logit framework, meanwhile, align ex-
actly with the use of mixture models in discrete choice modeling.
Following our success formulating edge formation models as condi-
tional logit models, in this subsection we develop mixed conditional
logit formulations of several additional models.

A common proposal to make network formation models more
flexible is to augment an existing model by allowing nodes to pick
neighbors uniformly at random with some probability 1 — p, while
running the ordinary model with probability p [17, 35, 39, 43]. This
augmentation increases flexibility because it enables the model
to explain edge events that may otherwise have probability zero.



Within discrete choice, this approach is precisely a mixed logit
model where one of the mixture modes is uniform attachment.

While the conditional logit estimates a single parameter vector
representing average preferences as shared by all agents, the mixed
logit model is often used to account for differences in preferences
across various types of agents. In its most general form, the mixed
logit is expressed using a probability distribution f over different
instantiations of the parameter vector 0:

exp 0T x j
Ziecexp0Tx
In this work, we will only consider discrete mixtures of M logits,
also called a latent class model [32]:

M
Pi(]',C) = Z TTm

-~ 1
m=1 21ec exp Opx;

P;i(j,C) = f(0)do.

exp Hglxj

where an/le m = 1 and the weights 71, . . ., mp model the relative
prevalence of each mode.

Copy model. The copy model is a classic formation process that
can be written as a mixed logit with two modes. In the first mode,
new edges connect proportional to degree with probability p, while
in the second mode they connect uniformly at random with prob-
ability 1 — p [17, 43]. As a conditional logit model, the utilities of
the two modes are ug(l) = logdy and ugf) = 1, respectively, and
the class probabilities are (71, 72) = (p,1 — p). (This is a special
case of the original copy model where d edges are copied from
a sampled vertex [39]; the model here is when d = 1, which is
often used for analysis [19].) The connection between relaxations
of preferential attachment and mixture models was also recently
observed by Medina et al. [49].

Local search model. Another example of a model with multiple
modes is the Jackson-Rogers model of edge formation as a mixture
of uniform attachment and triadic closure [24, 28]. The original
model is based on a relative rate r* between edges forming at
random and edges formed locally. It also has edges form based on
respective acceptance probabilities. We describe a simplified version
of this model, which we’ll call the local search model, where edges
connect to nodes selected uniformly at random from the full node
set with probability r and uniformly at random from the set of
friends-of-friends with probability 1 — r.! We can represent this
simplified process with a two-mode mixed logit model. In this case
the mixture parameters are (71, 72) = (r,1 — r) and both modes
have the same utility function uyx = 1 but their choice sets differ so
that the second mode only considers friends-of-friends.?

Table 2 overviews the mixture model formulations described
above, as well as a new model—the (r, p)-model—that we use in
Section 4.2 to analyze preferential attachment effects.

3 ESTIMATION AND INFERENCE

To learn a discrete choice model of network formation from data,
we assume that we have access to a sequence of directed edges, in

! Since the r* parameter in the original presentation is actually the rate of uniform

N
attachment, we can relate it to our r through r = # For example, if the rate

between random and friend-of-friend edges is one to one (r* = 1), then r = 0.5.
2 A model with a restricted choice set, for example to only friends-of-friends, gives a
likelihood of zero to choices outside the choice set.

Table 2: Network formation models framed as mixed logits.
Each mixture component is a mode. FoF refers to friend-of-
friending, also called local search or triadic closure. We de-
fine a new (r,p)-model as a natural generalization of prior
ideas once we put network formation models in the lan-
guage of discrete choice.

Modes

Uniform, PA
New node, PA, none
Uniform, Uniform FoF
Uniform, PA, Uniform FoF, PA FoF

Process

Copy model [35]
Node types [38]
Local search [24, 28]
(r, p)-model

chronological order. This sequence of edges needs to be recast as
choice data in order to fit a choice model. For every formed edge
(i, j), we create a data point consisting of the choice j, the choice set
of candidates nodes at the time, and the features of each candidate
node at the time.

Given a data set and a conditional logit model, one can write
out the log-likelihood, as shown in Section 2.2. For any conditional
logit model with a linear utility u; ; = 9ij, the likelihood function
is convex with respect to the variables § and can be efficiently
maximized using standard gradient-based optimization (e.g., BFGS).
The functional form of the logit leads to straightforward gradients.
For example, for preferential attachment, the gradient is

Yyec logdy - exp(alogdy)
2Zyec exp(alogdy)

logdy —

s

ail(a;ﬂ) =
@ (x,0)eD

where the time-dependence of the features (degrees) have been
suppressed to reduce clutter. Gradients for the other choice models
in Section 2.2 are omitted but straightforward.

One advantage of likelihood-based model fitting is that we can
compute standard errors and confidence intervals of the parameters.
In particular, the standard errors can be computed with VHT [74],
where H is the Hessian matrix of second derivatives of the log-
likelihood at the parameters.

Mixture models and expectation-maximization. For mixed
conditional logit models, the log-likelihood is no longer convex in
general, making optimization more difficult. To maximize the like-
lihood of mixed models we turn to expectation maximization (EM)
techniques [18, 73]. We briefly summarize the procedure described
in Train’s book [74, Chapter 14.3.2]. Assume that we have a model
with M modes (i.e., mixture components), where every mode starts
with initial parameter values gm (usually initiated at 1). Choices
(xk, Cr) € D are again indexed with k, so that k € {1,...,n} and
n = |D|. The EM algorithm runs through the following steps:

(1) Initiate class probabilities uniformly with n,, = 1/M and
initial class responsibilities yIZ" = 1/M for each data point.

(2) For every data point k and every mode m, compute the class
responsibility given by the relative individual likelihood:

gt L0 (5. Cp)
CEM me L0060 (e, C)

(3) For every mode m, update the total class probability with
_ 1N . m
Tm = N L= Vi -



(4) For every mode m, update the parameters gm using standard
optimization for fitting a single model, weighing each choice
set with its class responsibility y;™.

(5) Repeat steps 2—4 until some convergence or stopping criteria.

The total likelihood of the parameters and class probabilities is:

M M N
1(0;D) = Y IMO™;mm; D) = ) > log L™O™; (xk, C)) - 7im
m=1 m=1k=1

We monitor the convergence of the iterative procedure using the
change in this total likelihood between iterations.

Even though EM is theoretically an efficient estimator [82], there
are cases when alternatives are appropriate. For example, if one has
reasonable bounds or priors on the parameter values, then direct
likelihood maximization could be used, and if the search space is
low-dimensional, a grid search might be appropriate. Recent theo-
retical work has also developed algorithms for learning mixtures of
two multinomial logit modes with theoretical guarantees assuming
a separation between the modes [14].

Negative sampling. Every time an edge is formed by some node
i, each node not yet connected to i is a candidate choice. For large
sparse graphs, the full choice set of all nodes can become large and
the gradients of the log-likelihood expensive to compute. To speed
up this computation, s negative/non-chosen examples can be sam-
pled uniformly at random to create a (random) reduced dataset with
smaller choice sets. For each choice (j, C), one forms a smaller ran-
dom choice set out of the positive choice and the negative samples,
C c C with |C| = s + 1, and replaces the original choice data with
(j, C). As long as the negative examples are sampled uniformly at
random, parameter estimates on a dataset with negatively sampled
choice sets are unbiased and consistent for the estimates on the
on the full set [29, 46, 74]. Practically, there is a trade-off between
feature computation and storage on the one hand, and the ability
to estimate coefficients for rare features on the other.

Typical likelihood surface. In Figure 1 we show the representa-
tive likelihood surface of a copy model to illustrate its properties.
We generated a synthetic graph on n = 10, 000 nodes according to
the copy model with m = 4 edges per node and degree-attachment
probability 73 = 0.5. We fit a two-mode mixed logit model to this
data with o'V = alogdj,; and u}@ = 1. We use s = 10 negative
samples. There are two free parameters in this model: the degree ex-
ponent a and the mixture probability 7z;. We plot the log-likelihood
across a reasonable range of values to show that surface is generally
well behaved. We see that it is hard to distinguish between data
generated under a copy model (¢ = 1) with probability 71 = 0.5
from data generated from no-mixture (77 = 0) preferential attach-
ment with ¢ = 0.5, and there is a general trade-off between the
exponent « and the mixture probability 7.

Model comparison and the likelihood-ratio test. Another ad-
vantage of our discrete choice framework is that we can employ
standard statistical methods for model selection. Specifically, when
one model is a special case of another, their relative quality can be
compared using the likelihood ratio test. In the case of the condi-
tional logit, a model with additional features can be compared to
one without them because the latter is a special case of the former
with the coefficients of the additional features being set to 0. Or, in
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Figure 1: The log-likelihood surface of the copy model for a
graph of n = 10, 000 nodes generated with 7; = 0.5 (marked as
x). The line tracks the iterations of the EM algorithm, from
open to closed dot. There is a trade-off between the degree
coefficient ¢ and the mixture probability x;, but there are
large regions with similar likelihoods.

the case of the mixed logit, one can define a model with multiple
modes and manually set some of their class probabilities to zero.
As a concrete example, suppose we wanted to know whether
including the age of a node in a preferential attachment model
results in a statistically significantly better model. To do so, we
would first estimate the parameters 6; of the more complex model,

uj(.l) = 01,1log(dj) + 61,2log(age). We would then estimate the
parameters 6y of the simpler model uj(.o) = 0o,1log(d;). Let L1 and

L be the likelihoods of the two models with parameters él and é(].
We can compute the likelihood ratio A = £/ L. Under the null
hypothesis of the simpler model, with some regularity conditions,
—2log A is asymptotically distributed )(12 ( )(i where k is the number
of additional degrees of freedom in the more complex model) [80],
a standard test in the finite regime [74, Chapter 3.8.2].

4 APPLICATIONS

We now demonstrate how to use our conditional logit framework to
analyze network formation processes. We first consider synthetic
data and show how our tools can be used to better analyze pref-
erential attachment mechanisms. We then analyze two empirical
datasets that demonstrate how to integrate different structural fea-
tures of the network or integrate node covariates. In both cases,
our framework provides novel insights into the network formation
processes. We provide code for processing data (converting edge
lists to choice data) and for model fitting (with negative sampling),
available here: https://github.com/janovergoor/choose2grow/.

4.1 Measuring preferential attachment

The question of whether and when preferential attachment is an
important driver of network formation is widely debated [2, 3,9, 11,
12, 24, 28, 54, 54, 65, 78]. Most prior research focuses on estimating
the shape of the attachment kernel by comparing the degree of
chosen nodes to the distribution of available degrees [30, 54, 62].
However, recent work by Pham et al. shows that previous measures
are biased [58]. In particular, the bias comes from the assumption
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Figure 2: Attachment kernel fits for a synthetic preferential
attachment graph. The Newman measure computes the rel-
ative likelihood of selecting a node of that degree, as com-
pared to the likelihood of selecting the lowest degree, but
it is biased for higher degrees. The non-parametric logit is
consistent but noisy for higher degrees.

that the distribution of available nodes of varying degrees is con-
stant throughout the formation process, but this distribution clearly
changes as the network grows.

To estimate the exponent « of an attachment kernel, Pham et
al. propose fitting something akin to a conditional logit with a
separate coeflicient for each degree, and then estimating « via a
weighted least squares fit over the degree coefficients [58]. Com-
pared to this method, fitting a log-degree logit directly is much
simpler. In fact, it is the maximum likelihood estimator for a, and
thus consistent and efficient.

To illustrate, we generate a graph with pure preferential attach-
ment (n = 2,000, m = 1 edges per node, @ = 1) and estimate the
attachment kernel by the methods of Newman [54] and Pham et
al. [58]. The maximum degree of this graph was 102, and the results
of the different estimation procedures are shown in Figure 2. The
non-parametric estimates are similar for lower degrees, but for
higher degrees the Newman measure incorrectly drops, illustrating
the bias that Pham et al. have previously documented. Fitting o
directly using a log-degree conditional logit gives an estimate of
@ = 0.987. The Pham et al. least squares fit, ¢p g = 1.012, is close to
the MLE but may deviate considerably in more difficult instances.

4.2 Disentangling preferential attachment
from triadic closure

Many models exhibit similar outcomes to preferential attachment
[11, 24, 28, 36, 52, 78], but there are few principled ways to rigor-
ously test the relative validity of these models. In this section, we
show how to use the discrete choice framework to estimate the
relative importance of preferential attachment while accounting
for other dynamics. To this end, we generate data according to a
known generative process and fit various (possibly mis-specified)
formation models. Our generative process is a hybrid between the
copy model of preferential attachment (i.e., choose nodes propor-
tional to degree) and the Jackson-Rogers local search model (i.e.,
connecting to friends-of-friends). The process, which we call the
(r,p)-model, is parametrized by r € (0,1] and p € (0,1]. When a
new edge is formed, with probability p it is formed uniformly at
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Figure 3: Estimating the power-law exponent y from the de-
gree distributions of graphs formed under the (r,p)-model
with n = 20, 000 nodes. Under the local search model with sig-
nificant triadic closure (p = 1, small r), the exponent looks
like it would under the copy model (p — 0, r = 1).

random and with probability 1 — p it is formed with linear prefer-
ential attachment (a¢ = 1). Meanwhile, the choice set is determined
by the second parameter r: with probability r, the choice set is all
nodes not yet connected to i, while with probability 1—r, the choice
set is limited to available friends-of-friends of i. With r = 1 this
model reduces to the copy-model and with p = 1 it reduces to the
simplified local search model; the (r, p)-model thus subsumes two
popular models in a single, simple discrete choice framework. For
a growth process on directed graphs, it is necessary that p > 0 and
r > 0, otherwise new nodes will never be selected.

With this general model, we investigate how estimating parame-
ters of one of the more specific models goes awry when the true
data generating process in fact comes from an instance of the more
general model. For a range of values of p and r, we generated graphs
using the following growth process. New nodes arrive, each cre-
ating m = 4 edges. For every edge, we sample the mode of the
model (according to r and p) independently. If an edge is supposed
to be a friend-of-friend edge, but no friends-of-friends are available
(for example, i’s first edge), then the process reverts to uniformly
random formation across the full node set.® Sweeping through com-
bination of p and r parameter values, for each set of parameters we
generated 10 undirected graphs with n = 20, 000 nodes each.

Degree distributions. The local search and copy models both
produce graphs with power-law degree distributions. Therefore,
fitting a mis-specified model on a degree distribution can lead to
misleading results. To illustrate, we fit a power-law distribution
p(x) o« x7V to the degree distribution of graphs generated from
(r, p)-models using maximum likelihood estimation [16], with es-
timates for y in Figure 3. In theory, an undirected graph formed
with the copy model process with probability parameter p leads to
a degree distribution with power law exponent y = (3 — p)/(1 — p)
[8, 52] (for directed graphs, y = (2 — p)/(1 — p)). As p increases,
the degree distribution looks more like a random graph without
preferential attachment. However, as r goes down (increasing the
relative role of friend-of-friends), the parameter estimate looks like
the estimates for the copy model, even when p = 1.

3This creates a slight bias towards uniform at random modes. This reversion to uniform
attachment happens for every first edge with probability 1 — r.
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Figure 4: The log-likelihood of varying the class probabil-
ities of the copy model (r = 1, p free) or the local search
model (r free, p = 1) for two different synthetic graphs. In
both cases the true model is the most likely. On the left we
see a large difference in the log-likelihood between optima,
while on the right we see a smaller difference. In both cases a
likelihood ratio test is highly significant (P-values < 1071°).

To summarize, it is not recommended to estimate a formation
model from an observed degree distribution. The parameter esti-
mates are sensitive to small deviations in the generative process.

Discrete choice modeling. Beyond degree distributions, in Fig-
ure 4 we look at how the two subsumed models (the copy model
and the Jackson-Rogers local search model) fare when estimated
from formation data generated by the (r, p)-model. We look at two
cases. As a first case, we generate graphs with r = 0.5 and p = 1,
so half the edges are formed to friends-of-friends with no utility
from degree. The likelihood under a local search model (r free,
p = 1) as a mixed logit is maximized at r = 0.45, while for the copy
model (r = 1, p free) it is maximized at p = 0.54. The former is
a much better fit than the latter (P-value < 1071°), and the copy
model erroneously thinks that preferential attachment is driving
45% of the edges. As a second case, we look at a graph generated
with r = 1 and p = 0.5, so half the edges are due to preferential
attachment, and friend-of-friending plays no role. In this case, both
models are correctly maximized at their relative values. Again, the
correct model has a higher likelihood (P-value < 10716).

4.3 Choosing to follow on Flickr

We now apply our framework to examine a real-world network
formation dataset capturing the growth of the Flickr social network.
We find that incorporating a Friend-of-Friend feature beyond pref-
erential attachment and link-reciprocation features substantially
improves both likelihood and test accuracy and furthermore that
the inclusion of this feature significantly reduces preference for
degree-based attachment. However, omitting preferential attach-
ment entirely leads to a worse model. We also find a preference for
nodes with zero degree over low degree nodes. This hints that such
nodes play a special role in the network formation process, even
though they would be ignored in preferential attachment models.

Data. We use a scrape of the Flickr social network collected daily
between October 2006 and May 2007 [50, 51]. Users of Flickr can
choose to follow other users and the “following” (but not the “fol-
lowed by”) connections are publicly accessible. The data was gath-
ered using a breadth-first search crawl, which means that only the

Table 3: Conditional logit model fits for Flickr data. Stan-
dard errors of the estimates are given in parentheses. Eval-
uation statistics are computed over 2,000 sampled examples
excluded from the training data.

Model
#1 #2 #3 #4
log Followers 1.149* 0.715" 0.536"
(0.007) (0.009)  (0.010)
Has degree -0.580" -0.631* -1.745*
(0.202) 0.190)  (0.234)
Reciprocal 8.419” 8.347* 8.197* 7.903”
(0.220)  (0.220)  (0.240)  (0.244)
Is FoF 6.12* 3.955%
(0.045)  (0.050)
2 Hops 6.290"
(0.190)
3 Hops 2.8517
(0.185)
4 Hops 0.583*
(0.189)
5 Hops -0.585"
(0.218)
> 6 Hops -1.122%
(0.266)
Observations 20,000 20,000 20,000 20,000
Log-likelihood -16,448 -14,685 -10,728 -9,789
Test accuracy 0.758 0.722 0.853 0.855
Note: *p<0.01

connected components reachable from the seed profiles are rep-
resented in the data. Since a full crawl was performed daily, the
timing of new edges can be identified at the granularity of a day.
The graph contains 3.2 million nodes and 33.1 million edges.

As described in the original papers, this data is consistent with
both preferential attachment, as inferred from the in-degree distri-
bution, and local search, as inferred from the over-representation
of edges to nodes that are close to the linking node [50]. Fitting a
power law to the distribution of in-degrees gives y = 1.741, which
would indicate super-linear preferential attachment. We can test the
relative importance of triadic closure by fitting a Jackson-Rogers
model using the degree distribution matching procedure described
in [28]. This results in 7 = 0.252, estimating that three out of four
edges are formed through triadic closure.

Discrete choice analysis. We fit a series of conditional logit mod-
els to further investigate the network formation process. We iso-
lated a sample of 20,000 edge formation events occurring around
the same date,* to avoid time heterogeneity affecting the estimates.
We fit several models, displayed in Table 3. Not-chosen alternatives
are negatively sampled with s = 24. We log-transform in-degree
(representing the number of followers), but in order to account for

4We enumerated edges starting November 5, 2006 and included new edges with
probability 0.01 until reaching the desired sample size. We excluded edge events
originating from nodes seen for the first time in a given day (the timing of these edge
events are uncertain due to the original data collection process). The same analysis
starting on March 3, 2007 led to virtually identical results.



nodes with degree zero, we add a “has degree” feature for having a
positive degree and use a modified version of log that returns 0 for
input 0. In the first column, we fit a model using just these two
degree-related features, and a reciprocity feature capturing whether
the target node is already following the chooser. Reciprocity is a
common phenomenon, with 60% of edges being followed back [50].
The estimate & (the coefficient for “log Followers”) for this model
is significantly larger than 1, again consistent with super-linear
preferential attachment.

In the second model, we test the effect of the target node being
a friend-of-friend of the choosing node. In the case of Flickr, this
means that the choosing user already follows someone that follows
the target user, which evidently is strongly correlated with follow-
ing that user. However, combining these two features in a third
model (column 3) leads to both estimated parameters dropping
substantially. Most remarkable is the 40% drop in the estimate of «,
which paints a very different picture about the role of degree.

In the fourth model, we measure network proximity as in the
original paper, by counting the number of “hops” (path length)
from i to the target before an edge was made. We integrate the
hops as categorical variables to show the relative impact of each
additional “hop”. Being two hops away is equivalent to being a
friend-of-friend, and thus has strongly positive coefficient. Every
additional hop corresponds to a sharp decrease in choosing that
node. Being five hops away is slightly worse than there not being
a path at all. This could be an artifact of the way the data was
gathered, so that new regions of the graph only get “discovered”
when there is at least one link to them, or this could be due to path
length not being an accurate measure of distance for newer nodes.
Since the number of hops is co-linear with being a friend-of-friend,
we can’t test them both at the same time.

In Figure 5 we visually show the effect of different specifica-
tions on the estimate of &. The first model of the Flickr data looks
like super-linear preferential attachment, while the role of degree
in the other two is significantly reduced. However, fitting a non-
parametric model shows that the estimated coefficients for individ-
ual degrees are remarkably linear, suggesting that the functional
form of dj?( is a good fit for this network. One important point is
the role of zero-degree nodes. In most descriptions of preferential
attachment, nodes with degree zero are not considered. However,
in the Flickr data set, zero-degree nodes have a higher utility than
positive low degree nodes, which could again be an artifact of the
data collection process, or point to the special role of new nodes in
the network. Either way, our framework allows one to find these
kinds of patterns, and investigate them further.

4.4 Choosing to cite

We now turn to citation network data to show how a discrete choice
framework facilitates the testing of network formation hypotheses.
Previous analyses of citation networks have observed linear pref-
erential attachment with respect to degree [62] and bias towards
citing more recent work [62]. Here, we find consistent results that
older papers are less likely to be cited but that accounting for age

5This solution is better than using log d + €, or giving degree-zero nodes the same
utility as degree-one nodes. Either of those solutions will give substantially different
results, especially when there are many degree-zero nodes.
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Figure 5: The probability of being chosen by degree, as com-
pared to a node with degree 1. We show the fits of parametric
(lines) and non-parametric (points) conditional logit models
of the Flickr and citation networks. The legend references
model numbers in Table 3 and Table 4. The estimate for de-
gree 0 is inserted for comparison. Dashed reference lines il-
lustrate what exact linear preferential attachment (¢ = 1)
would look like.

actually increases the importance of degree (i.e., after accounting
for age, higher degree nodes are more likely to be cited).

Data. We use the Microsoft Academic Graph® dataset and focus
on a representative subgraph of 459,000 “Climatology” papers. We
focus on the subgraph of a single field to simplify the analysis since
citations are predominantly within the same field of study (our
analysis was similar on other subgraphs). We construct a graph
out of this data by adding an edge each time a paper in our dataset
cites another paper in our dataset. For our analysis of Climatology
publications, 45% of edges are within the domain and citations to
papers that are not labeled are excluded, leaving 3 million edges.
We sample 10,000 citation events uniformly at random from papers
published after 2010 and apply negative sampling (s = 24). This
processing results in 10,000 choices with 25 alternatives in each
choice set. For each possible choice, we compute four features: the
number of citations at the time of citation, whether the paper shares
authors with the citing paper, the age of the paper in years at the
time of citation, and the maximum number of publications by any
one of the authors at the time of publication. This last feature is a
proxy for node fitness [11].

Discrete choice analysis. We fit conditional logit choice models
relating these features to the likelihood of citation (Table 4). The
first model (first column) is a simple log-degree model. We find that
the estimate & (the coefficient for “log Citations”) is substantially
lower than one, consistent with sub-linear preferential attachment.
Apart from the log-likelihood of the models, we also report the
predictive accuracy (defined as the share of instances predicted
correctly) on a holdout test set of 2,000 examples. Just relying on
prior degree already gives an accuracy of 36%, which is high for a
classification task with 25 classes. In model two (second column),
we add a covariate for whether a paper shares an author with the
citing paper. As expected, this has a strongly positive coefficient.
For the third model we add a covariate for the age of the pa-
per in log years (years is always at least one). Older papers are
less likely to get cited (accounting for degree), but accounting for

®The Aminer Project [68, 72], https://aminer.org/open-academic-graph
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Table 4: Learned conditional logits for the “Climatology” ci-
tation network. Standard errors of the estimates are given in
parentheses. Evaluation statistics are computed over 2,000
sampled examples excluded from the training data.

Model
#1 #2 #3 #4

log Citations 0.717* 0.794* 1.052* 1.044*
(0.008)  (0.010) (0.012)  (0.012)

Has degree 1.684* 1.677¢ 1.862* 1.830*
(0.053)  (0.062) (0.063)  (0.064)

Has same author 6.523" 5928 5913
(0.110)  (0.114)  (0.114)
log Age -1.096*  -1.069*
(0.018)  (0.021)

Max papers by author 0.029*
(0.011)

Observations 10,000 10,000 10,000 10,000
Log-likelihood -20,799  -16,600 -14,384 -14,390
Test accuracy 0.358 0.484 0.533 0.534
Note: *p<0.01

age increases the relative importance of degree significantly. This
expanded model also increases the accuracy to 53%, indicating
that these feature weights do capture substantially more predictive
power. Finally, in model four we add the “max papers by authors”
feature as a proxy for fitness. The coefficient is small but positive.
Accounting for fitness slightly reduces the estimated relative im-
portance of degree, but the & estimate is still close to 1. Adding
this feature does not improve the log-likelihood or predictive accu-
racy; a better proxy for fitness may explain the data better. Looking
back to the visual display of « for the citation models in Figure
5, the non-parametric coefficients are highly linear. In this data,
zero-degree nodes are significantly less attractive than nodes with
degree one.

As with any regression, the identifying causal effects from model
fit depends on the design of the study. The estimates we provide
here, as is the case with most analyses of observational data, are
descriptive and not meant to describe causal processes. The point is
that discrete choice models provide a flexible framework to easily
test and compare different hypotheses around network formation.

5 DISCUSSION

When modeling network formation, the majority of the literature
analyzes networks that grow “externally,” with new nodes arriving
and choosing who to connect to, and this setting has also been our
main focus here. External growth leads to convenient models that
are relatively easy to analyze, with citation networks and patent
networks as examples of empirical networks that follow this gen-
erative process reasonably closely. However, in many (especially
social) networks, pairs of older nodes often form edges as well,
edges that are “internal” to the existing set of nodes. An extreme
example is the social networks of schools or classrooms, which
have a fixed node population and “grow” purely through an in-
ternal growth process. A major advantage of modeling network

formation as discrete choice is that it does not require any model
of edge event initiation and simply conditions on the sequence of
decisions to initiate, focusing the modeling on the choices made by
the initiator. Discrete choice can therefore easily be used to model
internal growth as well.

Another major advantage of discrete choice modeling is that it
connects the analysis of large-scale network datasets to statistical
methods (fitting generalized linear models) that are tremendously
scalable. As we show in this work, additional techniques (e.g., neg-
ative sampling) makes it possible to efficiently scale the estimation
process to very large network datasets.

Since the conditional logit model of discrete choice is a random
utility model, the estimated parameters can be interpreted as the
marginal utility of each feature. This allows one to question the
functional form of features. For example, we show that preferential
attachment is equivalent to the logarithmic utility of degree. Given
that degree is commonly heavy-tailed, this is a natural functional
form, but we point out that the conditional logit allows one to
flexibly compare different specifications.

Our discrete choice perspective has implications for how network
data is best collected and analyzed. It is useful to consider and record
notions of directionality, even if edges can otherwise be considered
to be undirected. With information about the choice set associated
with each choice, we can see what each node j looked like at the
time the choice was made. Datasets that record the exact time of all
edge formation events, as opposed to lumping edge events at the
granularity of days or years, makes it possible to further analyze
the formation process in more detail.

There are a couple limitations to our proposed methodology.
First, we cannot model purely undirected edges without some no-
tion of direction. Second, even though the conditional logit and
mixed logit models allow one to model similar mechanisms, the
interpretations of their estimates are different. The estimates of a
conditional logit are more akin to those of a linear regression model,
where one estimates the expected change in an outcome from vary-
ing a covariate. A mixture model is a probabilistic combination of
constituent modes, so the class probabilities indicate the relative
importance to each mode, which makes it harder to compare the
roles of individual features within or across modes. However, many
traditional models of network formation are equivalent to mixture
models, which motivated our consideration of them in this work.

By making foundational connections between network forma-
tion and discrete choice, we are hopeful that many further tools
from discrete choice theory can be applied to the study of network
formation. For example, there can be bias in network formation, e.g.,
men are more likely to cite themselves than women [34]. Our dis-
crete choice framework can help study these cases more rigorously.
For another example, discrete choice models of subset selection
[5, 20] could be applied to understand possible substitution and
complementarity effects in network formation. And discrete choice
interpretations of machine learning embeddings techniques [64]
can likely help unpack the behavior of recent embedding-based
network representation methods such as DeepWalk [57]. Networks
fundamentally represent interactions between discrete entities, and
it is therefore natural that methods for modeling and analyzing
discrete choice should enable many contributions.
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