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1. Introduction. A network is a set of items, which we will call vertices or some-
times nodes, with connections between them, called edges (Figure 1.1). Systems
taking the form of networks (also called “graphs” in much of the mathematical lit-
erature) abound in the world. Examples include the Internet, the World Wide Web,
social networks of acquaintance or other connections between individuals, organiza-
tional networks and networks of business relations between companies, neural net-
works, metabolic networks, food webs, distribution networks such as blood vessels or
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edge

vertex

Fig. 1.1 A small example network with eight vertices and ten edges.

postal delivery routes, networks of citations between papers, and many others (Fig-
ure 1.2). This paper reviews recent (and some not-so-recent) work on the structure
and function of networked systems such as these.

The study of networks, in the form of mathematical graph theory, is one of the
fundamental pillars of discrete mathematics. Euler’s celebrated 1735 solution of the
Königsberg bridge problem is often cited as the first true proof in the theory of net-
works, and during the twentieth century graph theory has developed into a substantial
body of knowledge.

Networks have also been studied extensively in the social sciences. Already in the
1930s, sociologists realized the importance of the patterns of connection between peo-
ple to the understanding of the functioning of human society (Figure 1.3). Typical net-
work studies in sociology involve the circulation of questionnaires, asking respondents
to detail their interactions with others. One can then use the responses to reconstruct
a network in which vertices represent individuals and edges the interactions between
them. Typical social network studies address issues of centrality (which individuals
are best connected to others or have most influence) and connectivity (whether and
how individuals are connected to one another through the network).

Recent years, however, have witnessed a substantial new movement in network
research, with the focus shifting away from the analysis of single small graphs and
the properties of individual vertices or edges within such graphs to consideration of
large-scale statistical properties of graphs. This new approach has been driven largely
by the availability of computers and communication networks that allow us to gather
and analyze data on a scale far larger than previously possible. Where studies used
to look at networks of maybe tens or in extreme cases hundreds of vertices, it is not
uncommon now to see networks with millions or even billions of vertices. This change
of scale forces upon us a corresponding change in our analytic approach. Many of
the questions that might previously have been asked in studies of small networks are
simply not useful in much larger networks. A social network analyst might have asked,
“Which vertex in this network would prove most crucial to the network’s connectivity
if it were removed?” But such a question has little meaning in most networks of
a million vertices—no single vertex in such a network will have much effect at all
when removed. On the other hand, one could reasonably ask a question like, “What
percentage of vertices need to be removed to substantially affect network connectivity
in some given way?” and this type of statistical question has real meaning even in a
very large network.

However, there is another reason why our approach to the study of networks has
changed in recent years, a reason whose importance should not be underestimated,
although it often is. For networks of tens or hundreds of vertices, it is a relatively
straightforward matter to draw a picture of the network with actual points and lines,
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170 M. E. J. NEWMAN

(c)(b)

(a)

Fig. 1.2 Three examples of the kinds of networks that are the topic of this review. (a) A visualization
of the network structure of the Internet at the level of “autonomous systems”—local groups
of computers each representing hundreds or thousands of machines. Picture by Hal Burch
and Bill Cheswick, courtesy of Lumeta Corporation. (b) A social network, in this case
of sexual contacts, redrawn from the HIV data of Potterat et al. [341]. (c) A food web of
predator-prey interactions between species in a freshwater lake [271]. Picture courtesy of
Richard Williams.

and to answer specific questions about network structure by examining this picture.
This has been one of the primary methods of network analysts since the field be-
gan (see Figure 1.3). The human eye is an analytic tool of remarkable power, and
eyeballing pictures of networks is an excellent way to gain an understanding of their
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 171

Fig. 1.3 An early hand-drawn social network from 1934 representing friendships between school
children. After Moreno [295]. Reprinted with permission from ASGPP.

structure. With a network of a million or a billion vertices, however, this approach is
useless. (See Figure 1.2a for an example of a network that lies at the upper limit of
what can usefully be drawn on a piece of paper or computer screen.) One simply can-
not draw a meaningful picture of a million vertices, even with modern 3D computer
rendering tools, and therefore direct analysis by eye is hopeless. The recent devel-
opment of statistical methods for quantifying large networks is to a large extent an
attempt to find something to play the part played by the eye in the network analysis
of the twentieth century. Statistical methods answer the question, “How can I tell
what this network looks like, when I can’t actually look at it?”

The body of theory that is the primary focus of this review aims to do three
things. First, it aims to find and highlight statistical properties, such as path lengths
and degree distributions, that characterize the structure and behavior of networked
systems, and to suggest appropriate ways to measure these properties. Second, it aims
to create models of networks that can help us to understand the meaning of these
properties—how they came to be as they are, and how they interact with one another.
Third, it aims to predict what the behavior of networked systems will be on the basis of
measured structural properties and the local rules governing individual vertices. How,
for example, will network structure affect traffic on the Internet, or the performance
of a Web search engine, or the dynamics of social or biological systems? As we
will see, the scientific community has, by drawing on ideas from a broad variety of
disciplines, made an excellent start on the first two of these aims, the characterization
and modeling of network structure. Studies of the effects of structure on system
behavior on the other hand are still in their infancy. It remains to be seen what the
crucial theoretical developments will be in this area.

1.1. Types of Networks. A set of vertices joined by edges is only the simplest
type of network; there are many ways in which networks may be more complex than
this (Figure 1.4). For instance, there may be more than one different type of vertex
in a network, or more than one different type of edge. And vertices or edges may
have a variety of properties, numerical or otherwise, associated with them. Taking
the example of a social network of people, the vertices may represent men or women,
people of different nationalities, locations, ages, incomes, or many other things. Edges
may represent friendship, but they could also represent animosity, or professional
acquaintance, or geographical proximity. They can carry weights, representing, say,
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172 M. E. J. NEWMAN

(c)

(b)

(d)

(a)

Fig. 1.4 Examples of various types of networks: (a) an undirected network with only a single type
of vertex and a single type of edge; (b) a network with a number of discrete vertex and
edge types; (c) a network with varying vertex and edge weights; (d) a directed network in
which each edge has a direction.

how well two people know each other. They can also be directed, pointing in only one
direction. Graphs composed of directed edges are themselves called directed graphs or
sometimes digraphs, for short. A graph representing telephone calls or email messages
between individuals would be directed, since each message only goes in one direction.
Directed graphs can be either cyclic, meaning they contain closed loops of edges, or
acyclic, meaning they do not. Some networks, such as food webs, are approximately
but not perfectly acyclic.

One can also have hyperedges—edges that join more than two vertices together.
Graphs containing such edges are called hypergraphs. Hyperedges could be used to
indicate family ties in a social network for example—n individuals connected to each
other by virtue of belonging to the same immediate family could be represented by an
n-edge joining them. Graphs may also be naturally partitioned in various ways. We
will see a number of examples in this review of bipartite graphs: graphs that contain
vertices of two distinct types, with edges running only between unlike types. So-called
affiliation networks in which people are joined together by common membership of
groups take this form, the two types of vertices representing the people and the groups.
Graphs may also evolve over time, with vertices or edges appearing or disappearing,
or values defined on those vertices and edges changing. And there are many other
levels of sophistication one can add. The study of networks is by no means a complete
science yet, and many of the possibilities have yet to be explored in depth, but we will
see examples of at least some of the variations described here in the work reviewed in
this paper.

The jargon of the study of networks is unfortunately confused by differing usages
among investigators from different fields. To avoid (or at least reduce) confusion, we
give in Box 1 a short glossary of terms as they are used in this paper.

1.2. Other Resources. A number of other reviews of this area have appeared
recently, which the reader may wish to consult. Albert and Barabási [13] and Doro-
govtsev and Mendes [120] have given extensive pedagogical reviews focusing on the
physics literature. Both devote the larger part of their attention to the models of
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 173

Vertex (pl. vertices): The fundamental unit of a network, also called a site
(physics), a node (computer science), or an actor (sociology).

Edge: The line connecting two vertices. Also called a bond (physics), a link
(computer science), or a tie (sociology).

Directed/undirected: An edge is directed if it runs in only one direction (such
as a one-way road between two points), and undirected if it runs in both directions.
Directed edges, which are sometimes called arcs, can be thought of as sporting arrows
indicating their orientation. A graph is directed if all of its edges are directed. An
undirected graph can be represented by a directed one having two edges between each
pair of connected vertices, one in each direction.

Degree: The number of edges connected to a vertex. Note that the degree is not
necessarily equal to the number of vertices adjacent to a vertex, since there may be
more than one edge between any two vertices. In a few recent articles, the degree
is referred to as the “connectivity” of a vertex, but we avoid this usage because the
word connectivity already has another meaning in graph theory. A directed graph
has both an in-degree and an out-degree for each vertex, which are the numbers of
incoming and outgoing edges respectively.

Component: The component to which a vertex belongs is that set of vertices
that can be reached from it by paths running along edges of the graph. In a directed
graph a vertex has both an in-component and an out-component, which are the sets
of vertices from which the vertex can be reached and which can be reached from it.

Geodesic path: A geodesic path is the shortest path through the network from
one vertex to another. Note that there may be and often is more than one geodesic
path between two vertices.

Diameter: The diameter of a network is the length (in number of edges) of the
longest geodesic path between any two vertices. A few authors have also used this
term to mean the average geodesic distance in a graph, although strictly the two
quantities are quite distinct.

Box 1 A short glossary of terms.

growing graphs that we describe in section 7. Shorter reviews taking other viewpoints
have been given by Newman [308] and Hayes [188, 189], who both concentrate on the
so-called small-world models (see section 6), and by Strogatz [386], who includes an
interesting discussion of the behavior of dynamical systems on networks.

A number of books also make worthwhile reading. Dorogovtsev and Mendes [122]
have expanded their above-mentioned review into a book, which again focuses on
models of growing graphs. The edited volumes by Bornholdt and Schuster [70] and
by Pastor-Satorras and Rubi [329] both contain contributed essays on various topics
by leading researchers. Detailed treatments of many of the topics covered in the
present work can be found there. The book by Newman, Barabási, and Watts [319]
is a collection of previously published papers and also contains some review material
by the editors.

Three popular books on the subject of networks merit a mention. Barabási’s
Linked [31] gives a personal account of recent developments in the study of net-
works, focusing particularly on Barabási’s work on scale-free networks. Watts’s Six
Degrees [413] gives a sociologist’s view, partly historical, of discoveries old and new.
Buchanan’s Nexus [76] gives an entertaining portrait of the field from the point of
view of a science journalist.
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174 M. E. J. NEWMAN

Farther afield, there are a variety of books on the study of networks in particular
fields. Within graph theory the books by Harary [187] and by Bollobás [62] are widely
cited as are, among social network theorists, the books by Wasserman and Faust [408]
and by Scott [362]. The book by Ahuja, Magnanti, and Orlin [7] is a useful source for
information on network algorithms.

1.3. Outline of the Review. The outline of this paper is as follows. In section 2
we describe empirical studies of the structure of networks, including social networks,
information networks, technological networks, and biological networks. In section 3 we
describe some of the common properties that are observed in many of these networks,
how they are measured, and why they are believed to be important for the functioning
of networked systems. Sections 4 to 7 form the heart of the review. They describe
work on the mathematical modeling of networks, including random graph models
and their generalizations, exponential random graphs, p∗ models and Markov graphs,
the small-world model and its variations, and models of growing graphs including
preferential attachment models and their many variations. In section 8 we discuss
the progress, such as it is, that has been made on the study of processes taking
place on networks, including epidemic processes, network failure, models displaying
phase transitions, and dynamical systems like random Boolean networks and cellular
automata. In section 9 we give our conclusions and point to directions for future
research.

2. Networks in the RealWorld. In this section we look at what is known about
the structure of networks of different types. Recent work on the mathematics of
networks has been driven largely by observations of the properties of actual networks
and attempts to model them, so network data are the obvious starting point for
a review such as this. It also makes sense to examine simultaneously data from
different kinds of networks. One of the principal thrusts of recent work in this area,
inspired particularly by a groundbreaking 1998 paper by Watts and Strogatz [415],
has been the comparative study of networks from different branches of science, with
emphasis on properties that are common to many of them and the mathematical
developments that mirror those properties. We here divide our summary into four
loose categories of networks: social networks, information networks, technological
networks, and biological networks.

2.1. Social Networks. A social network is a set of people or groups of people
with some pattern of contacts or interactions between them [362, 408]. The pat-
terns of friendships between individuals [295, 347], business relationships between
companies [268, 285], and intermarriages between families [326] are all examples of
networks that have been studied in the past.1 Of the academic disciplines, the social
sciences have the longest history of the substantial quantitative study of real-world
networks [162, 362]. Of particular note among the early works on the subject are
the following: Moreno’s networks of friendships within small groups [295], of which
Figure 1.3 is an example; the so-called southern women study of Davis, Gardner, and
Gardner [103], which focused on the social circles of women in an unnamed city in
the American south in 1936; the study by Elton Mayo and colleagues of social net-
works of factory workers in the late 1930s in Chicago [356]; the mathematical models
of Rapoport [345], who was one of the first theorists, perhaps the first, to stress

1Occasionally social networks of animals have been investigated also, such as dolphins [96], not to
mention networks of fictional characters, such as the protagonists of Tolstoy’s Anna Karenina [243]
or Marvel Comics superheroes [10].
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 175

the importance of the degree distribution in networks of all kinds, not just social
networks; and the studies of friendship networks of school children by Rapoport and
others [347, 149]. In more recent years, studies of business communities [167, 168, 268]
and of patterns of sexual contacts [45, 217, 242, 265] have attracted particular atten-
tion.

Another important set of experiments are the famous “small-world” experiments
of Milgram [282, 392]. No actual networks were reconstructed in these experiments,
but nonetheless they tell us about network structure. The experiments probed the
distribution of path lengths in an acquaintance network by asking participants to
pass a letter2 to one of their first-name acquaintances in an attempt to get it to an
assigned target individual. Most of the letters in the experiment were lost, but about
a quarter reached the target and passed on average through the hands of only about
six people in doing so. This experiment was the origin of the popular concept of the
“six degrees of separation,” although that phrase did not appear in Milgram’s writing,
being coined some decades later by Guare [182]. A brief but useful early review of
Milgram’s work and work stemming from it was given by Garfield [169].

Traditional social network studies often suffer from problems of inaccuracy, sub-
jectivity, and small sample size. With the exception of a few ingenious indirect studies
such as Milgram’s, data collection is usually carried out by querying participants di-
rectly using questionnaires or interviews. Such methods are labor-intensive and there-
fore limit the size of the network that can be observed. Survey data are, moreover,
influenced by subjective biases on the part of respondents; how one respondent defines
a friend, for example, could be quite different from how another does. Although much
effort is put into eliminating possible sources of inconsistency, it is generally accepted
that there are large and essentially uncontrolled errors in most of these studies. A
review of the issues has been given by Marsden [270].

Because of these problems many researchers have turned to other methods for
probing social networks. One source of copious and relatively reliable data is col-
laboration networks. These are typically affiliation networks in which participants
collaborate in groups of one kind or another, and links between pairs of individuals
are established by common group membership. A classic, though rather frivolous,
example of such a network is the collaboration network of film actors, which is thor-
oughly documented in the online Internet Movie Database.3 In this network, actors
collaborate in films and two actors are considered connected if they have appeared
in a film together. Statistical properties of this network have been analyzed by a
number of authors [4, 20, 322, 415]. Other examples of networks of this type are
networks of company directors, in which two directors are linked if they belong to
the same board of directors [104, 105, 268]; networks of coauthorship among aca-
demics, in which individuals are linked if they have coauthored one or more pa-
pers [36, 43, 68, 107, 181, 278, 291, 310, 311, 312]; and coappearance networks, in
which individuals are linked by mention in the same context, particularly on Web
pages [3, 226] or in newspaper articles [99] (see Figure 1.2b).

Another source of reliable data about personal connections between people is
communication records of certain kinds. For example, one could construct a network
in which each (directed) edge between two people represented a letter or package sent
by mail from one to the other. No study of such a network has been published as far as
we are aware, but some similar things have. Aiello, Chung, and Lu [8, 9] have analyzed

2Actually a folder containing several documents.
3http://www.imdb.com/
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a network of telephone calls made over the AT&T long-distance network on a single
day. The vertices of this network represent telephone numbers and the directed edges
calls from one number to another. Even for just a single day this graph is enormous,
having about 50 million vertices, one of the largest graphs yet studied after the graph
of the World Wide Web. Ebel, Mielsch, and Bornholdt [136] have reconstructed the
pattern of email communications between five thousand students at Kiel University
from logs maintained by email servers. In this network the vertices represent email
addresses and directed edges represent a message passing from one address to another.
Email networks have also been studied by Newman, Forrest, and Balthrop [320] and
by Guimerà et al. [184], and similar networks have been constructed for an “instant
messaging” system by Smith [370], and for an Internet community Web site by Holme,
Edling, and Liljeros [195]. Dodds, Muhamad, and Watts [110] have carried out an
email version of Milgram’s small-world experiment in which participants were asked
to forward an email message to one of their friends in an effort to get the message
ultimately to some chosen target individual. Response rates for the experiment were
quite low, but a few hundred completed chains of messages were recorded, enough to
allow various statistical analyses.

2.2. Information Networks. Our second network category is what we will call
information networks (also sometimes called “knowledge networks”). The classic
example of an information network is the network of citations between academic
papers [138]. Most learned articles cite previous works by others on related topics.
These citations form a network in which the vertices are articles and a directed edge
from article A to article B indicates that A cites B. The structure of the citation
network then reflects the structure of the information stored at its vertices, hence
the term “information network,” although certainly there are social aspects to the
citation patterns of papers too [419].

Citation networks are acyclic (see section 1.1) because papers can only cite other
papers that have already been written, not those that have yet to be written. Thus
all edges in the network point backwards in time, making closed loops impossible, or
at least extremely rare (see Figure 2.1).

As an object of scientific study, citation networks have a great advantage in
the copious and accurate data available for them. Quantitative study of publication
patterns stretches back at least as far as Alfred Lotka’s groundbreaking 1926 discovery
of the so-called Law of Scientific Productivity, which states that the distribution of the
numbers of papers written by individual scientists follows a power law. That is, the
number of scientists who have written k papers falls off as k−α for some constant α.
(In fact, this result extends to the arts and humanities as well.) The first serious
work on citation patterns was conducted in the 1960s as large citation databases
became available through the work of Eugene Garfield and other pioneers in the field
of bibliometrics. The network formed by citations was discussed in an early paper
by Price [342], in which, among other things, the author points out for the first time
that both the in- and out-degree distributions of the network follow power laws, a
far-reaching discovery which we discuss further in section 3.3. Many other studies
of citation networks have been performed since then, using the ever better resources
available in citation databases. Of particular note are the studies by Seglen [363] and
Redner [350].4

4An interesting development in the study of citation patterns has been the arrival of automatic
citation “crawlers” that construct citation networks from online papers. Examples include Cite-
seer (http://citeseer.nj.nec.com/), SPIRES (http://www.slac.stanford.edu/spires/hep/), and Cite-
base (http://citebase.eprints.org/).
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 177

World−Wide Webcitation network

Fig. 2.1 The two best studied information networks. Left: the citation network of academic papers
in which the vertices are papers and the directed edges are citations of one paper by another.
Since papers can only cite those that came before them (lower down in the figure) the graph
is acyclic—it has no closed loops. Right: the World Wide Web, a network of text pages
accessible over the Internet, in which the vertices are pages and the directed edges are
hyperlinks. There are no constraints on the Web that forbid cycles and hence it is in
general cyclic.

Another very important example of an information network is the World Wide
Web, which is a network of Web pages containing information, linked together by
hyperlinks from one page to another [202]. The Web should not be confused with
the Internet, which is a physical network of computers linked together by optical
fiber and other data connections.5 Unlike a citation network, the World Wide Web
is cyclic; there is no natural ordering of sites and no constraints that prevent the
appearance of closed loops (Figure 2.1). The Web has been very heavily studied since
its first appearance in the early 1990s, with the studies by Albert et al. [14, 34],
Kleinberg et al. [240], and Broder et al. [74] being particularly influential. The Web
also appears to have power-law in- and out-degree distributions (section 3.3), as well
as a variety of other interesting properties [2, 14, 74, 158, 240, 253].

One important point to notice about the Web is that our data about it come
from “crawls” of the network, in which Web pages are found by following hyperlinks
from other pages [74]. Our picture of the network structure of the World Wide Web
is therefore necessarily biased. A page will only be found if another page points to it,6

and in a crawl that covers only a part of the Web (as all crawls do at present) pages
are more likely to be found the more other pages point to them [262]. This suggests,
for instance, that our measurements of the fraction of pages with low in-degree might
be an underestimate.7 This behavior contrasts with that of a citation network. A

5While the Web is primarily an information network, it, like citation networks, has social aspects
to its structure also [3].

6This is not always strictly true. Some Web search engines allow the submission of pages by
members of the public for inclusion in databases, and such pages need not be the target of links from
any other pages. However, such pages also form a very small fraction of all Web pages, and certainly
the biases discussed here remain very much present.

7The degree distribution for the Web shown in Figure 3.2 falls off slightly at low values of the
in-degree, which may perhaps reflect this bias.
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178 M. E. J. NEWMAN

paper can appear in the citation indices even if it has never been cited (and in fact a
plurality of papers in the indices are never cited).

A few other examples of information networks have been studied to a lesser extent.
Jaffe and Trajtenberg [206], for instance, have studied the network of citations between
U.S. patents, which is similar in some respects to citations between academic papers.
A number of authors have looked at peer-to-peer networks [5, 6, 204], which are
virtual networks of computers that allow sharing of files between computer users
over local- or wide-area networks. The network of relations between word classes
in a thesaurus has been studied by Knuth [243] and more recently by various other
authors [233, 383, 303]. This network can be looked upon as an information network—
users of a thesaurus “surf” the network from one word to another looking for the
particular word that perfectly captures the idea they have in mind. However, it can
also be looked at as a conceptual network representing the structure of the language,
or possibly even the mental constructs used to represent the language. A number of
other semantic word networks have also been investigated [119, 157, 368, 383].

Preference networks provide an example of a bipartite information network. A
preference network is a network with two kinds of vertices representing individuals
and the objects of their preference, such as books or films, with an edge connect-
ing each individual to the books or films they like. (Preference networks can also
be weighted to indicate strength of likes or dislikes.) A widely studied example of a
preference network is the EachMovie database of film preferences.8 Networks of this
kind form the basis for collaborative filtering algorithms and recommender systems,
which are techniques for predicting new likes or dislikes based on comparison of in-
dividuals’ preferences with those of others [175, 351, 366]. Collaborative filtering has
found considerable commercial success for product recommendation and targeted ad-
vertising, particularly with online retailers. Preference networks can also be thought
of as social networks, linking not only people to objects, but also people to other
people with similar preferences. This approach has been adopted occasionally in the
literature [226].

2.3. Technological Networks. Our third class of networks is technological net-
works, man-made networks designed typically for distribution of some commodity or
resource, such as electricity or information. The electric power grid is a good example.
This is a network of high-voltage three-phase transmission lines that spans a country
or a portion of a country (as opposed to the local low-voltage AC power delivery lines
that span individual neighborhoods). Statistical studies of power grids have been
made by, for example, Watts and Strogatz [415], Watts [411], and Amaral et al. [20].
Other distribution networks that have been studied include the network of airline
routes [20] and networks of roads [220], railways [261, 365], and pedestrian traffic [87].
River networks could be regarded as a naturally occurring form of distribution network
(actually a collection network) [111, 269, 352, 355], as could the vascular networks
discussed in section 2.4. The telephone network and delivery networks such as those
used by the post office or parcel delivery companies also fall into this general category
and are presumably studied within the relevant corporations, if not yet by academic
researchers. (We distinguish here between the physical telephone network of wires
and cables and the network of who calls whom, discussed in section 2.1.) Electronic
circuits [155] fall somewhere between distribution and communication networks.

8http://research.compaq.com/SRC/eachmovie/
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Another very widely studied technological network is the Internet, i.e., the net-
work of physical connections between computers. Since there is a large and ever-
changing number of computers on the Internet, the structure of the network is usu-
ally examined at a coarse-grained level, either the level of routers, special-purpose
computers on the network that control the movement of data, or “autonomous sys-
tems,” which are groups of computers within which networking is handled locally, but
between which data flows over the public Internet (Figure 1.2a). The computers at
a single company or university would probably form a single autonomous system—
autonomous systems often correspond roughly with domain names.

In fact, the network of physical connections on the Internet is not easy to discover
since the infrastructure is maintained by many separate organizations. Typically,
therefore, researchers reconstruct the network by reasoning from large samples of
point-to-point data routes. So-called “traceroute” programs can report the sequence
of network nodes that a data packet passes through when traveling between two points,
and if we assume an edge in the network between any two consecutive nodes along such
a path, then a sufficiently large sample of paths will give us a fairly complete picture
of the entire network. There may, however, be some edges that never get sampled,
so the reconstruction is typically a good, but not perfect, representation of the true
physical structure of the Internet. Studies of Internet structure have been carried out
by, among others, Faloutsos et al. [148], Broida and Claffy [75], and Chen et al. [86].

One of the interesting features of all of these technological networks is that their
structure is clearly governed to some extent by space and geography. Power grids,
the Internet, air, road, and rail networks all span continents, and which vertices in
the network are connected to which others is presumably both a function of what is
technologically desirable and what is geographically feasible [425]. It is not yet well
understood what the interplay of these factors is.

2.4. Biological Networks. A number of biological systems can be usefully repre-
sented as networks. Perhaps the classic example of a biological network is the network
of metabolic pathways, which is a representation of metabolic substrates and products
with directed edges joining them if a known metabolic reaction exists that acts on a
given substrate and produces a given product. Most of us will probably have seen
at some point the giant maps of metabolic pathways that many molecular biologists
pin to their walls.9 Studies of the statistical properties of metabolic networks have
been performed by, for example, Jeong et al. [213, 339], Fell and Wagner [153, 404],
and Stelling et al. [382]. A separate network is the network of mechanistic physical
interactions between proteins (as opposed to chemical reactions among metabolites),
which is usually referred to as a protein interaction network. Interaction networks
have been studied by a number of authors [205, 211, 273, 375, 393].

Another important class of biological network is the genetic regulatory network.
The expression of a gene, i.e., the production by transcription and translation of the
protein for which the gene codes, can be controlled by the presence of other proteins,
both activators and inhibitors, so that the genome itself forms a switching network
with vertices representing the proteins and directed edges representing dependence
of protein production on the proteins at other vertices. The statistical structure of
regulatory networks has been studied recently by various authors [152, 183, 367].
Genetic regulatory networks were in fact one of the first networked dynamical sys-

9The standard chart of the metabolic network is somewhat misleading. For reasons of clarity
and aesthetics, many metabolites appear in more than one place on the chart, so that some pairs of
vertices are actually the same vertex.
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tems for which large-scale modeling attempts were made. The early work on random
Boolean nets by Kauffman [223, 224, 225] is a classic in this field and anticipated
recent developments by several decades.

Another much-studied example of a biological network is the food web, in which
the vertices represent species in an ecosystem and a directed edge from species A
to species B indicates that A preys on B [91, 338]—see Figure 1.2c. (Sometimes
the relationship is drawn the other way around, because ecologists tend to think in
terms of energy or carbon flows through food webs; a predator-prey interaction is thus
drawn as an arrow pointing from prey to predator, indicating energy flow from prey to
predator when the prey is eaten.) Construction of complete food webs is a laborious
business, but a number of quite extensive data sets have become available in recent
years [27, 176, 203, 271]. Statistical studies of the topologies of food webs have been
carried out by Solé and Montoya [289, 374], Camacho, Guimerà, and Amaral [82], and
Dunne et al. [132, 133, 422], among others. A particularly thorough study of webs of
plants and herbivores has been conducted by Jordano, Bascompte, and Olesen [218],
which includes statistics for no less than 53 different networks.

Neural networks are another class of biological networks of considerable impor-
tance. Measuring the topology of real neural networks is extremely difficult, but has
been done successfully in a few cases. The best known example is the reconstruction of
the 282-neuron neural network of the nematode C. elegans by White et al. [420]. The
network structure of the brain at larger scales than individual neurons—functional
areas and pathways—has been investigated by Sporns [378] and Sporns, Tononi, and
Edelman [379].

Blood vessels and the equivalent vascular networks in plants form the foundation
for one of the most successful theoretical models of the effects of network structure on
the behavior of a networked system, the theory of biological allometry [29, 416, 417],
although we are not aware of any quantitative studies of their statistical structure.

Finally we mention two examples of networks from the physical sciences, the
network of free energy minima and saddle points in glasses [130] and the network
of conformations of polymers and the transitions between them [360], both of which
appear to have some interesting structural properties.

3. Properties of Networks. Perhaps the simplest useful model of a net-
work is the random graph, first studied by Rapoport [345, 346], Solomonoff and
Rapoport [377], and Erdős and Rényi [141, 142, 143], which we describe in section 4.1.
In this model, undirected edges are placed at random between a fixed number n of
vertices to create a network in which each of the 1

2n(n− 1) possible edges is indepen-
dently present with some probability p, and the number of edges connected to each
vertex—the degree of the vertex—is distributed according to a binomial distribution,
or a Poisson distribution in the limit of large n. The random graph has been well
studied by mathematicians [63, 210, 222], and many results, both approximate and
exact, have been proved rigorously. Most of the interesting features of real-world
networks that have attracted the attention of researchers in the last few years, how-
ever, concern the ways in which networks are not like random graphs. Real networks
are nonrandom in some revealing ways that suggest both possible mechanisms that
could be guiding network formation, and possible ways in which we could exploit
network structure to achieve certain aims. In this section we describe some features
that appear to be common to networks of many different types.

3.1. The Small-World Effect. In section 2.1 we described the famous experi-
ments carried out by Stanley Milgram in the 1960s, in which letters passed from
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person to person were able to reach a designated target individual in only a small
number of steps—around six in the published cases. This result is one of the first
direct demonstrations of the small-world effect, the fact that most pairs of vertices in
most networks seem to be connected by a short path through the network.

The existence of the small-world effect had been speculated upon before Mil-
gram’s work, notably in a remarkable 1929 short story by the Hungarian writer
Frigyes Karinthy [221] and more rigorously in the mathematical work of Pool and
Kochen [340], which, although published after Milgram’s studies, was in circulation
in preprint form for a decade before Milgram took up the problem. Nowadays, the
small-world effect has been studied and verified directly in a large number of different
networks.

Consider an undirected network, and let us define � to be the mean geodesic
(i.e., shortest) distance between vertex pairs in a network:

(3.1) � =
1

1
2n(n+ 1)

∑
i≥j

dij ,

where dij is the geodesic distance from vertex i to vertex j. Notice that we have
included the distance from each vertex to itself (which is zero) in this average. This is
mathematically convenient for a number of reasons, but not all authors do it. In any
case, its inclusion simply multiplies � by (n− 1)/(n+ 1) and hence gives a correction
of order n−1, which is often negligible for practical purposes.

The quantity � can be measured for a network of n vertices and m edges in time
O(mn) using simple breadth-first search [7], also called a “burning algorithm” in the
physics literature. In Table 3.1, we show values of � taken from the literature for a
variety of different networks. As the table shows, the values are in all cases quite
small—much smaller than the number n of vertices, for instance.

The definition (3.1) of � is problematic in networks that have more than one
component. In such cases, there exist vertex pairs that have no connecting path.
Conventionally one assigns infinite geodesic distance to such pairs, but then the value
of � also becomes infinite. To avoid this problem one usually defines � on such networks
to be the mean geodesic distance between all pairs that have a connecting path. Pairs
that fall in two different components are excluded from the average. The figures in
Table 3.1 were all calculated in this way. An alternative and perhaps more satisfactory
approach is to define � to be the “harmonic mean” geodesic distance between all pairs,
i.e., the reciprocal of the average of the reciprocals:

(3.2) �−1 =
1

1
2n(n+ 1)

∑
i≥j

d−1
ij .

Infinite values of dij then contribute nothing to the sum. This approach has been
adopted only occasionally in network calculations [259], but perhaps should be used
more often.

The small-world effect has obvious implications for the dynamics of processes
taking place on networks. For example, if one considers the spread of information, or
indeed anything else, across a network, the small-world effect implies that that spread
will be fast on most real-world networks. If it takes only six steps for a rumor to
spread from any person to any other, for instance, then the rumor will spread much
faster than if it takes a hundred steps, or a million. This affects the number of “hops”
a packet must make to get from one computer to another on the Internet, the number
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4
.34

11
.05

3
.0

0
.010

0
.030

−
0
.154

[155]
p
eer-to-p

eer
netw

ork
undirected

880
1
296

1
.47

4
.28

2
.1

0
.012

0
.011

−
0
.366

[6,
353]

Biological

m
etab

olic
netw

ork
undirected

765
3
686

9
.64

2
.56

2
.2

0
.090

0
.67

−
0
.240

[213]
protein

interactions
undirected

2
115

2
240

2
.12

6
.80

2
.4

0
.072

0
.071

−
0
.156

[211]
m
arine

food
w
eb

directed
135

598
4
.43

2
.05

–
0
.16

0
.23

−
0
.263

[203]
freshw

ater
food

w
eb

directed
92

997
10
.84

1
.90

–
0
.40

0
.48

−
0
.326

[271]
neural

netw
ork

directed
307

2
359

7
.68

3
.97

–
0
.18

0
.28

−
0
.226

[415,
420]
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Fig. 3.1 Illustration of the definition of the clustering coefficient C, (3.3). This network has one
triangle and eight connected triples, and therefore has a clustering coefficient of 3× 1

8 = 3
8 .

The individual vertices have local clustering coefficients, Eq. (3.5), of 1, 1, 1
6 , 0, and 0, for

a mean value, (3.6), of C = 13
30 .

of legs of a journey for an air or train traveler, the time it takes for a disease to
spread throughout a population, and so forth. The small-world effect also underlies
some well-known parlor games, particularly the calculation of Erdős numbers [107]
and Bacon numbers.10

On the other hand, the small-world effect is also mathematically obvious. If
the number of vertices within a distance r of a typical central vertex grows expo-
nentially with r—and this is true of many networks, including the random graph
(section 4.1)—then the value of � will increase as log n. In recent years the term
“small-world effect” has thus taken on a more precise meaning: networks are said
to show the small-world effect if the value of � scales logarithmically or slower with
network size for fixed mean degree. Logarithmic scaling can be proved for a variety of
network models [61, 63, 88, 127, 164] and has also been observed in various real-world
networks [13, 311, 312]. Some networks have mean vertex–vertex distances that in-
crease slower than log n. Bollobás and Riordan [64] have shown that networks with
power-law degree distributions (section 3.3) have values of � that increase no faster
than logn/ log log n (see also [164]), and Cohen and Havlin [95] have given arguments
that suggest that the actual variation may be slower even than this.

3.2. Transitivity or Clustering. A clear deviation from the behavior of the ran-
dom graph can be seen in the property of network transitivity, sometimes also called
clustering, although the latter term also has another meaning in the study of net-
works (see section 3.7) and so can be confusing. In many networks it is found that if
vertex A is connected to vertex B and vertex B to vertex C, then there is a heightened
probability that vertex A will also be connected to vertex C. In the language of social
networks, the friend of your friend is likely also to be your friend. In terms of network
topology, transitivity means the presence of a heightened number of triangles in the
network—sets of three vertices each of which is connected to each of the others. It
can be quantified by defining a clustering coefficient C thus:

(3.3) C =
3× number of triangles in the network
number of connected triples of vertices

,

where a “connected triple” means a single vertex with edges running to an unordered
pair of others (see Figure 3.1).

In effect, C measures the fraction of triples that have their third edge filled in
to complete the triangle. The factor of three in the numerator accounts for the fact
that each triangle contributes to three triples and ensures that C lies in the range

10http://www.cs.virginia.edu/oracle/
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184 M. E. J. NEWMAN

0 ≤ C ≤ 1. In simple terms, C is the mean probability that two vertices that are
network neighbors of the same other vertex will themselves be neighbors. It can also
be written in the form

(3.4) C =
6× number of triangles in the network

number of paths of length two
,

where a path of length two refers to a directed path starting from a specified vertex.
This definition shows that C is also the mean probability that the friend of your friend
is also your friend.

The definition of C given here has been widely used in the sociology literature,
where it is referred to as the “fraction of transitive triples.”11 In the mathematical
and physical literature it seems to have been first discussed by Barrat and Weigt [40].

An alternative definition of the clustering coefficient, also widely used, has been
given by Watts and Strogatz [415], who proposed defining a local value

(3.5) Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
.

For vertices with degree 0 or 1, for which both numerator and denominator are zero,
we put Ci = 0. Then the clustering coefficient for the whole network is the average

(3.6) C =
1
n

∑
i

Ci.

This definition effectively reverses the order of the operations of taking the ratio of
triangles to triples and of averaging over vertices—one here calculates the mean of
the ratio, rather than the ratio of the means. It tends to weight the contributions of
low-degree vertices more heavily, because such vertices have a small denominator in
(3.5) and hence can give quite different results from (3.3). In Table 3.1 we give both
measures for a number of networks (denoted C(1) and C(2) in the table). Normally
our first definition (3.3) is easier to calculate analytically, but (3.6) is easily calculated
on a computer and has found wide use in numerical studies and data analysis. It is
important when reading (or writing) literature in this area to be clear about which
definition of the clustering coefficient is in use. The difference between the two is
illustrated in Figure 3.1.

The local clustering Ci above has been used quite widely in its own right in
the sociological literature, where it is referred to as the “network density” [362]. Its
dependence on the degree ki of the central vertex i has been studied by Dorogovtsev,
Goltsev, and Mendes [113] and Szabó, Alava, and Kertész [388]; both groups found
that Ci falls off with ki approximately as k−1

i for certain models of scale-free networks
(section 3.3.1). Similar behavior has also been observed empirically in real-world
networks [348, 349, 396].

In general, regardless of which definition of the clustering coefficient is used, the
values tend to be considerably higher than for a random graph with a similar number
of vertices and edges. Indeed, it is suspected that for many types of networks the
probability that the friend of your friend is also your friend should tend to a nonzero
limit as the network becomes large, so that C = O(1) as n → ∞.12 On the random

11For example, the standard network analysis program UCInet includes a function to calculate
this quantity for any network.

12An exception is scale-free networks with Ci ∼ k−1
i , as described above. For such networks (3.3)

tends to zero as n→∞, although (3.6) is still finite.
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 185

graph, by contrast, C = O(n−1) for large n (either definition of C) and hence the
real-world and random graph values can be expected to differ by a factor of order n.
This point is discussed further in section 4.1.

The clustering coefficient measures the density of triangles in a network. An
obvious generalization is to ask about the density of longer loops also: loops of length
four and above. A number of authors have looked at such higher order clustering
coefficients [54, 79, 165, 172, 316], although there is so far no clean theory, similar
to a cumulant expansion, that separates the independent contributions of the various
orders from one another. If more than one edge is permitted between a pair of vertices,
then there is also a lower order clustering coefficient that describes the density of loops
of length two. This coefficient is particularly important in directed graphs where the
two edges in question can point in opposite directions. The probability that two
vertices in a directed network point to each other is called the reciprocity and is often
measured in directed social networks [362, 408]. It has been examined occasionally in
other contexts too, such as the World Wide Web [3, 137] and email networks [320].

3.3. Degree Distributions. Recall that the degree of a vertex in a network is
the number of edges incident on (i.e., connected to) that vertex. We define pk to be
the fraction of vertices in the network that have degree k. Equivalently, pk is the
probability that a vertex chosen uniformly at random has degree k. A plot of pk for
any given network can be formed by making a histogram of the degrees of vertices.
This histogram is the degree distribution for the network. In a random graph of the
type studied by Erdős and Rényi [141, 142, 143], each edge is present or absent with
equal probability, and hence the degree distribution is, as mentioned earlier, binomial,
or Poisson in the limit of large graph size. Real-world networks are mostly found to
be very unlike the random graph in their degree distributions. Far from having a
Poisson distribution, the degrees of the vertices in most networks are highly right-
skewed, meaning that their distribution has a long right tail of values that are far
above the mean.

Measuring this tail is somewhat tricky. Although in theory one just has to con-
struct a histogram of the degrees, in practice one rarely has enough measurements to
get good statistics in the tail, and direct histograms are thus usually rather noisy (see
the histograms in [74, 148, 342], for example). There are two accepted ways to get
around this problem. One is to constructed a histogram in which the bin sizes increase
exponentially with degree. For example, the first few bins might cover degree ranges
1, 2–3, 4–7, 8–15, and so on. The number of samples in each bin is then divided by
the width of the bin to normalize the measurement. This method of constructing a
histogram is often used when the histogram is to be plotted with a logarithmic degree
scale, so that the widths of the bins will appear even. Because the bins get wider as
we get out into the tail, the problems with statistics are reduced, although they are
still present to some extent as long as pk falls off faster than k−1, which it must if the
distribution is to be integrable.

An alternative way of presenting degree data is to make a plot of the cumulative
distribution function

(3.7) Pk =
∞∑
k′=k

pk′ ,

which is the probability that the degree is greater than or equal to k. Such a plot has
the advantage that all the original data are represented. When we make a conventional
histogram by binning, any differences between the values of data points that fall in
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186 M. E. J. NEWMAN

the same bin are lost. The cumulative distribution function does not suffer from
this problem. The cumulative distribution also reduces the noise in the tail. On the
downside, the plot doesn’t give a direct visualization of the degree distribution itself,
and adjacent points on the plot are not statistically independent, making correct fits
to the data tricky.

In Figure 3.2 we show cumulative distributions of degree for a number of the
networks described in section 2. As the figure shows, the distributions are indeed
all right-skewed. Many of them follow power laws in their tails: pk ∼ k−α for some
constant exponent α. Note that such power-law distributions show up as power laws
in the cumulative distributions also, but with exponent α− 1 rather than α:

(3.8) Pk ∼
∞∑
k′=k

k′
−α ∼ k−(α−1).

Some of the other distributions have exponential tails: pk ∼ e−k/κ. These also give
exponentials in the cumulative distribution, but with the same exponent:

(3.9) Pk =
∞∑
k′=k

pk ∼
∞∑
k′=k

e−k
′/κ ∼ e−k/κ.

This makes power-law and exponential distributions particularly easy to spot experi-
mentally, by plotting the corresponding cumulative distributions on logarithmic scales
(for power laws) or semilogarithmic scales (for exponentials).

For other types of networks degree distributions can be more complicated. For
bipartite graphs, for instance (section 1.1), there are two degree distributions, one
for each type of vertex. For directed graphs each vertex has both an in-degree and
an out-degree, and the degree distribution therefore becomes a function pjk of two
variables, representing the fraction of vertices that simultaneously have in-degree j
and out-degree k. In empirical studies of directed graphs like the Web, researchers
have usually given only the individual distributions of in- and out-degree [14, 34, 74],
i.e., the distributions derived by summing pjk over one or other of its indices. This,
however, discards much of the information present in the joint distribution. It has been
found that in- and out-degrees are quite strongly correlated in some networks [320],
which suggests that there is more to be gleaned from the joint distribution than is
normally appreciated.

3.3.1. Scale-FreeNetworks. Networks with power-law degree distributions have
been the focus of a great deal of attention in the literature [13, 120, 386]. They are
sometimes referred to as scale-free networks [32], although it is only their degree
distributions that are scale-free;13 one can and usually does have scales present in
other network properties. The earliest published example of a scale-free network is
probably Price’s network of citations between scientific papers [342] (see section 2.2).
He quoted a value of α = 2.5 to 3 for the exponent of his network. In a later paper
he quoted a more accurate figure of α = 3.04 [343]. He also found a power-law
distribution for the out-degree of the network (number of bibliography entries in each
paper), although later work has called this into question [395]. More recently, power-
law degree distributions have been observed in a host of other networks, including

13The term “scale-free” refers to any functional form f(x) that remains unchanged to within a
multiplicative factor under a rescaling of the independent variable x. In effect this means power-law
forms, since these are the only solutions to f(ax) = bf(x), and hence “power-law” and “scale-free”
are, for our purposes, synonymous.
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Fig. 3.2 Cumulative degree distributions for six different networks. The horizontal axis for each
panel is vertex degree k (or in-degree for the citation and Web networks, which are di-
rected) and the vertical axis is the cumulative probability distribution of degrees, i.e., the
fraction of vertices that have degree greater than or equal to k. The networks shown are
the following: (a) the collaboration network of mathematicians [181]; (b) citations between
1981 and 1997 to all papers cataloged by the Institute for Scientific Information [350]; (c) a
300 million vertex subset of the World Wide Web, circa 1999 [74]; (d) the Internet at the
level of autonomous systems, April 1999 [86]; (e) the power grid of the western United
States [415]; (f) the interaction network of proteins in the metabolism of the yeast S. cere-
visiae [211]. Of these networks, three of them, (c), (d), and (f), appear to have power-law
degree distributions, as indicated by their approximately straight-line forms on the doubly
logarithmic scales, and one (b) has a power-law tail but deviates markedly from power-law
behavior for small degree. Network (e) has an exponential degree distribution (note the
log-linear scales used in this panel) and network (a) appears to have a truncated power-law
degree distribution of some type, or possible two separate power-law regimes with different
exponents.
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188 M. E. J. NEWMAN

notably other citation networks [350, 363], the World Wide Web [14, 34, 74], the
Internet [86, 148, 400], metabolic networks [211, 213], telephone call graphs [8, 9],
and the network of human sexual contacts [217, 265]. The degree distributions of
some of these networks are shown in Figure 3.2.

Other common functional forms for the degree distribution are exponentials, such
as those seen in the power grid [20] and railway networks [365], and power laws with
exponential cutoffs, such as those seen in the network of movie actors [20] and some
collaboration networks [312]. Note also that while a particular form may be seen in
the degree distribution for the network as a whole, specific subnetworks within the
network can have other forms. The World Wide Web, for instance, shows a power-law
degree distribution overall but unimodal distributions within domains [337].

3.3.2. Maximum Degree. The maximum degree kmax of a vertex in a network
will in general depend on the size of the network. For some calculations on networks
the value of this maximum degree matters (see, for example, section 8.3.2). In work
on scale-free networks, Aiello, Chung, and Lu [8] assumed that the maximum degree
was approximately the value above which there is less than one vertex of that degree
in the graph on average, i.e., the point where npk = 1. This means, for instance,
that kmax ∼ n1/α for the power-law degree distribution pk ∼ k−α. This assumption,
however, can give misleading results; in many cases there will be vertices in the
network with significantly higher degree than this, as discussed by Adamic et al. [6].

Given a particular degree distribution (and assuming all degrees to be sampled
independently from it, which may not be true for networks in the real world), the
probability of there being exactly m vertices of degree k and no vertices of higher
degree is

(
n
m

)
pmk (1 − Pk)n−m, where Pk is the cumulative probability distribution,

(3.7). Hence the probability hk that the highest degree on the graph is k is

hk =
n∑

m=1

(
n

m

)
pmk (1− Pk)n−m = (pk + 1− Pk)n − (1− Pk)n,(3.10)

and the expected value of the highest degree is kmax =
∑
k khk.

For both small and large values of k, hk tends to zero, and the sum over k
is dominated by the terms close to the maximum. Thus, in most cases, a good
approximation to the expected value of the maximum degree is given by the modal
value. Differentiating and observing that dPk/dk = pk, we find that the maximum
of hk occurs when

(3.11)
(
dpk
dk
− pk

)
(pk + 1− Pk)n−1 + pk(1− Pk)n−1 = 0,

or kmax is a solution of

(3.12)
dpk
dk
� −np2

k,

where we have made the (fairly safe) assumption that pk is sufficiently small for
k � kmax that npk � 1 and Pk � 1.

For example, if pk ∼ k−α in its tail, then we find that

(3.13) kmax ∼ n1/(α−1).

As shown by Cohen et al. [93], a simple rule of thumb that leads to the same result
is that the maximum degree is roughly the value of k that solves nPk = 1. Note,
however, that, as shown by Dorogovtsev and Samukhin [129], the fluctuations in the
tail of the degree distribution are very large for the power-law case.
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Dorogovtsev, Mendes, and Samukhin [126] have also shown that (3.13) holds for
networks generated using the “preferential attachment” procedure of Barabási and
Albert [32] described in section 7.2, and a detailed numerical study of this case has
been carried out by Moreira, Andrade, and Amaral [294].

3.4. Network Resilience. Related to degree distributions is the property of re-
silience of networks to the removal of their vertices, which has been the subject of a
good deal of attention in the literature. Most of the networks we have been consid-
ering rely for their function on their connectivity, i.e., the existence of paths leading
between pairs of vertices. If vertices are removed from a network, the typical length
of these paths will increase, and ultimately vertex pairs will become disconnected and
communication between them through the network will become impossible. Networks
vary in their level of resilience to such vertex removal.

There are also a variety of different ways in which vertices can be removed and
different networks show varying degrees of resilience to these also. For example, one
could remove vertices at random from a network, or one could target some specific class
of vertices, such as those with the highest degrees. Network resilience is of particular
importance in epidemiology, where “removal” of vertices in a contact network might
correspond, for example, to vaccination of individuals against a disease. Because
vaccination not only prevents the vaccinated individuals from catching the disease
but may also destroy paths between other individuals by which the disease might
have spread, it can have a wider reaching effect than one might at first think, and
careful consideration of the efficacy of different vaccination strategies could lead to
substantial advantages for public health.

Recent interest in network resilience has been sparked by the work of Albert,
Jeong, and Barabási [15], who studied the effect of vertex deletion in two example
networks, a 6000-vertex network representing the topology of the Internet at the level
of autonomous systems (see section 2.3) and a 326,000-page subset of the World Wide
Web. Both the Internet and the Web have been observed to have degree distributions
that are approximately power-law in form [14, 74, 86, 148, 400] (section 3.3.1). The
authors measured average vertex–vertex distances as a function of number of vertices
removed, both for random removal and for progressive removal of the vertices with
the highest degrees.14 In Figure 3.3 we show their results for the Internet. They
found for both networks that distance was almost entirely unaffected by random
vertex removal, i.e., the networks studied were highly resilient to this type of removal.
This is intuitively reasonable, since most of the vertices in these networks have low
degree and therefore lie on few paths between others; thus their removal rarely affects
communications substantially. On the other hand, when removal is targeted at the
highest degree vertices, it is found to have devastating effect. Mean vertex–vertex
distance increases very sharply with the fraction of vertices removed, and typically
only a few percent of vertices need be removed before essentially all communication
through the network is destroyed. Albert et al. expressed their results in terms of
failure or sabotage of network nodes. The Internet (and the Web) they suggest,
is highly resilient against the random failure of vertices in the network but highly
vulnerable to deliberate attack on its highest-degree vertices.

14In removing the vertices with the highest degrees, Albert et al. recalculated degrees following
the removal of each vertex. Most other authors who have studied this issue have adopted a slightly
different strategy of removing vertices in order of their initial degree in the network before any
removal.
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Fig. 3.3 Mean vertex–vertex distance on a graph representation of the Internet at the autonomous
system level, as vertices are removed one by one. If vertices are removed in random order
(squares), distance increases only very slightly, but if they are removed in order of their
degrees, starting with the highest degree vertices (circles), then distance increases sharply.
After Albert, Jeong, and Barabási [15]. Reprinted with permission from Nature Publishing
Group (www.nature.com).

Results similar to those of Albert et al. were found independently by
Broder et al. [74] for a much larger subset of the Web graph. Interestingly, how-
ever, Broder et al. gave an entirely opposite interpretation of their results. They
found that in order to destroy connectivity in the Web one has to remove all vertices
with degree greater than five, which seems like a drastic attack on the network, given
that some vertices have degrees in the thousands. They thus concluded that the net-
work was very resilient against targeted attack. In fact, however, there is not such a
conflict between these results as at first appears. Because of the highly skewed degree
distribution of the Web, the fraction of vertices with degree greater than five is only
a small fraction of all vertices.

Following these studies, many authors have looked into the question of resilience
for other networks. In general the picture seems to be consistent with that seen
in the Internet and Web. Most networks are robust against random vertex re-
moval but considerably less robust to targeted removal of the highest-degree ver-
tices. Jeong et al. [211] have looked at metabolic networks, Dunne, Williams, and
Martinez [132, 133] at food webs, Newman, Forrest, and Balthrop [320] at email net-
works, and a variety of authors at resilience of model networks [15, 81, 93, 94, 199],
which we discuss in more detail in later sections of the review. A particularly thorough
study of the resilience of both real-world and model networks has been conducted by
Holme et al. [199], who looked not only at vertex removal but also at removal of edges
and considered some additional strategies for selecting vertices based on so-called
betweenness (see sections 3.7 and 3.9).

3.5. Mixing Patterns. Delving a little deeper into the statistics of network struc-
ture, one can ask about which vertices pair up with which others. In most kinds
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Table 3.2 Couples in the study of Catania et al. [85] tabulated by race of either partner. After
Morris [301].

Women
Black Hispanic White Other

M
en

Black 506 32 69 26
Hispanic 23 308 114 38

White 26 46 599 68
Other 10 14 47 32

of networks there are at least a few different types of vertices, and the probabilities
of connection between vertices often depends on types. For example, in a food web
representing which species eat which in an ecosystem (section 2.4) one sees vertices
representing plants, herbivores, and carnivores. Many edges link the plants and herbi-
vores, and many more the herbivores and carnivores. But there are few edges linking
herbivores to other herbivores, or carnivores to plants. For the Internet, Maslov,
Sneppen, and Zaliznyak [274] have proposed that the structure of the network reflects
the existence of three broad categories of nodes: high-level connectivity providers who
run the Internet backbone and trunk lines, consumers who are end users of Internet
service, and ISPs who join the two. Again there are many links between end users
and ISPs, and many between ISPs and backbone operators, but few between ISPs
and other ISPs, or between backbone operators and end users.

In social networks this kind of selective linking is called assortative mixing or
homophily and has been widely studied, as it has also in epidemiology. (The term
“assortative matching” is also seen in the ecology literature, particularly in reference
to mate choice among animals.) A classic example of assortative mixing in social
networks is mixing by race. Table 3.2, for example, reproduces results from a study of
1,958 couples in the city of San Francisco, California. Among other things, the study
recorded the race (self-identified) of study participants in each couple. As the table
shows, participants appear to draw their partners preferentially from those of their
own race, and this is believed to be a common phenomenon in many social networks:
we tend to associate preferentially with people who are similar to ourselves in some
way.

Assortative mixing can be quantified by an “assortativity coefficient,” which can
be defined in a couple of different ways. Let Eij be the number of edges in a network
that connect vertices of types i and j, with i, j = 1, . . . , N , and let E be the matrix
with elements Eij , as depicted in Table 3.2. We define a normalized mixing matrix
by

(3.14) e =
E
‖E ‖ ,

where ‖x ‖ means the sum of all the elements of the matrix x. The elements eij
measure the fraction of edges that fall between vertices of types i and j. One can also
ask about the conditional probability P (j|i) that my network neighbor is of type j
given that I am of type i, which is given by P (j|i) = eij/

∑
j eij . These quantities

satisfy the normalization conditions

(3.15)
∑
ij

eij = 1,
∑
j

P (j|i) = 1.
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192 M. E. J. NEWMAN

Gupta, Anderson, and May [185] have suggested that assortative mixing be quan-
tified by the coefficient

(3.16) Q =
∑
i P (i|i)− 1
N − 1

.

This quantity has the desirable properties that it is 1 for a perfectly assortative net-
work (every edge falls between vertices of the same type), and 0 for randomly mixed
networks, and it has been quite widely used in the literature. But it suffers from two
shortcomings [317]: (1) for an asymmetric matrix like the one in Table 3.2, Q has
two different values, depending on whether we put the men or the women along the
horizontal axis, and it is unclear which of these two values is the “correct” one for the
network; (2) the measure weights each vertex type equally, regardless of how many
vertices there are of each type, which can give rise to misleading figures for Q in cases
where community size is heterogeneous, as it often is.

An alternative assortativity coefficient that remedies these problems is defined
by [317]

(3.17) r =
Tr e− ‖ e2 ‖
1− ‖ e2 ‖ .

This quantity is also 0 in a randomly mixed network and 1 in a perfectly assortative
one. But its value is not altered by transposition of the matrix and it weights vertices
equally rather than communities, so that small communities make an appropriately
small contribution to r. For the data of Table 3.2 we find r = 0.621.

Another type of assortative mixing is mixing by scalar characteristics such as
age or income. Again it is usually found that people prefer to associate with others
of similar age and income to themselves, although of course age and income, like
race, may be proxies for other driving forces, such as cultural differences. Garfinkel,
Glei, and McLanahan [170] and Newman [317], for example, have analyzed data for
unmarried and married couples, respectively, to show that there is strong correlation
between the ages of partners. Mixing by scalar characteristics can be quantified by
calculating a correlation coefficient for the characteristic in question.

In theory assortative mixing according to vector characteristics should also be
possible. For example, geographic location probably affects individuals’ propensity to
become acquainted. Location could be viewed as a two-vector, with the probability
of connection between pairs of individuals being assortative on the values of these
vectors.

3.6. Degree Correlations. A special case of assortative mixing according to a
scalar vertex property is mixing according to vertex degree, also commonly referred
to simply as degree correlation. Do the high-degree vertices in a network associate
preferentially with other high-degree vertices? Or do they prefer to attach to low-
degree ones? Both situations are seen in some networks, as it turns out. The case of
assortative mixing by degree is of particular interest because, since degree is itself a
property of the graph topology, degree correlations can give rise to some interesting
network structure effects.

Several different ways of quantifying degree correlations have been proposed.
Maslov et al. [273, 274] have simply plotted the two-dimensional histogram of the
degrees of vertices at either ends of an edge. They have shown results for protein in-
teraction networks and the Internet. A more compact representation of the situation
is that proposed by Pastor-Satorras et al. [330, 400], who in studies of the Internet
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calculated the mean degree of the network neighbors of a vertex as a function of the
degree k of that vertex. This gives a one-parameter curve which increases with k if the
network is assortatively mixed. For the Internet in fact it is found to decrease with k,
a situation we call disassortativity. Newman [313, 317] reduced the measurement still
further to a single number by calculating the Pearson correlation coefficient of the
degrees at either ends of an edge. This gives a single number that should be positive
for assortatively mixed networks and negative for disassortative ones. In Table 3.1 we
show results for a number of different networks. An interesting observation is that
essentially all social networks measured appear to be assortative, but other types of
networks (information networks, technological networks, biological networks) appear
to be disassortative. It is not clear what the explanation for this result is, or even if
there is any one single explanation. (Probably there is not.)

3.7. Community Structure. It is widely assumed [362, 408] that most social
networks show “community structure,” i.e., groups of vertices that have a high den-
sity of edges within them, with a lower density of edges between groups. It is a matter
of common experience that people do divide into groups along lines of interest, occu-
pation, age, and so forth, and the phenomenon of assortativity discussed in section 3.5
certainly suggests that this might be the case. (It is possible for a network to have
assortative mixing but no community structure. This can occur, for example, when
there is assortative mixing by age or other scalar quantities. Networks with this type
of structure are sometimes said to be “stratified.”)

In Figure 3.4 we show a visualization of the friendship network of children in a
U.S. school taken from a study by Moody [290].15 The figure was created using a
“spring embedding” algorithm, in which linear springs are placed between vertices
and the system is relaxed using a first-order energy minimization. We have no special
reason to suppose that this very simple algorithm would reveal anything particularly
useful about the network, but the network appears to have strong enough community
structure that in fact the communities appear clearly in the figure. Moreover, when
Moody colors the vertices according to the race of the individuals they represent, as
shown in the figure, it becomes immediately clear that one of the principal divisions
in the network is by individuals’ race, and this is presumably what is driving the for-
mation of communities in this case. (The other principal division visible in the figure
is between middle school and high school, which are age divisions in the American
education system.)

It would be of some interest, and indeed practical importance, were we to find that
other types of networks, such as those listed in Table 3.1, show similar group structure
also. One might well imagine, for example, that citation networks would divide into
groups representing particular areas of research interest, and a good deal of energy
has been invested in studies of this phenomenon [101, 138]. Similarly communities
in the World Wide Web might reflect the subject matter of pages, communities in
metabolic, neural, or software networks might reflect functional units, communities
in food webs might reflect subsystems within ecosystems, and so on.

The traditional method for extracting community structure from a network is
cluster analysis [147], sometimes also called hierarchical clustering.16 In this method,
one assigns a “connection strength” to vertex pairs in the network of interest. In
general each of the 1

2n(n−1) possible pairs in a network of n vertices is assigned such

15This image does not appear in the paper cited, but it and a number of other images of friendship
networks from the same study can be found at http://www.sociology.ohio-state.edu/jwm/.

16Not to be confused with the entirely different use of the word clustering introduced in section 3.2.
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194 M. E. J. NEWMAN

White

Black

Other

Fig. 3.4 Friendship network of children in a U.S. school. Friendships are determined by asking the
participants, and hence are directed, since A may say that B is their friend but not vice
versa. Vertices are color coded according to race, as marked, and the split from left to
right in the figure is clearly primarily along lines of race. The split from top to bottom is
between middle school and high school, i.e., between younger and older children. Picture
courtesy of James Moody.

a strength, not just those that are connected by an edge, although there are versions of
the method where not all pairs are assigned a strength; in that case one can assume
the remaining pairs to have a connection strength of zero. Then, starting with n
vertices with no edges between any of them, one adds edges in order of decreasing
vertex–vertex connection strength. One can pause at any point in this process and
examine the component structure formed by the edges added so far; these components
are taken to be the communities (or “clusters”) at that stage in the process. When all
edges have been added, all vertices are connected to all others, and there is only one
community. The entire process can be represented by a tree or dendrogram of union
operations between vertex sets in which the communities at any level correspond to
a horizontal cut through the tree—see Figure 3.5.17

Clustering is possible according to many different definitions of the connection
strength. Reasonable choices include various weighted vertex–vertex distance mea-
sures, the sizes of minimum cut-sets (i.e., maximum flow) [7], and weighted path
counts between vertices. Recently a number of authors have had success with meth-
ods based on “edge betweenness,” which is the count of how many geodesic paths
between vertices run along each edge in the network [171, 184, 196, 421]. Results ap-

17For some reason such trees are conventionally depicted with their “root” at the top and their
“leaves” at the bottom, which is not the natural order of things for most trees.
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 195

Fig. 3.5 An example of a dendrogram showing the hierarchical clustering of ten vertices. A horizon-
tal cut through the dendrogram, such as that denoted by the dotted line, splits the vertices
into a set of communities, five in this case.

pear to show that, for social and biological networks at least, community structure is
a common network property, although some food webs are found not to break up into
communities in any simple way. (Food webs may be different from other networks in
that they appear to be dense: mean vertex degree increases roughly linearly with net-
work size, rather than remaining constant as it does in most networks [132, 272]. The
same may be true of metabolic networks also [P. Holme, personal communication].)

Network clustering should not be confused with the technique of data cluster-
ing, which is a way of detecting groupings of data-points in high-dimensional data
spaces [207]. The two problems do have some common features, however, and al-
gorithms for one can be adapted for the other, and vice versa. For example, high-
dimensional data can be converted into a network by placing edges between closely
spaced data points, and then network clustering algorithms can be applied to the
result. On balance, however, one normally finds that algorithms specially devised for
data clustering work better than such borrowed methods, and the same is true in
reverse.

In the social networks literature, network clustering has been discussed to a great
extent in the context of so-called block models [71, 418], which are essentially just
divisions of networks into communities or blocks according to one criterion or another.
Sociologists have concentrated particularly on structural equivalence. Two vertices in
a network are said to be structurally equivalent if they have all of the same neighbors.
Exact structural equivalence is rare, but approximate equivalence can be used as the
basis for a hierarchical clustering method such as that described above.

Another slightly different question about community structure, but related to the
one discussed here, has been studied by Flake et al. [158]: if one is given an example
vertex drawn from a known network, can one identify the community to which it
belongs? Algorithmic methods for answering this question would clearly be of some
practical value for searching networks such as the World Wide Web and citation
networks. Flake et al. give what appears to be a very successful algorithm, at least
in the context of the Web, based on a maximum flow method.

3.8. Network Navigation. Stanley Milgram’s famous small-world experiment
(section 2.1), in which letters were passed from person to person in an attempt to
get them to a desired target individual, showed that there exist short paths through
social networks between apparently distant individuals. However, there is another
conclusion that can be drawn from this experiment which Milgram apparently failed
to notice; it was pointed out in 2000 by Kleinberg [237, 238]. Milgram’s results
demonstrate that there exist short paths in the network, but they also demonstrate
that ordinary people are good at finding them. This is, upon reflection, perhaps an
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even more surprising result than the existence of the paths in the first place. The
participants in Milgram’s study had no special knowledge of the network connecting
them to the target person. Most people know only who their friends are and perhaps
a few of their friends’ friends. Nonetheless it proved possible to get a message to a
distant target in only a small number of steps. This indicates that there is something
quite special about the structure of the network. On a random graph, for instance, as
Kleinberg pointed out, short paths between vertices exist but no one would be able to
find them given only the kind of information that people have in realistic situations. If
it were possible to construct artificial networks that were easy to navigate in the same
way that social networks appear to be, it has been suggested they could be used to
build efficient database structures or better peer-to-peer computer networks [5, 6, 414]
(see section 8.3.3).

3.9. Other Network Properties. In addition to the heavily studied network
properties of the preceding sections, a number of others have received some attention.
In some networks the size of the largest component is an important quantity. For
example, in a communication network like the Internet the size of the largest com-
ponent represents the largest fraction of the network within which communication
is possible and hence is a measure of the effectiveness of the network at doing its
job [74, 81, 93, 94, 125, 322]. The size of the largest component is often equated with
the graph theoretical concept of the “giant component” (see section 4.1), although
technically the two are only the same in the limit of large graph size. The size of the
second-largest component in a network is also measured sometimes. In networks well
above the density at which a giant component first forms, the largest component is
expected to be much larger than the second largest (section 4.1).

Goh et al. [174] have made a statistical study of the distribution of the “between-
ness centrality” of vertices in networks. The betweenness centrality of a vertex i is the
number of geodesic paths between other vertices that run through i [161, 362, 408].
Goh et al. show that betweenness appears to follow a power law for many networks
and propose a classification of networks into two kinds based on the exponent of this
power law. Betweenness centrality can also be viewed as a measure of network re-
silience [199, 311]—it tells us how many geodesic paths will get longer when a vertex is
removed from the network. Latora and Marchiori [259, 260] have considered the har-
monic mean distance between a vertex and all others, which they call the “efficiency”
of the vertex. This, like betweenness centrality, can be viewed as a measure of network
resilience, indicating how much effect on path length the removal of a vertex will have.
A number of authors have looked at the eigenvalue spectra and eigenvectors of the
graph Laplacian (or equivalently the adjacency matrix) of a network [55, 146, 151],
which tells us about diffusion or vibration modes of the network, and about vertex
centrality [66, 67] (see also the discussion of network search strategies in section 8.3.1).

Milo et al. [283, 367] have presented a novel analysis that picks out recurrent
motifs—small subgraphs—from complete networks. They apply their method to ge-
netic regulatory networks, food webs, neural networks and the World Wide Web,
finding different motifs in each case. They have also made suggestions about the
possible function of these motifs within the networks. In regulatory networks, for
instance, they identify common subgraphs with particular switching functions in the
system, such as gates and other feed-forward logical operations.

4. Random Graphs. The remainder of this review is devoted to our primary
topic of study, the mathematics of model networks of various kinds. Recent work has
focused on models of four general types, which we treat in four following sections. In
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this section we look at random graph models, starting with the classic Poisson random
graph of Rapoport [345], Solomonoff and Rapoport [377], and Erdős and Rényi [141,
142], and concentrating particularly on the generalized random graphs studied by
Molloy and Reed [286, 287] and others. In section 5 we look at the somewhat neglected
but potentially very useful Markov graphs and their more general forms, exponential
random graphs and p∗ models. In section 6 we look at the “small-world model”
of Watts and Strogatz [415] and its generalizations. Then in section 7 we look at
models of growing networks, particularly the models of Price [343] and Barabási and
Albert [32], and generalizations. Finally, in section 8 we look at a number of models of
processes occurring on networks, such as search and navigation processes, and network
transmission and epidemiology.

The first serious attempt at constructing a model for large and (apparently) ran-
dom networks was the “random net” of Rapoport and collaborators [345, 377], which
was independently rediscovered a decade later by Erdős and Rényi [141], who studied
it exhaustively and rigorously, and who gave it the name “random graph,” by which
it is most often known today. Where necessary, we will here refer to it as the “Poisson
random graph” to avoid confusion with other random graph models. It is also some-
times called the “Bernoulli graph.” As we will see in this section, the random graph,
while illuminating, is inadequate to describe some important properties of real-world
networks, and so has been extended in a variety of ways. In particular, the random
graph’s Poisson degree distribution is quite unlike the highly skewed distributions of
section 3.3 and Figure 3.2. Extensions of the model to allow for other degree distri-
butions lead to the class of models known as “generalized random graphs,” “random
graphs with arbitrary degree distributions,” and the “configuration model.”

Here we look first at the Poisson random graph, and then at its generalizations.
Our treatment of the Poisson case is brief. A much more thorough treatment can be
found in the books by Bollobás [63] and Janson, WLuczak, and Rucinski [210] and the
review by Karoński [222].

4.1. Poisson Random Graphs. Solomonoff and Rapoport [377] and indepen-
dently Erdős and Rényi [141] proposed the following extremely simple model of a
network. Take some number n of vertices and connect each pair (or not) with prob-
ability p (or 1 − p).18 This defines the model that Erdős and Rényi called Gn,p. In
fact, technically, Gn,p is the ensemble of all such graphs in which a graph having m
edges appears with probability pm(1 − p)M−m, where M = 1

2n(n − 1) is the maxi-
mum possible number of edges. Erdős and Rényi also defined another, related model,
which they called Gn,m, which is the ensemble of all graphs having n vertices and ex-
actly m edges, each possible graph appearing with equal probability.19 Here we will
discuss Gn,p, but most of the results carry over to Gn,m in a straightforward fashion.

Many properties of the random graph are exactly solvable in the limit of large
graph size, as was shown by Erdős and Rényi in a series of papers in the 1960s [141,
142, 143]. Typically the limit of large n is taken holding the mean degree z = p(n−1)
constant, in which case the model clearly has a Poisson degree distribution, since the

18Slight variations on the model are possible depending on whether one allows self-edges or not
(i.e., edges that connect a vertex to itself), but this distinction makes a negligible difference to the
average behavior of the model in the limit of large n.

19Those familiar with statistical mechanics will notice a similarity between these two models
and the so-called canonical and grand canonical ensembles. In fact, the analogy is exact, and one
can define equivalents of the Helmholtz and Gibbs free energies, which are generating functions for
moments of graph properties over the distribution of graphs and which are related by a Lagrange
transform with respect to the “field” p and the “order parameter” m.
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presence or absence of edges is independent, and hence the probability of a vertex
having degree k is

(4.1) pk =
(
n

k

)
pk(1− p)n−k � zke−z

k!
,

with the last approximate equality becoming exact in the limit of large n and fixed k.
This is the reason for the name “Poisson random graph.”

The expected structure of the random graph varies with the value of p. The edges
join vertices together to form components, i.e., (maximal) subsets of vertices that are
connected by paths through the network. Both Solomonoff and Rapoport and also
Erdős and Rényi demonstrated what is for our purposes the most important property
of the random graph, that it possesses what we would now call a phase transition, from
a low-density, low-p state in which there are few edges and all components are small,
having an exponential size distribution and finite mean size, to a high-density, high-p
state in which an extensive (i.e., O(n)) fraction of all vertices are joined together in a
single giant component, the remainder of the vertices occupying smaller components
with again an exponential size distribution and finite mean size.

We can calculate the expected size of the giant component from the following
simple heuristic argument. Let u be the fraction of vertices on the graph that do
not belong to the giant component, which is also the probability that a vertex chosen
uniformly at random from the graph is not in the giant component. The probability
of a vertex not belonging to the giant component is also equal to the probability
that none of the vertex’s network neighbors belong to the giant component, which
is just uk if the vertex has degree k. Averaging this expression over the probability
distribution of k, (4.1), we then find the following self-consistency relation for u in
the limit of large graph size:

(4.2) u =
∞∑
k=0

pku
k = e−z

∞∑
k=0

(zu)k

k!
= ez(u−1).

The fraction S of the graph occupied by the giant component is S = 1− u and hence

(4.3) S = 1− e−zS .

By an argument only slightly more complex, which we give in the following section,
we can show that the mean size 〈s〉 of the component to which a randomly chosen
vertex belongs (for nongiant components) is

(4.4) 〈s〉 = 1
1− z + zS

.

The form of these two quantities is shown in Figure 4.1. Equation (4.3) is transcen-
dental and has no closed-form solution, but it is easy to see that for z < 1 its only
nonnegative solution is S = 0, while for z > 1 there is also a nonzero solution, which
is the size of the giant component. The phase transition occurs at z = 1. This is also
the point at which 〈s〉 diverges, a behavior that will be recognized by those familiar
with the theory of phase transitions: S plays the role of the order parameter in this
transition and 〈s〉 the role of the order-parameter fluctuations. The corresponding
critical exponents, defined by S ∼ (z− 1)β and 〈s〉 ∼ |z− 1|−γ , take the values β = 1
and γ = 1. Precisely at the transition, z = 1, there is a “double jump”—the mean size
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Fig. 4.1 The mean component size (solid line), excluding the giant component if there is one, and
the giant component size (dotted line), for the Poisson random graph, (4.3) and (4.4).

of the largest component in the graph goes as O(n2/3) for z = 1, rather than O(n) as
it does above the transition. The components at the transition have a power-law size
distribution with exponent τ = 5

2 (or 3
2 if one asks about the component to which a

randomly chosen vertex belongs). We look at these results in more detail in the next
section for the more general “configuration model.”

The random graph reproduces well one of the principal features of real-world
networks discussed in section 3, namely, the small-world effect. The mean number
of neighbors a distance � away from a vertex in a random graph is zd, and hence
the value of d needed to encompass the entire network is z� � n. Thus a typical
distance through the network is � = log n/ log z, which satisfies the definition of the
small-world effect given in section 3.1. Rigorous results to this effect can be found in,
for instance, [61] and [63]. However, in almost all other respects, the properties of the
random graph do not match those of networks in the real world. It has a low clustering
coefficient: the probability of connection of two vertices is p regardless of whether they
have a common neighbor, and hence C = p, which tends to zero as n−1 in the limit of
large system size [415]. The model also has a Poisson degree distribution, quite unlike
the distributions in Figure 3.2. It has entirely random mixing patterns, no correlation
between degrees of adjacent vertices, and no community structure, and navigation is
impossible on a random graph using local algorithms [237, 238, 313, 317, 400]. In
short it makes a good straw man but is rarely taken seriously in the modeling of real
systems.

Nonetheless, much of our basic intuition about the way networks behave comes
from the study of the random graph. In particular, the presence of the phase transition
and the existence of a giant component are ideas that underlie much of the work
described in this review. One often talks about the giant component of a network,
meaning in fact the largest component; one looks at the sizes of smaller components,
often finding them to be much smaller than the largest component; one sees a giant
component transition in many of the more sophisticated models that we will look at
in the coming sections. All of these are ideas that started with the Poisson random
graph.
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4.2. Generalized RandomGraphs. Random graphs can be extended in a variety
of ways to make them more realistic. The property of real graphs that is simplest to
incorporate is the property of non-Poisson degree distributions, which leads us to the
so-called configuration model. Here we examine this model in detail; in sections 4.2.3–
4.2.5 we describe further generalizations of the random graph to add other features.

4.2.1. The Configuration Model. Consider the model defined in the following
way. We specify a degree distribution pk, such that pk is the fraction of vertices in
the network having degree k. We choose a degree sequence, which is a set of n values
of the degrees ki of vertices i = 1, . . . , n, from this distribution. We can think of
this as giving each vertex i in our graph ki “stubs” or “spokes” sticking out of it,
which are the ends of edges-to-be. Then we choose pairs of stubs at random from
the network and connect them together. It is straightforward to demonstrate [286]
that this process generates every possible topology of a graph with the given degree
sequence with equal probability.20 The configuration model is defined as the ensemble
of graphs so produced, with each having equal weight.21

Since the 1970s the configuration model has been studied by a number of au-
thors [46, 47, 60, 88, 89, 267, 286, 287, 322, 424]. An exact condition is known in
terms of pk for the model to possess a giant component [286], the expected size of
that component is known [287], and the average size of nongiant components both
above and below the transition is known [322], along with a variety of other properties,
such as mean numbers of vertices a given distance away from a central vertex and
typical vertex–vertex distances [88]. Here we give a brief derivation of the main results
using the generating function formalism of Newman, Strogatz, and Watts [322]. More
rigorous treatments of the same results can be found in [88, 89, 286, 287].

There are two important points to grasp about the configuration model. First,
pk is, in the limit of large graph size, the distribution of degrees of vertices in our
graph, but the degree of the vertex we reach by following a randomly chosen edge
on the graph is not given by pk. Since there are k edges that arrive at a vertex of
degree k, we are k times as likely to arrive at that vertex as we are at some other
vertex that has degree 1. Thus the degree distribution of the vertex at the end of
a randomly chosen edge is proportional to kpk. In most case, we are interested in
how many edges there are leaving such a vertex other than the one we arrived along,
i.e., in the so-called excess degree, which is one less than the total degree of the vertex.
In the configuration model, the excess degree has a distribution qk given by

(4.5) qk =
(k + 1)pk+1∑

k kpk
=

(k + 1)pk+1

z
,

where z =
∑
k kpk is, as before, the mean degree in the network.

20Each possible graph can be generated
∏
i ki! different ways, since the stubs around each vertex

are indistinguishable. This factor is a constant for a given degree sequence, and hence each graph
appears with equal probability.

21An alternative model has recently been proposed by Chung and Lu [88, 89]. In their model, each
vertex i is assigned a desired degree ki chosen from the distribution of interest, and thenm = 1

2

∑
i ki

edges are placed between vertex pairs (i, j) with probability proportional to kikj . This model has
the disadvantage that the final degree sequence is not in general precisely equal to the desired degree
sequence, but it has some significant calculational advantages that make the derivation of rigorous
results easier. It is also a logical generalization of the Poisson random graph, in a way that the
configuration model is not. The approach has been further developed by Dorogovtsev, Mendes, and
Samukhin [128] and Caldarelli et al. [78].
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The second important point about the model is that the chance of finding a loop
in a small component of the graph goes as n−1. The number of vertices in a non-
giant component is O(n−1), and hence the probability of there being more than one
path between any pair of vertices is also O(n−1) for suitably well-behaved degree
distributions.22 This property is crucial to the solution of the configuration model
but is definitely not true of most real-world networks (see section 3.2). It is an open
question how much the predictions of the model would change if we were able to
incorporate the true loop structure of real networks into it.

We now proceed by defining two generating functions for the distributions pk and
qk:23

(4.6) G0(x) =
∞∑
k=0

pkx
k, G1(x) =

∞∑
k=0

qkx
k.

Note that, using (4.5), we also find that G1(x) = G′0(x)/z, which is occasionally
convenient. Then the generating function H1(x) for the total number of vertices
reachable by following an edge satisfies the self-consistency condition

(4.7) H1(x) = xG1(H1(x)).

This equation says that when we follow an edge, we find at least one vertex at the
other end (the factor of x on the right-hand side), plus some other clusters of vertices
(each represented by H1) which are reachable by following other edges attached to
that one vertex. The number of these other clusters is distributed according to qk,
hence the appearance of G1. A detailed derivation of (4.7) is given in [322].

The total number of vertices reachable from a randomly chosen vertex, i.e., the
size of the component to which such a vertex belongs, is generated by H0(x), where

(4.8) H0(x) = xG0(H1(x)).

The solution of (4.7) and (4.8) gives us the entire distribution of component sizes.
Mean component size below the phase transition in the region where there is no giant
component is given by

(4.9) 〈s〉 = H ′0(1) = 1 +
G′0(1)

1−G′1(1)
= 1 +

z2
1

z1 − z2
,

where z1 = z = 〈k〉 = G′0(1) is the average number of neighbors of a vertex and
z2 = 〈k2〉−〈k〉 = G′0(1)G

′
1(1) is the average number of second neighbors. We see that

this diverges when z1 = z2, or equivalently when

(4.10) G′1(1) = 1.

This point marks the phase transition at which a giant component first appears.
Substituting (4.6) into (4.10), we can also write the condition for the phase transition
as

(4.11)
∑
k

k(k − 2)pk = 0.

22Using arguments similar to those leading to (4.14), we can show that the density of loops in
small components will tend to zero as graph size becomes large, provided that z is finite and 〈k2〉
grows slower than n1/2. See also footnote 25.

23Traditionally, the independent variable in a generating function is denoted z, but here we use x
to avoid confusion with the mean degree z.
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202 M. E. J. NEWMAN

Indeed, since this sum increases monotonically as edges are added to the graph, it
follows that the giant component exists if and only if this sum is positive. A more
rigorous derivation of this result has been given by Molloy and Reed [286].

Above the transition there is a giant component which occupies a fraction S of
the graph. If we define u to be the probability that a randomly chosen edge leads to
a vertex that is not a part of this giant component, then, by an argument precisely
analogous to the one preceding (4.3), this probability must satisfy the self-consistency
condition u = G1(u) and S is given by the solution of

(4.12) S = 1−G0(u), u = G1(u).

An equivalent result is derived in [287]. Normally the equation for u cannot be solved
in closed form, but once the generating functions are known a solution can be found
to any desired level of accuracy by numerical iteration. And once the value of S
is known, the mean size of small components above the transition can be found by
subtracting off the giant component and applying the arguments that led to (4.9)
again, giving

(4.13) 〈s〉 = 1 +
zu2

[1− S][1−G′1(u)]
.

The result is a behavior qualitatively similar to that of the Poisson random graph,
with a continuous phase transition at a point defined by (4.11), characterized by the
appearance of a giant component and the divergence of the mean size of nongiant
components. The ratio z2/z1 of the mean number of vertices two steps away to the
number one step away plays the role of the independent parameter governing the
transition, as the mean degree z does in the Poisson case, and one can again define
critical exponents for the transition, which take the same values as for the Poisson
case, β = γ = 1, τ = 5

2 .
We can also find an expression for the clustering coefficient, (3.3), of the config-

uration model. A simple calculation shows that [136, 318]

(4.14) C =
1

nz1

[
z2

z1

]2

=
z

n

[
〈k2〉 − 〈k〉
〈k〉2

]2

,

which is the value C = z/n for the Poisson random graph times an extra factor that
depends on z and on the ratio 〈k2〉/〈k〉2. Thus C will normally go to zero as n−1

for large graphs, but for highly skewed degree distributions, like some of those in
Figure 3.2, the factor of 〈k2〉/〈k〉2 can be quite large, so that C is not necessarily
negligible for the graph sizes seen in empirical studies of networks (see below).

4.2.2. Example: Power-Law Degree Distribution. As an example of the appli-
cation of these results, consider the much-studied case of a network with a power-law
degree distribution:

(4.15) pk =
{

0 for k = 0,
k−α/ζ(α) for k ≥ 1

for given constant α. Here ζ(α) is the Riemann ζ-function, which functions as a
normalizing constant. Substituting into (4.6) we find that

(4.16) G0(x) =
Liα(x)
ζ(α)

, G1(x) =
Liα−1(x)
xζ(α− 1)

,
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where Lin(x) is the nth polylogarithm of x. Then (4.10) tells us that the phase
transition occurs at the point

(4.17) ζ(α− 2) = 2ζ(α− 1),

which gives a critical value for α of αc = 3.4788 . . . . Below this value a giant com-
ponent exists; above it there is no giant component. For α < αc, the value of the
variable u of (4.12) is

(4.18) u =
Liα−1(u)
uζ(α− 1)

,

which gives u = 0 below α = 2 and hence S = 1. Thus the giant component occupies
the entire graph below this point, or more strictly, a randomly chosen vertex belongs
to the giant component with probability 1 in the limit of large graph size (but see
the following discussion of the clustering coefficient and footnote 25). In the range
2 < α < αc we have a nonzero giant component whose size is given by (4.12). All of
these results were first shown by Aiello, Chung, and Lu [8].

We can also calculate the clustering coefficient for the power-law case using (4.14).
For α < 3 we have 〈k2〉 ∼ k3−α

max , where kmax is the maximum degree in the network.
Using (3.13) for kmax, equation (4.14) then gives

(4.19) C ∼ n−β , β =
3α− 7
α− 1

.

This gives interesting behavior for the typical values 2 ≤ α ≤ 3 of the exponent α
seen in most networks (see Table 3.1). If α > 7

3 , then C tends to zero as the graph
becomes large, although it does so slower than the C ∼ n−1 of the Poisson random
graph provided α < 3. At α = 7

3 , C becomes constant (or logarithmic) in the graph
size, and for α < 7

3 it actually increases with increasing system size.24 Thus for
scale-free networks with smaller exponents α, we would not be surprised to see quite
substantial values of the clustering coefficient, even if the pattern of connections were
completely random.25 This mechanism can, for instance, account for much of the
clustering seen in the World Wide Web [318].

4.2.3. Directed Graphs. Substantially more sophisticated extensions of random
graph models are possible than the simple first example given above. In this and the
next few sections we list some of the many possibilities, starting with directed graphs.

Each vertex in a directed graph has both an in-degree j and an out-degree k,
and the degree distribution therefore becomes, in general, a double distribution pjk
over both degrees, as discussed in section 3.3. The generating function for such a
distribution is a function of two variables

(4.20) G(x, y) =
∑
jk

pjkx
jyk.

24For sufficiently large networks this implies that the clustering coefficient will be greater than 1.
Physically this means that there will be more than one edge on average between two vertices that
share a common neighbor.

25This means in fact that the generating function formalism breaks down for α < 7
3 , invalidating

some of the preceding results for the power-law graph, since a fundamental assumption of the method
is that there are no short loops in the network. Aiello, Chung, and Lu [8] get around this problem
by assuming that the degree distribution is cut off at kmax ∼ n1/α (see section 3.3.2), which gives
C → 0 as n → ∞ for all α > 2. This, however, is somewhat artificial; in real power-law networks
there is normally no such cutoff.
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204 M. E. J. NEWMAN

Each vertex A also belongs to an in-component and an out-component, which are,
respectively, the set of vertices from which A can be reached and the set that can be
reached from A, by following directed edges only in their forward direction. There is
also the strongly connected component, which is the set of vertices which can both reach
and be reached from A. In a random directed graph with a given degree distribution,
the giant in-, out-, and strongly connected components can all be shown [322] to form
at a single transition that takes place when

(4.21)
∑
jk

(2jk − j − k)pjk = 0.

Defining generating functions for in- and out-degree separately and their excess-degree
counterparts,

F0(x) = G(x, 1), F1(x) =
1
z

∂G
∂y

∣∣∣∣
y=1

,(4.22a)

G0(y) = G(1, y), G1(y) =
1
z

∂G
∂x

∣∣∣∣
x=1

,(4.22b)

the sizes of the giant out-, in-, and strongly connected components are given by [322,
125]

Sout = 1− F0(u),(4.23a)
Sin = 1−G0(v),(4.23b)
Sstr = 1− G(u, 1)− G(1, v) + G(u, v),(4.23c)

where

(4.24) u = F1(u), v = G1(v).

4.2.4. Bipartite Graphs. Another class of generalizations of random graph mod-
els is to networks with more than one type of vertex. One of the simplest and most
important examples of such a network is the bipartite graph, which has two types
of vertices and edges running only between vertices of unlike types. As discussed
in section 1.1, many social networks are bipartite, forming what the sociologists call
affiliation networks, i.e., networks of individuals joined by common membership of
groups. In such networks the individuals and the groups are represented by the two
vertex types with edges between them representing group membership. Networks
of CEOs [167, 168], boards of directors [104, 105, 268], and collaborations of scien-
tists [312] and film actors [415] are all examples of affiliation networks. Some other
networks, such as the railway network studied by Sen et al. [365], are also bipar-
tite, and bipartite graphs have been used as the basis for models of sexual contact
networks [144, 314].

Bipartite graphs have two degree distributions, one each for the two types of
vertices. Since the total number of edges attached to each type of vertex is the same,
the means µ and ν of the two distributions are related to the numbers M and N of
the types of vertices by µ/M = ν/N . One can define generating functions as before
for the two types of vertices, generating both the degree distribution and the excess
degree distribution, and denoted f0(x), f1(x), g0(x), and g1(x). Then, for example,
we can show that there is a phase transition at which a giant component appears when
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f ′1(1)g
′
1(1) = 1. Expressions for the expected size of giant and nongiant components

can easily be derived [322].
In many cases, graphs that are fundamentally bipartite are actually studied by

projecting them down onto one set of vertices or the other—so called one-mode pro-
jections. For example, in the study of boards of directors of companies, it has become
standard to look at board “interlocks.” Two boards are said to be interlocked if
they share one or more common members, and the graph of board interlocks is the
one-mode projection of the full board graph onto the vertices representing just the
boards. Many results for these one-mode projections can also be extracted from the
generating function formalism. To give one example, the projected networks do not
have a vanishing clustering coefficient C in the limit of large system size but instead
can be shown to obey [322]

(4.25)
1
C
− 1 =

(µ2 − µ1)(ν2 − ν1)2

µ1ν1(2ν1 − 3ν2 + ν3)
,

where µn and νn are the nth moments of the degree distributions of the two vertex
types.

More complicated types of network structure can be introduced by increasing
the number of different types of vertices beyond two, and by relaxing the patterns
of connection between vertex types. For example, one can define a model with the
type of mixing matrix shown in Table 3.2 and solve exactly for many of the standard
properties [317, 373].

4.2.5. Degree Correlations. The type of degree correlations discussed in sec-
tion 3.6 can also be introduced into a random graph model [313]. Extending the
formalism of section 3.5, we can define the probability distribution ejk to be the prob-
ability that a randomly chosen edge on a graph connects vertices of excess degrees j
and k. On an undirected graph, this quantity is symmetric and satisfies

(4.26)
∑
jk

ejk = 1,
∑
j

ejk = qk.

Then the equivalent of (4.12) is

(4.27) S = 1− p0 −
∞∑
k=1

pku
k
k−1, uj =

∑
k ejku

k
k∑

k ejk
,

which must be solved self-consistently for the entire set {uk} of quantities, one for each
possible value of the excess degree. The phase transition at which a giant component
appears takes place when det(I − m) = 0, where m is the matrix with elements
mjk = kejk/qj . Matrix conditions of this form appear to be the typical generalization
of the criterion for the appearance of a giant component to graphs with nontrivial
mixing patterns [58, 317, 399].

Two other random graph models for degree correlations are also worth mention-
ing. One is the exponential random graph, which we study in more detail in the
following section. This is a general model, which has been applied to the particular
problem of degree correlations by Berg and Lässig [48].

A more specialized model that aims to explain the degree anticorrelations seen
in the Internet has been put forward by Maslov, Sneppen, and Zaliznyak [274]. They
suggest that these anticorrelations are a simple result of the fact that the Internet
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206 M. E. J. NEWMAN

graph has at most one edge between any vertex pair. Thus they are led to consider
the ensemble of all networks with a given degree sequence and no double edges. (The
configuration model, by contrast, allows double edges, and typical graphs usually
have at least a few such edges, which would disqualify them from membership in the
ensemble of Maslov et al.) The ensemble with no duplicate edges, it turns out, is
hard to treat analytically [47, 406], so Maslov et al. instead investigate it numerically,
sampling the ensemble at random using a Monte Carlo algorithm. Their results
appear to indicate that anticorrelations of the type seen in the Internet do indeed
arise as a finite-size effect within this model. (An alternative explanation of the same
observations has been put forward by Capocci, Caldarelli, and De Los Rios [83], who
use a modified version of the model of Barabási and Albert discussed in section 7.2
to show that correlations can arise through network growth processes.)

5. Exponential Random Graphs and Markov Graphs. The generalized random
graph models of the previous sections effectively address one of the principal short-
comings of early network models such as the Poisson random graph: their unrealistic
degree distribution. However, they have a serious shortcoming in that they fail to
capture the common phenomenon of transitivity described in section 3.2. The only
solvable random graph models that currently incorporate transitivity are the bipar-
tite and community-structured models of section 4.2.4 and certain dual-graph mod-
els [344], and these cover rather special cases. For general networks we currently have
no idea how to incorporate transitivity into random graph models; the crucial prop-
erty of independence between the neighbors of a vertex is destroyed by the presence
of short loops in a network, invalidating all the techniques used to derive solutions.
Some approximate methods may be useful in limited ways [316], or perhaps some sort
of perturbative analysis will prove possible, but no progress has yet been made in this
direction.

The main hope for progress in understanding the effects of transitivity, which
are certainly substantial, seems to lie in formulating a completely different model
or models based on some alternative ensemble of graph structures. In this and the
following section we describe two candidate models: the Markov graphs of Holland
and Leinhardt [193], Strauss [384], and Frank and Strauss [160], and the small-world
model of Watts and Strogatz [415].

Strauss [384] considers exponential random graphs, also (in a slightly generalized
form) called p∗ models [22, 409], which are a class of graph ensembles of fixed vertex
number n defined by analogy with the Boltzmann ensemble of statistical mechanics.26

Let {εi} be a set of measurable properties of a single graph, such as the number of
edges, the number of vertices of given degree, or the number of triangles of edges in
the graph. These quantities play a role similar to energy in statistical mechanics. And
let {βi} be a set of inverse-temperature or field parameters, whose values we are free
to choose. We then define the exponential random graph model to be the set of all
possible graphs (undirected in the simplest case) of n vertices in which each graph G
appears with probability

(5.1) P (G) =
1
Z

exp
(
−
∑
i

βiεi

)
,

26Indeed, in a development typical of this highly interdisciplinary field, exponential random graphs
have recently been rediscovered, apparently quite independently, by physicists [48, 77].
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where the partition function Z is

(5.2) Z =
∑
G

exp
(
−
∑
i

βiεi

)
.

For a sufficiently large set of temperature parameters {βi}, this definition can encom-
pass any probability distribution over graphs that we desire, although its practical
application requires that the size of the set be limited to a reasonably small number.

The calculation of the ensemble average of a graph observable εi is then found by
taking a suitable derivative of the (reduced) free energy f = − logZ:

(5.3) 〈εi〉 =
∑
G

εi(G)P (G) =
1
Z

∑
G

εi exp
(
−
∑
i

βiεi

)
=

∂f

∂βi
.

Thus, the free energy is a generating function for the expectation values of the ob-
servables, in a manner familiar from statistical field theory. If a particular observable
of interest does not appear in the exponent of (5.1) (the “graph Hamiltonian”), then
one can simply introduce it, with a corresponding temperature βi which is set to zero.

While these preliminary developments appear elegant in principle, little real
progress has been made. One would like to find the appropriate Gaussian field theory
for which f can be expressed in closed form, and then perturb around it to derive a
diagrammatic expansion for the effects of higher-order graph operators. In fact, one
can show that the Feynman diagrams for the expansion are the networks themselves.
Unfortunately, carrying through the entire field-theoretic program has not proved
easy. The general approach one should take is clear [48, 77], but the mechanics ap-
pear intractable for most cases of interest. Some progress can be made by restricting
ourselves to Markov graphs, which are the subset of graphs in which the presence or
absence of an edge between two vertices in the graph is correlated only with those
edges that share one of the same two vertices—edge pairs that are disjoint (have no
vertices in common) are uncorrelated. Overall, however, the question of how to carry
out calculations in exponential random graph ensembles is an open one.

In the absence of analytic progress on the model, therefore, researchers have
turned to Monte Carlo simulation, a technique to which the exponential random
graph lends itself admirably. Once the values of the parameters {βi} are specified, the
form (5.1) of P (G) makes generation of graphs correctly sampled from the ensemble
straightforward using a Metropolis–Hastings-type Markov chain method. One defines
an ergodic move-set in the space of graphs with given n, and then repeatedly generates
moves from this set, accepting them with probability

(5.4) p =
{

1 if P (G′) > P (G),
P (G′)/P (G) otherwise,

and rejecting them with probability 1− p, where G′ is the graph after performance of
the move. Because of the particular form, (5.1), assumed for P (G), this acceptance
probability is particularly simple to calculate:

(5.5)
P (G′)
P (G)

= exp
(
−
∑
i

βi[ε′i − εi]
)
.

This expression is independent of the value of the partition function, and its evalua-
tion involves calculating only the differences ε′i − εi of the energy-like graph proper-
ties εi, which for local move-sets and local properties can often be accomplished in
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208 M. E. J. NEWMAN

time independent of graph size. The following are suitable move-sets: (a) addition
and removal of edges between randomly chosen vertex pairs for the case of variable
edge numbers; (b) movement of edges randomly from one place to another for the
case of fixed edge numbers but variable degree sequence; (c) edge swaps of the form
{(v1, w1), (v2, w2)} → {(v1, v2), (w1, w2)} for the case of fixed degree sequence, where
(v1, w1) denotes an edge from vertex v1 to vertex w1. Monte Carlo algorithms of this
type are straightforward to implement and appear to converge quickly, allowing us to
study quite large graphs.

There is, however, one unfortunate pathology of the exponential random graph
that plagues numerical work, and particularly affects Markov graphs as they are used
to model transitivity. If, for example, we include a term in the graph Hamiltonian
that is linear in the number of triangles in the graph, with an accompanying positive
temperature favoring these triangles, then the model has a tendency to “condense,”
forming regions of the graph that are essentially complete cliques—subsets of vertices
within which every possible edge exists. It is easy to see why the model shows this
behavior: cliques have the largest number of triangles for the number of edges they
contain, and are therefore highly energetically favored, while costing the system a
minimum in entropy by virtue of leaving the largest possible number of other edges
free to contribute to the (presumably extensive) entropy of the rest of the graph.
Networks in the real world, however, do not seem to have this sort of “clumpy”
transitivity—regions of cliquishness contributing heavily to the clustering coefficient,
separated by other regions with few triangles. It is not clear how this problem is to
be circumvented, although for higher temperatures (lower values of the parameters
{βi}) it is less problematic, since higher temperatures favor entropy over energy.

Another area in which some progress has been made is in techniques for extract-
ing appropriate values for the temperature parameters in the model from real-world
network data. Procedures for doing this have been particularly important for so-
cial network applications. Parameters so extracted can be fed back into the Monte
Carlo graph generation methods described above to generate model graphs which have
similar statistical properties to their real-world counterparts and which can be used
for hypothesis testing or as a substrate for further network simulations. Reviews of
parameter extraction techniques can be found in [22] and [371].

6. The Small-World Model. A less sophisticated but more tractable model of a
network with high transitivity is the small-world model proposed by Watts and Stro-
gatz [410, 411, 415].27 As discussed in section 2.3, many networks have a geographical
component to them; the vertices of the network have positions in space, and in many
cases it is reasonable to assume that geographical proximity will play a role in decid-
ing which vertices are connected to which others. The small-world model starts from
this idea by positing a network built on a low-dimensional regular lattice and then
adding or moving edges to create a low density of “shortcuts” that join remote parts
of the lattice to one another.

Small-world models can be built on lattices of any dimension or topology, but the
best studied case by far is one-dimensional. If we take a one-dimensional lattice of
L vertices with periodic boundary conditions, i.e., a ring, and join each vertex to its
neighbors k or fewer lattice spacings away, we get a system like Figure 6.1a, with Lk
edges. The small-world model is then created by taking a small fraction of the edges
in this graph and “rewiring” them. The rewiring procedure involves going through

27An equivalent model was proposed by Ball, Mollison, and Scalia-Tomba [28] some years earlier,
as a model of the spread of disease between households, but appears not to have been widely adopted.
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(c)(b)(a)

Fig. 6.1 (a) A one-dimensional lattice with connections between all vertex pairs separated by k or
fewer lattice spacing, with k = 3 in this case. (b) The small-world model [415, 411] is
created by choosing at random a fraction p of the edges in the graph and moving one end
of each to a new location, also chosen uniformly at random. (c) A slight variation on the
model [323, 288] in which shortcuts are added randomly between vertices, but no edges are
removed from the underlying one-dimensional lattice.

each edge in turn and, with probability p, moving one end of that edge to a new
location chosen uniformly at random from the lattice, except that no double edges or
self-edges are ever created. This process is illustrated in Figure 6.1b.

The rewiring process allows the small-world model to interpolate between a reg-
ular lattice and something which is similar, though not identical (see below), to a
random graph. When p = 0, we have a regular lattice. It is not hard to show that the
clustering coefficient of this regular lattice is C = (3k− 3)/(4k− 2), which tends to 3

4
for large k. The regular lattice, however, does not show the small-world effect. Mean
geodesic distances between vertices tend to L/4k for large L. When p = 1, every
edge is rewired to a new random location and the graph is almost a random graph,
with typical geodesic distances on the order of logL/ log k but very low clustering
C � 2k/L (see section 4.1). As Watts and Strogatz showed by numerical simulation,
however, there exists a sizable region in between these two extremes for which the
model has both low path lengths and high transitivity—see Figure 6.2.

The original model proposed by Watts and Strogatz is somewhat baroque. The
fact that only one end of each chosen edge is rewired, not both, that no vertex is ever
connected to itself, and that an edge is never added between vertex pairs where there
is already one makes it quite difficult to enumerate or average over the ensemble of
graphs. For the purposes of mathematical treatment, the model can be simplified
considerably by rewiring both ends of each chosen edge, and by allowing both double
and self-edges. This results in a system that genuinely interpolates between a regular
lattice and a random graph. Another variant of the model that has become popular
was proposed independently by Monasson [288] and by Newman and Watts [323]. In
this variant, no edges are rewired. Instead “shortcuts” joining randomly chosen vertex
pairs are added to the low-dimensional lattice—see Figure 6.1c. The parameter p
governing the density of these shortcuts is defined so as to make it as similar as
possible to the parameter p in the first version of the model: p is defined as the
probability per edge on the underlying lattice of there being a shortcut anywhere in
the graph. Thus the mean total number of shortcuts is Lkp and the mean degree is
2Lk(1+p). This version of the model has the desirable property that no vertices ever
become disconnected from the rest of the network, and hence the mean vertex–vertex
distance is always formally finite. Both this version and the original have been studied
at some length in the mathematical and physical literature [308].
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0.001 0.01 0.1 1

rewiring probability  p

0

0.5

1

l/
l m
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mean vertex-vertex distance
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Fig. 6.2 The clustering coefficient C and mean vertex–vertex distance � in the small-world model of
Watts and Strogatz [415] as a function of the rewiring probability p. For convenience, both
C and � are divided by their maximum values, which they assume when p = 0. Between
the extremes p = 0 and p = 1, there is a region in which clustering is high and mean
vertex–vertex distance is simultaneously low.

6.1. Clustering Coefficient. The clustering coefficient for both versions of the
small-world model can be calculated relatively easily. For the original version, Barrat
and Weigt [40] showed that

(6.1) C =
3(k − 1)
2(2k − 1)

(1− p)3,

while for the version without rewiring, Newman [315] showed that

(6.2) C =
3(k − 1)

2(2k − 1) + 4kp(p+ 2)
.

6.2. DegreeDistribution. The degree distribution of the small-world model does
not match most real-world networks very well, although this is not surprising, since
this was not a goal of the model in the first place. For the version without rewiring,
each vertex has degree at least 2k, for the edges of the underlying regular lattice,
plus a binomially distributed number of shortcuts. Hence the probability pj of having
degree j is

(6.3) pj =
{

0 if j < 2k,(
L

j−2k

)[ 2kp
L

]j−2k[1− 2kp
L

]L−j+2k otherwise.

For the rewired version of the model, the distribution has a lower cutoff at k rather
than 2k and is rather more complicated. The full expression is [40]

(6.4) pj =
{ 0 if j < k,∑min(j−k,k)

n=0

(
k
n

)
(1− p)npk−n (pk)j−k−n

(j−k−n)! e−pk otherwise.
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6.3. Average Path Length. By far the most attention has been focused on the
average geodesic path length of the small-world model. We denote this quantity �.
We do not have any exact solution for the value of � yet, but a number of partial exact
results are known, including scaling forms, as well as some approximate solutions for
its behavior as a function of the model’s parameters.

In the limit p → 0, the model is a “large world”—the typical path length tends
to � = L/4k, as discussed above. Small-world behavior, by contrast, is typically char-
acterized by logarithmic scaling � ∼ logL (see section 3.1), which we see for large p,
where the model becomes like a random graph. In between these two limits there is
presumably some sort of crossover from large- to small-world behavior. Barthélémy
and Amaral [42] conjectured that � satisfies a scaling relation of the form

(6.5) � = ξg(L/ξ),

where ξ is a correlation length that depends on p, and g(x) is an unknown but universal
scaling function that depends only on system dimension and lattice geometry but not
on L, ξ, or p. The variation of ξ defines the crossover from large- to small-world
behavior; the known behavior of � for small and large L can be reproduced by having
ξ diverge as p→ 0 and

(6.6) g(x) ∼
{ x for x� 1,

log x for x� 1.

Barthélémy and Amaral conjectured that ξ diverges as ξ ∼ p−τ for small p, where τ is
a constant exponent. These conjectures have all turned out to be correct. Barthélémy
and Amaral also conjectured on the basis of numerical results that τ = 2

3 , which turned
out not to be correct [39, 41, 323].

Equation (6.5) has been shown to be correct by a renormalization group treatment
of the model [323]. From this treatment one can derive a scaling form for � of

(6.7) � =
L

k
f(Lkp),

which is equivalent to (6.5), except for a factor of k, if ξ = 1/kp and g(x) = xf(x).
Thus we immediately conclude that the exponent τ defined by Barthélémy and Amaral
is 1, as was also argued by Barrat [39] using a mixture of scaling ideas and numerical
simulation.

The scaling form (6.7) shows that we can go from the large-world regime to the
small-world one either by increasing p or by increasing the system size L. Indeed, the
crucial scaling variable Lkp that appears as the argument of the scaling function is
simply equal to the mean number of shortcuts in the model, and hence � as a fraction
of system size depends only on how many shortcuts there are for given k.

Making any further progress has proved difficult. We would like to be able to
calculate the scaling function f(x), but this turns out not to be easy. The calculation
is possible, though complicated, for a variant model in which there are no short cuts
but random sites are connected to a single central “hub” vertex [115]. But for the
normal small-world model no exact solution is known, although some additional exact
scaling forms have been found [19, 252]. Accurate numerical measurements have been
carried out for system sizes up to about L = 107 [39, 42, 109, 305, 323, 324], and quite
good results can be derived using series expansions [324]. A mean-field treatment of
the model has been given by Newman, Moore, and Watts [321], which shows that
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f(x) is approximately

(6.8) f(x) =
1

2
√
x2 + 2x

tanh−1
√

x

x+ 2
,

and Barbour and Reinert [38] have further shown that this result is the leading order
term in an expansion for � that can be used to derive more accurate results for f(x).

The primary use of the small-world model has been as a substrate for the in-
vestigation of various processes taking place on graphs, such as percolation [293,
324, 325, 359], coloring [387, 405], coupled oscillators [37, 200, 415], iterated
games [1, 135, 230, 415], diffusion processes [150, 173, 215, 257, 258, 288, 328], epidemic
processes [28, 234, 254, 292, 427, 428], and spin models [40, 190, 201, 255, 336, 429].
Some of this work is discussed further in section 8.

A few of variations of the small-world model have been proposed. Several authors
have studied the model in dimensions higher than one [109, 305, 323, 324, 325]—the re-
sults are qualitatively similar to the one-dimensional case and follow the expected scal-
ing laws. Various authors have also studied models in which shortcuts preferentially
join vertices that are close together on the underlying lattice [214, 237, 238, 306, 364].
Of particular note is the work by Kleinberg [237, 238], which is discussed in sec-
tion 8.3.3. Rozenfeld et al. [358] and independently Warren, Sander, and Sokolov [407]
have studied models in which there are only shortcuts and no underlying lattice, but
the signature of the lattice still remains, guiding shortcuts to fall with higher proba-
bility between more closely spaced vertices (see section 8.1).

7. Models of Network Growth. All of the models discussed so far take observed
properties of real-world networks, such as degree sequences or transitivity, and at-
tempt to create networks that incorporate those properties. The models do not,
however, help us to understand how networks come to have those properties in the
first place. In this section we examine a class of models whose primary goal is to ex-
plain network properties. In these models, the networks typically grow by the gradual
addition of vertices and edges in some manner intended to reflect growth processes
that might be taking place on the real networks, and it is these growth processes that
lead to the characteristic structural features of the network.28 For example, a number
of authors [30, 102, 197, 216, 219, 241, 396, 397, 410, 411] have studied models of net-
work transitivity that make use of “triadic closure” processes. In these models, edges
are added to the network preferentially between pairs of vertices that have another
third vertex as a common neighbor. In other words, edges are added so as to complete
triangles, thereby increasing the denominator in (3.3) and so increasing the amount
of transitivity in the network. (There is some empirical evidence from collaboration
networks in support of this mechanism [309].)

But the best studied class of network growth models by far, and the class on which
we concentrate primarily in this section, is the class of models aimed at explaining the
origin of the highly skewed degree distributions discussed in section 3.3. Indeed these
models are some of the best studied in the whole of the networks literature, having
been the subject of an extraordinary number of papers in the last few years. In this
section we describe first the archetypal model of Price [343], which was based in turn
on previous work by Simon [369]. Then we describe the highly influential model of

28An alternative and intriguing idea, which has so far not been investigated in much depth, is
that features such as power-law degree distributions may arise through network optimization. See,
for instance, [29, 156, 166, 394, 416, 417].
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Barabási and Albert [32], which has been the driving force behind much of the recent
work in this area. We also describe a number of variations and generalizations of
these models due to a variety of authors.

7.1. Price’s Model. As discussed in section 3.3, the physicist-turned-historian-
of-science Derek de Solla Price described in 1965 probably the first example of what
would now be called a scale-free network; he studied the network of citations be-
tween scientific papers and found that both in- and out-degrees (number of times a
paper has been cited and number of other papers a paper cites) have power-law dis-
tributions [342]. Apparently intrigued by the appearance of these power laws, Price
published another paper some years later [343] in which he offered what is now the
accepted explanation for power-law degree distributions. Like many after him, his
work built on ideas developed in the 1950s by Herbert Simon [69, 369], who showed
that power laws arise when “the rich get richer,” when the amount you get goes up
with the amount you already have. In sociology this is referred to as the Matthew
effect [281], after the biblical edict, “For to every one that hath shall be given. . . ”
(Matthew 25:29).29 Price called it cumulative advantage. Today it is usually known
under the name preferential attachment, coined by Barabási and Albert [32].

The important contribution of Price’s work was to take the ideas of Simon and
apply them to the growth of a network. Simon was thinking of wealth distributions
in his early work, and although he later gave other applications of his ideas, none
of them were to networked systems. Price appears to have been the first to discuss
cumulative advantage specifically in the context of networks, and in particular in the
context of the network of citations between papers and its in-degree distribution. His
idea was that the rate at which a paper gets new citations should be proportional
to the number that it already has. This is easy to justify in a qualitative way. The
probability that one comes across a particular paper whilst reading the literature
will presumably increase with the number of other papers that cite it, and hence the
probability that you cite it yourself in a paper that you write will increase similarly.
The same argument can be applied to other networks also, such as the Web. It is
not clear that the dependence of citation probability on previous citations need be
strictly linear, but certainly this is the simplest assumption one could make, and it is
the one that Price, following Simon, adopts. We now describe in detail Price’s model
and his exact solution of it, which uses what we would now call a master-equation or
rate-equation method.

Consider a directed graph of n vertices, such as a citation network. Let pk be the
fraction of vertices in the network with in-degree k, so that

∑
k pk = 1. New vertices

are continually added to the network, though not necessarily at a constant rate. Each
added vertex has a certain out-degree—the number of papers that it cites—and this
out-degree is fixed permanently at the creation of the vertex. The out-degree may
vary from one vertex to another, but the mean out-degree, which is denoted m, is a
constant over time.30 (Certain conditions on the distribution of m about the mean

29In fact, this is really only half of the Matthew effect, since the same verse continues, “. . . but
from him that hath not, that also which he seemeth to have shall be taken away.” In the processes
studied by Simon and Price nothing is taken away from anyone. The full Matthew effect, with both
the giving and the taking away, corresponds more closely to the Polya urn process than to Price’s
cumulative advantage. Price points out this distinction in his paper [343].

30Elsewhere in this review we have used the letter z to denote mean degree. While it would make
sense in many ways to use the same notation here, we have opted instead to change notation and
usem because this is the notation used in most of the recent papers on growing networks. The reader
should bear in mind therefore that m is not, as previously, the total number of edges in the graph.
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must hold; see, for instance, [134].) The value m is also the mean in-degree of the
network:

∑
k kpk = m. Since the out-degree can vary between vertices, m can take

noninteger values, including values less than 1.
In the simplest form of cumulative advantage process the probability of attach-

ment of one of our new edges to an old vertex—i.e., the probability that a newly
appearing paper cites a previous paper—is simply proportional to the in-degree k of
the old vertex. This, however, immediately gives us a problem, since each vertex
starts with in-degree zero and hence would forever have zero probability of gaining
new edges. To circumvent this problem, Price suggests that the probability of attach-
ment to a vertex should be proportional to k + k0, where k0 is a constant. Although
he discusses the case of general k0, all his mathematical developments are for k0 = 1,
which he justifies for the citation network by saying that one can consider the initial
publication of a paper to be its first citation (of itself by itself). Thus the probability
of a new citation is proportional to k + 1.

The probability that a new edge attaches to any of the vertices with degree k is
thus

(7.1)
(k + 1)pk∑
k(k + 1)pk

=
(k + 1)pk
m+ 1

.

The mean number of new citations per vertex added is simply m, and hence the mean
number of new citations to vertices with current in-degree k is (k + 1)pkm/(m + 1).
The number npk of vertices with in-degree k decreases by this amount, since the
vertices that get new citations become vertices of degree k+1. However, the number
of vertices of in-degree k increases because of influx from the vertices previously of
degree k− 1 that have also just acquired a new citation, except for vertices of degree
zero, which have an influx of exactly 1. If we denote by pk,n the value of pk when the
graph has n vertices, then the net change in npk per vertex added is

(7.2) (n+ 1)pk,n+1 − npk,n =
{ [

kpk−1,n − (k + 1)pk,n
]
m/(m+ 1) for k ≥ 1,

1− p0,nm/(m+ 1) for k = 0.

Looking for stationary solutions pk,n+1 = pk,n = pk, we then find

(7.3) pk =
{ [

kpk−1 − (k + 1)pk
]
m/(m+ 1) for k ≥ 1,

1− p0m/(m+ 1) for k = 0.

Rearranging, we find p0 = (m+ 1)/(2m+ 1) and pk = pk−1k/(k + 2 + 1/m) or

(7.4) pk =
k(k − 1) . . . 1

(k + 2 + 1/m) . . . (3 + 1/m)
p0 = (1 + 1/m)B(k + 1, 2 + 1/m),

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is Legendre’s beta-function, which goes asymptot-
ically as a−b for large a and fixed b, and hence

(7.5) pk ∼ k−(2+1/m).

In other words, in the limit of large n, the degree distribution has a power-law tail with
exponent α = 2 + 1/m. This will typically give exponents in the interval between
2 and 3, which is in agreement with the values seen in real-world networks—see
Table 3.1. (Bear in mind that the mean degree m need not take an integer value and
can be less than 1.) Price gives a comparison between his model and citation network
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data from the Science Citation Index, making a plausible case that the parameter m
has about the right value to give the observed power-law citation distribution.

Note that Price’s assumption that the offset parameter k0 = 1 can be justified
a posteriori because the value of the exponent does not depend on k0. (This contrasts
with the behavior of the model of Barabási and Albert [32], which is discussed in
section 7.3.) The argument above is easily generalized to the case k0 �= 1, and we find
that

(7.6) pk =
m+ 1

m(k0 + 1) + 1
B(k + k0, 2 + 1/m)
B(k0, 2 + 1/m)

,

and hence α = 2 + 1/m again for large k and fixed k0. See section 7.3 and [123]
and [244] for further discussion of the effects of offset parameters. Thorough reviews
of master-equation methods for grown graph models have been given by Dorogovtsev
and Mendes [120] and Krapivsky and Redner [247].

The analytic solution above was the extent of the progress Price was able to make
in understanding his model network. Unlike present-day authors, for instance, he did
not have computational resources available to simulate the model, and so could give
no numerical results. In recent years, a great deal more progress has been made in
understanding cumulative advantage processes and the growth of networks. Most of
this work, however, has been carried out using a slightly different model—the model
of Barabási and Albert, which we now describe.

7.2. The Model of Barabási and Albert. The mechanism of cumulative advan-
tage proposed by Price [343] is now widely accepted as the probable explanation for
the power-law degree distribution observed not only in citation networks but in a
wide variety of other networks also, including the World Wide Web, collaboration
networks, and possibly the Internet and other technological networks also. The work
of Price himself, however, is largely unknown in the scientific community, and cu-
mulative advantage did not achieve currency as a model of network growth until its
rediscovery some decades later by Barabási and Albert [32], who gave it the new name
of preferential attachment. In a highly influential paper published—like Price’s first
paper on citation networks—in the journal Science, they proposed a network growth
model of the Web that is very similar to Price’s, but with one important difference.

The model of Barabási and Albert [32, 33] is the same as Price’s in having vertices
that are added to the network with degree m, which is never changed thereafter, the
other end of each edge being attached to (“citing”) another vertex with probability
proportional to the degree of that vertex. The difference between the two models
is that in the model of Barabási and Albert edges are undirected, so there is no
distinction between in- and out-degree. This has pros and cons. On the one hand,
both citation networks and the Web are in reality directed graphs, so any undirected
graph model is missing a crucial feature of these networks. On the other hand, by
ignoring the directed nature of the network, the model of Barabási and Albert gets
around Price’s problem of how a paper gets its first citation or a Web site gets its first
link. Each vertex in the graph appears with initial degree m, and hence automatically
has a nonzero probability of receiving new links. (Note that for the model to be
solvable using the master-equation approach as demonstrated below, the number of
edges added with each vertex must be exactly m—it cannot vary around the mean
value as in the model of Price. Hence it must also be an integer and must always have
a value m ≥ 1.)
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Another way of looking at the model of Barabási and Albert is to say the network
is directed, with edges going from the vertex just added to the vertex that it is citing
or linking to, but that the probability of attachment of a new edge is proportional
to the sum of the in- and out-degrees of the vertex. This, however, is perhaps a
less satisfactory viewpoint, since it is difficult to conjure up a mechanism, either for
citation networks or the Web, which would give rise to such an attachment process.
Overall, perhaps the best way to look at the model of Barabási and Albert is as a
model that sacrifices some of the realism of Price’s model in favor of simplicity. As
we will see, the main result of this sacrifice is that the model produces only a single
value α = 3 for the exponent governing the degree distribution, although this has
been remedied in later generalizations of the model, which we discuss in section 7.3.

The model of Barabási and Albert can be solved exactly in the limit of large
graph size31 using the master-equation method, and such a solution has been given
by Krapivsky, Redner, and Leyvraz [248] and independently by Dorogovtsev, Mendes,
and Samukhin [123]. (Barabási and Albert themselves gave an approximate solution
based on the assumption that all vertices of the same age have the same degree [32,
33]. The method of Krapivsky et al. and Dorogovtsev et al. does not make this
assumption.)

The probability that a new edge attaches to a vertex of degree k—the equivalent
of (7.1)—is

(7.7)
kpk∑
k kpk

=
kpk
2m

.

The sum in the denominator is equal to the mean degree of the network, which is 2m,
since there are m edges for each vertex added, and each edge, being now undirected,
contributes two ends to the degrees of network vertices. Now the mean number of
vertices of degree k that gain an edge when a single new vertex with m edges is added
is m× kpk/2m = 1

2kpk, independent of m. The number npk of vertices with degree k
thus decreases by this same amount, since the vertices that get new edges become
vertices of degree k + 1. The number of vertices of degree k also increases because
of influx from vertices previously of degree k − 1 that have also just acquired a new
edge, except for vertices of degree m, which have an influx of exactly 1. If we denote
by pk,n the value of pk when the graph has n vertices, then the net change in npk per
vertex added is

(7.8) (n+ 1)pk,n+1 − npk,n =
{ 1

2 (k − 1)pk−1,n − 1
2kpk,n for k > m,

1− 1
2mpm,n for k = m,

and there are no vertices with k < m.
Looking for stationary solutions pk,n+1 = pk,n = pk as before, the equations

equivalent to (7.3) for the model are

(7.9) pk =
{ 1

2 (k − 1)pk−1 − 1
2kpk for k > m,

1− 1
2mpm for k = m.

Rearranging for pk once again, we find pm = 2/(m+2) and pk = pk−1(k− 1)/(k+2),
or [123, 248]

(7.10) pk =
(k − 1)(k − 2) . . .m

(k + 2)(k + 1) . . . (m+ 3)
pm =

2m(m+ 1)
(k + 2)(k + 1)k

.

31The behavior of the model at finite system sizes has been investigated by Krapivsky and Red-
ner [245].
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In the limit of large k this gives a power law degree distribution pk ∼ k−3, with only
the single fixed exponent α = 3. A more rigorous derivation of this result has been
given by Bollobás et al. [65].

In addition to the basic solution of the model for its degree distribution, many
other results are now known about the model of Barabási and Albert. Krapivsky and
Redner [244] have conducted a thorough analytic study of the model, showing among
other things that the model has two important types of correlations. First, there is a
correlation between the age of vertices and their degrees, with older vertices having
higher mean degree. For the case m = 1, for instance, they find that the probability
distribution of the degree of a vertex i with age a, measured as the number of vertices
added after vertex i, is

(7.11) pk(a) =
√
1− a

n

(
1−

√
1− a

n

)k
.

Thus for specified age a the distribution is exponential, with a characteristic degree
scale that diverges as (1 − a/n)−1/2 as a → n; the earliest vertices added have sub-
stantially higher expected degree than those added later, and the overall power-law
degree distribution of the whole graph is a result primarily of the influence of these
earliest vertices.

This correlation between degree and age has been used by Adamic and Huber-
man [4] to argue against the model as a model of the World Wide Web—they show,
using actual Web data, that there is no such correlation in the real Web. This does
not mean that preferential attachment is not the explanation for power-law degree
distributions in the Web, only that the dynamics of the Web must be more compli-
cated than this simple model to account also for the observed age distribution [35].
An extension of the model that may explain why age and degree are not correlated
has been given by Bianconi and Barabási [52, 53] and is discussed in section 7.3.

Second, Krapivsky and Redner [244] show that there are correlations between
the degrees of adjacent vertices in the model, of the type discussed in section 3.6.
Looking again at the special case m = 1, they show that the quantity ejk defined in
section 4.2.5, which is the number of edges that connect vertex pairs with (excess)
degrees j and k, is

ejk =
4j

(k + 1)(k + 2)(j + k + 2)(j + k + 3)(j + k + 4)

+
12j

(k + 1)(j + k + 1)(j + k + 2)(j + k + 3)(j + k + 4)
.(7.12)

Note that this quantity is asymmetric. This is because Krapivsky and Redner regard
the network as being directed, with edges leading from the vertex just added to the
preexisting vertex to which they attach. In the expression above, however, j and k
are total degrees of vertices, not in- and out-degree.

Although (7.12) shows that the vertices of the model have nontrivial correlations,
the correlation coefficient of the degrees of adjacent vertices in the network is asymp-
totically zero as n → ∞ [313]. This is because the correlation coefficient measures
correlations relative to a linear model, and no such correlations are present in this
case.

One of the main advantages that we have today over early workers such as Price
is the widespread availability of powerful computer resources. Quite a number of
numerical studies have been performed of the model of Barabási and Albert, which

D
ow

nl
oa

de
d 

02
/0

7/
19

 to
 1

28
.8

4.
12

7.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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would have been entirely impossible thirty years earlier. It is worth mentioning here
how simulations of these types of models are conducted. We consider the Barabási–
Albert model. The exact same ideas can be applied to Price’s model also.

A naive simulation of the preferential attachment process is quite inefficient. In
order to attach to a vertex in proportion to its degree we normally need to examine
the degrees of all vertices in turn, a process that takes O(n) time for each step of the
algorithm. Thus the generation of a graph of size n would take O(n2) steps overall.
A much better procedure, which works in O(1) time per step and O(n) time overall,
is the following. We maintain a list, in an integer array for instance, that includes
ki entries of value i for each vertex i. Thus, for example, a network of four vertices
labeled 1, 2, 3, and 4 with degrees 2, 1, 1, and 3, respectively, could be represented by
the array (1, 1, 2, 3, 4, 4, 4). Then in order to choose a target vertex for a new edge with
the correct preferential attachment, one simply chooses a number at random from this
list. Of course, the list must be updated as new vertices and edges are added, but
this is simple. Notice that there is no requirement that the items in the list be in
any particular order. If we add a new vertex 5 to our network above, for example,
with degree 1 and one edge that connects it to vertex 2, the list can be updated by
adding new items to the end, so that it reads (1, 1, 1, 2, 3, 4, 4, 4, 5, 2). And so forth.
Models such as Price’s, in which there is an offset k0 in the probability of selecting
a vertex (so that the total probability goes as k + k0), can be treated with the same
method—the offset merely means that with some probability one chooses a vertex
with preferential attachment, and otherwise one chooses it uniformly from the set of
all vertices.

An alternative method for simulating the model of Barabási and Albert has been
described by Krapivsky and Redner [244]. Their method uses the network structure
itself in place of the list of vertices above and works as follows. The model is regarded
as a directed network in which there are exactly m edges running out of each vertex,
pointing to others. We first pick a vertex at random from the graph and then with
some probability either we keep that vertex or we “redirect” to one of its neighbors,
meaning that we pick at random one of the vertices it points to. Since each vertex
has exactly m outgoing edges, the latter operation is equivalent to choosing an edge
at random from the graph and following it, and hence alights on a target vertex with
probability proportional to the in-degree j of that target (because there are j ways
to arrive at a vertex of in-degree j—see section 4.2.1). Thus the total probability of
selecting any given vertex is proportional to j+c, where c is some constant. However,
since the out-degree of all vertices is simply m, the total degree is k = j + m and
the selection probability is therefore also proportional to k + c−m. By choosing the
probability of redirection appropriately, we can arrange for the constant c to be equal
to m, and hence for the probability of selecting a vertex to be simply proportional
to k. Since it does not require an extra array for the vertex list, this method of
simulation is more memory efficient than the previous method, although it is slightly
more complicated to implement.

In their original paper on their model, Barabási and Albert [32] gave simulations
showing the power-law distribution of degrees. A number of authors have subse-
quently published more extensive simulation results. Of particular note is the work
by Dorogovtsev and Mendes [116, 114] and by Krapivsky and Redner [245].

A crucial element of both the models of Price and of Barabási and Albert is the
assumption of linear preferential attachment. It is worth asking whether there is any
empirical evidence in support of this assumption. (We discuss in the next section
some work on models that relax the linearity assumption.) Two studies indicate that
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it may be a reasonable approximation to the truth. Jeong, Néda, and Barabási [212]
looked at the time evolution of citation networks, the Internet, and actor and scientist
collaboration networks and measured the number of new edges a vertex acquires in
a single year as a function of the number of previously existing edges. They found
that the one quantity was roughly proportional to the other, and hence concluded
that linear preferential attachment was at work in these networks. Newman [309]
performed a similar study for scientific collaboration networks, but with finer time
resolution, measured by the publication of individual papers, and came to similar
conclusions.

7.3. Generalizations of the Model of Barabási and Albert. The model of
Barabási and Albert [32] has attracted an exceptional amount of attention in the
literature. In addition to analytic and numerical studies of the model itself, many
authors have suggested extensions or modifications of the model that alter its behav-
ior or make it a more realistic representation of processes taking place in real-world
networks. We discuss a few of these here. A more extensive review of developments
in this area has been given by Albert and Barabási [13] (see particularly Table III in
that paper).

Dorogovtsev, Mendes, and Samukhin [123] and Krapivsky and Redner [244] have
examined the model in which the probability of attachment to a vertex of degree k
is proportional to k + k0, where the offset k0 is a constant. Note that k0 is allowed
to be negative—it can fall anywhere in the range −m < k0 <∞ and the probability
of attachment will be positive. The equations for the stationary state of the degree
distribution of this model, analogous to (7.9), are

(7.13) pk =
{ [

(k − 1)pk−1 − kpk
]
m/(2m+ k0) for k > m,

1− pmm2/(2m+ k0) for k = m,

which gives pm = (2m+ k0)/(m2 + 2m+ k0), and

(7.14) pk =
(k − 1) . . .m

(k + 2 + k0/m) . . . (m+ 3 + k0/m)
pm =

B(k, 3 + k0/m)
B(m, 2 + k0/m)

,

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is again the Legendre beta-function. This gives a
power law for large k once more, with exponent α = 3 + k0/m. It is proposed that
negative values of k0 could be the explanation for the values α < 3 seen in real-world
networks.32 A longer discussion of the effects of offset parameters is given in [244].

Krapivsky et al. [244, 248] also consider another important generalization of the
model, to the case where the probability of attachment to a vertex is not linear in the
degree k of the vertex but goes instead as some general power of degree kγ . Again this
model is solvable using methods similar to those above, and the authors find three
general classes of behavior. For γ = 1 exactly, we recover the normal linear preferential
attachment and power-law degree sequences. For γ < 1, the degree distribution is
a power law multiplied by a stretched exponential, whose exponent is a complicated
function of γ. (In fact, in most cases there is no known analytic solution for the
equations governing the exponent; they must be solved numerically.) For γ > 1 there
is a “condensation” phenomenon, in which a single vertex gets a finite fraction of all
the connections in the network, and for γ > 2 there is a nonzero probability that this

32Price’s result α = 2 + 1/m [343] corresponds to k0 = −(m− 1) so that the “attractiveness” of
a new vertex is 1. The model of Barabási and Albert corresponds to k0 = 0, so that α = 3.
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“gel node” will be connected to every other vertex on the graph. The remainder of
the vertices have an exponentially decaying degree distribution.

Another variation on the basic growing network theme is to make the mean degree
change over time. There is evidence to suggest that in the World Wide Web the
average degree of a vertex is increasing with time, i.e., the parameter m appearing in
the models is increasing. Dorogovtsev and Mendes [118, 121] have studied a variation
of the Barabási–Albert model that incorporates this process. They assume that the
number m of new edges added per new vertex increases with network size n as na

for some constant a, and that the probability of attaching to a given vertex goes as
k + Bna for constant B. They show that the resulting degree distribution follows
a power law with exponent α = 2 + B(1 + a)/(1 − Ba). (Note that when a = 0,
this model reduces to the model studied previously by Dorogovtsev, Mendes, and
Samukhin [123], but the expression for α given here is not valid in this limit.) Thus
this process offers another possible mechanism by which the exponent of the degree
distribution can be tuned to match that observed in real-world networks.

In Price’s model of citation networks, no new out-going edges are added to a
vertex after its first appearance, and edges once added to the graph remain where
they are forever. This makes sense for citation networks. But the model of Barabási
and Albert is intended to be a model of the World Wide Web, in which new links
are often added to preexisting Web sites, and old links are frequently moved or re-
moved. A number of authors have proposed models that incorporate processes like
these. In particular, Dorogovtsev and Mendes [116] have proposed a model that adds
to the standard Barabási–Albert model an extra mechanism whereby edges appear
and disappear between preexisting vertices with stochastically constant but possibly
different rates. They find that over a wide range of values of the rates the power-
law degree distribution is maintained, although again the exponent varies from the
value −3 seen in the original model. Krapivsky and Redner [246] have also proposed
a model that allows edges to be added after vertices are created, which we discuss in
the next section. Albert and Barabási [12] and Tadić [390, 391] have studied models
in which edges can move around the network after they are added. These models can
show both power-law and exponential degree distributions depending on the model
parameters.

As discussed in section 7.2, Adamic and Huberman [4] have shown that the real
World Wide Web does not have the correlations between age and degree of vertices
that are found in the model of Barabási and Albert. Adamic and Huberman suggest
that this is because the degree of vertices is also a function of their intrinsic worth;
some Web sites are useful to more people than others and so gain links at a higher
rate. Bianconi and Barabási [52, 53] have proposed an extension of the Barabási–
Albert model that mimics this process. In their model each newly appearing vertex i
is given a “fitness” ηi that represents its attractiveness and hence its propensity to
accrue new links. Fitnesses are chosen from some distribution ρ(η), and links attach
to vertices with probability proportional now not just to the degree ki of vertex i but
to the product ηiki.

Depending on the form of the distribution ρ(η) this model shows two regimes of
behavior [52, 246]. If the distribution has finite support, then the network shows a
power-law degree distribution, as in the original Barabási–Albert model. However,
if the distribution has infinite support, then the one vertex with the highest fitness
accrues a finite fraction of all the edges in the network—a sort of “winner takes all”
phenomenon, which Bianconi and Barabási liken to monopoly dominance of a market.
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A number of variations on the fitness theme have been studied by Ergün and
Rodgers [145], who looked at a directed version of the Bianconi–Barabási model and
at models where instead of multiplying the attachment probability, the fitness ηi
contributes additively to the probability of attaching a new edge to vertex i. Treating
the models analytically, they found in each case that for suitable parameter values
the power-law degree distribution is preserved, although again the exponent may be
affected by the distribution of fitnesses, and in some cases there are also logarithmic
corrections to the degree distribution. A model with vertex fitness but no preferential
attachment has been studied by Caldarelli et al. [78] and also gives power-law degree
distributions under some circumstances.

7.4. Other Growth Models. The model of Barabási and Albert [32] is elegant
and simple but lacks a number of features that are present in the real World Wide
Web:

• The model is a model of an undirected network, whereas the real Web is
directed.
• As mentioned previously one can regard the model as a model of a directed
network, but in that case attachment is in proportion to the sum of in- and
out-degrees of a vertex, which is unrealistic—presumably attachment should
be in proportion to in-degree only, as in the model of Price.
• If we regard the model as producing a directed network, then it generates
acyclic graphs (see section 1.1), which are a poor representation of the Web.
• All vertices in the model belong to a single connected component (a weakly
connected component if the graph is regarded as directed—the graph has no
strongly connected components because it is acyclic). In the real Web there
are many separate components (and strongly connected components).
• The out-degree distribution of the Web follows a power law, whereas out-
degree is a constant in the model.33

Many of these criticisms are also true of Price’s model, but Price’s model is intended
to be a model of a citation network, and citation networks really are directed, acyclic,
and to a good approximation all vertices belong to a single component, unless they cite
and are cited by no one else at all. Thus Price’s model is, within its own limited sphere,
a reasonable one. For the World Wide Web a number of authors have suggested new
growth models that address one or more of the concerns above. Here we describe a
number of these models, starting with some very simple ones and working up to the
more complex.

Consider first the issue of the component structure of the network. In the models
of Price and of Barabási and Albert each vertex joins to at least one other when it
first appears. It follows trivially then that, so long as no edges are ever removed, all
vertices belong to a single (weakly connected) component. This is not true in the
real Web. How can we get around it? To address this question Callaway et al. [80]
proposed the following extremely simple model of a growing network. Vertices are
added to the network one by one as before, and a mean number m of undirected

33What’s more, although it is rarely pointed out, it is clearly the case that a different mechanism
must be responsible for the out-degree distribution from the one responsible for the in-degree dis-
tribution. We can justify preferential attachment for in-degree by saying that Web sites are easier
to find if they have more links to them, and hence they get more new links because people find
them. No such argument applies for out-degree. It is usually assumed that out-degree is subject to
preferential attachment nonetheless. One can certainly argue that sites with many out-going links
are more likely to add new ones in the future than sites with few, but it’s far from clear that this
must be the case.
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edges are added with each vertex. As with Price’s model, the value of m is only
an average—the actual number of edges added per step can vary—and so m is not
restricted to integer values, and indeed we will see that the interesting behavior of
the model takes place at values m < 1.

The important difference between this model and the previous models is that
edges are not, in general, attached to the vertex that has just been added. Instead,
both ends of each edge are attached to vertices chosen uniformly at random from
the whole graph, without preferential attachment. Vertices therefore normally have
degree zero when they are first added to the graph. Because of the lack of preferen-
tial attachment this model does not show power-law degree distributions—in fact the
degree distribution can be shown to be exponential—but it does have an interesting
component structure. A related model has been studied, albeit to somewhat different
purpose, by Aldous and Pittel [17]. Their model is equivalent to the model of Calla-
way et al. in the case m = 1. Also Bauer and collaborators [44, 100] have investigated
a directed-graph version of the model.

Initially, one might imagine that the model of Callaway et al. generated an or-
dinary Poisson random graph of the Erdős–Rényi type. Further reflection reveals,
however, that this is not the case; older vertices in the network will tend to be con-
nected to one another, so the network has a cliquish core of old-timers surrounded
by a sea of younger vertices. Nonetheless, like the Poisson random graph, the model
does have many separate components, with a phase transition at a finite value of m
at which a giant component appears that occupies a fixed fraction of the volume of
the network as n→∞. To demonstrate this, Callaway et al. used a master-equation
approach similar to that used for degree distributions in the preceding sections. One
defines ps to be the probability that a randomly chosen vertex belongs to a component
of s vertices and writes difference equations that give the change in ps when a single
vertex and m edges are added to the graph. Looking for stationary solutions, one
then finds in the limit of large graph size that

(7.15) ps =
{

ms
∑s−1
j=1 pjps−j − 2msps for s > 1,

1− 2mp1 for s = 1.

Being nonlinear in ps, these equations are harder to solve than those for the degree dis-
tributions in previous sections, and indeed no exact solution has been found. Nonethe-
less, we can see that a giant component must form by defining a generating function
for the component size distribution similar to that of (4.8): H(x) =

∑∞
s=0 psx

s.
Then (7.15) implies that

(7.16)
dH
dx

=
1
2m

[
1−H(x)/x
1−H(x)

]
.

If there is no giant component, then H(1) = 1 and the average component size is 〈s〉 =
H ′(1). Taking the limit x→ 1 in (7.16), we find that 〈s〉 is a solution of the quadratic
equation 2m〈s〉2 − 〈s〉+ 1 = 0, or

(7.17) 〈s〉 = 1−
√
1− 8m
4m

.

(The other solution to the quadratic gives a nonphysical value.) This solution exists
only up to m = 1

8 , however, and hence above this point there must be a giant com-
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ponent. This doesn’t tell us where in the interval 0 ≤ m ≤ 1
8 the giant component

appears, but a proof that the transition in fact falls precisely at m = 1
8 was later given

by Durrett [134].
The model of Callaway et al. has been generalized to include preferential attach-

ment by Dorogovtsev, Mendes, and Samukhin [124]. In their version of the model
both ends of each edge are attached in proportion to the degrees of vertices plus a
constant offset to ensure that vertices of degree zero have a chance of receiving an
edge. Again they find many components and a phase transition at nonzero m, and in
addition the power-law degree distribution is now restored.

Taking the process a step further, Krapivsky and Redner [246] studied a full
directed-graph model in which both vertices and directed edges are added at stochas-
tically constant rates and the out-going end of each edge is attached to vertices in
proportion to their out-degree and the in-going end in proportion to in-degree, plus
appropriate constant offsets. This appears to be quite a reasonable model for the
growth of the Web. It produces a directed graph, it allows edges to be added af-
ter the creation of a vertex, it allows for separate components in the graph, and, as
Krapivsky and Redner showed, it gives power laws in both the in- and out-degree
distributions, just as observed in the real Web. By varying the offset parameters for
the in- and out-degree attachment mechanisms, one can even tune the exponents of
the two distributions to agree with those observed in the wild. (Krapivsky and Red-
ner’s model is a development of an earlier model that they proposed [249] that had all
the same features but gave rise to only a single weakly connected component because
each added vertex came with one edge that attached it to the rest of the network from
the outset. In their later paper, they abandoned this feature. A similar model has
also been studied by Rodgers and Darby-Dowman [354].) A slight variation on the
model of Krapivsky and Redner has been proposed independently by Aiello, Chung,
and Lu [9], who give rigorous proofs of some of its properties.

7.5. Vertex Copying Models. There are some networks that appear to have
power-law degree distributions but for which preferential attachment is clearly not an
appropriate model. Good examples are biochemical interaction networks of various
kinds [153, 211, 213, 375, 382, 404]. A number of studies have been performed,
for instance, of the interaction networks of proteins (see section 2.4) in which the
vertices are proteins and the edges represent reactions. These networks do change
on very long time-scales because of biological evolution, but there is no reason to
suppose that protein networks grow according to a simple cumulative advantage or
preferential attachment process. Nonetheless, it appears that the degree distribution
of these networks obeys a power law, at least roughly.

A possible explanation for this observation has been suggested by Klein-
berg et al. [240, 253], who proposed that these networks grow, at least in part, by
the copying of vertices. Kleinberg et al. were interested in the growth of the Web, for
which their model is as follows. The graph grows by stochastically constant addition
of vertices and addition of directed edges either randomly or by copying them from
another vertex. Specifically, one chooses an existing vertex and a number m of edges
to add to it, and one then decides the targets of those edges by choosing at random
another vertex and copying targets from m of its edges, randomly chosen. If the cho-
sen vertex has less than m outgoing edges, then its m edges are copied and one moves
on to another vertex and copies its edges, and so forth until m edges in total have
been copied. In its most general form, the model of Kleinberg et al. also incorporates
mechanisms for the removal of edges and vertices, which we do not describe here.
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It is straightforward to see that the copying mechanism will give rise to power-
law distributions. The mean probability that an edge from a randomly chosen vertex
will lead to a particular other vertex with in-degree k is proportional to k (see sec-
tion 4.2.1), and hence the rate of increase of a vertex’s degree is proportional to its
current degree. As with the model of Price, this mechanism will never add new edges
to vertices that currently have degree zero, so Kleinberg et al. also include a finite
probability that the target of a newly added edge will be chosen at random, so that
vertices with degree zero have a chance to gain edges. In their original paper, Klein-
berg et al. present only numerical evidence that their model results in a power-law
degree distribution, but in a later paper a subset of the same authors [253] proved
that the degree distribution is a power law with exponent α = (2− a)/(1− a), where
a is the ratio of the number of edges added whose targets are chosen at random to
the number whose targets are copied from other vertices. For small values of a, be-
tween 0 and 1

2 , i.e., for models in which most target selection is made by copying,
this produces exponents 2 ≤ α ≤ 3, which is the range observed in most real-world
networks—see Table 3.1. Some further analytic results for copying models have been
given by Chung et al. [90].

It is not clear whether the copying mechanism really is at work in the growth of
the World Wide Web, but there has been considerable interest in its application as
a model of the evolution of protein interaction networks of one sort or another. The
argument here is that the genes that code for proteins can and do, in the course of their
evolutionary development, duplicate. That is, upon reproduction of an organism, two
copies of a gene are erroneously made where only one existed before. Since the proteins
coded for by each copy are the same, their interactions are also the same, i.e., the new
gene copies its edges in the interaction network from the old. Subsequently, the two
genes may develop differences because of evolutionary drift or selection [403]. Models
of protein networks that make use of copying mechanisms have been proposed by a
number of authors [49, 232, 376, 398].

A variation on the idea of vertex copying appears in the autocatalytic network
models of Jain and Krishna [208, 209], in which a network of interacting chemical
species evolves by reproduction and mutation, giving rise ultimately to self-sustaining
autocatalytic loops reminiscent of the “hypercycles” of Eigen and Schuster [140],
which have been proposed as a possible explanation of the origin of life.

8. Processes Taking Place on Networks. As discussed in the introduction, the
ultimate goal of the study of the structure of networks is to understand and explain
the workings of systems built upon those networks. We would like, for instance, to
understand how the topology of the World Wide Web affects Web surfing and search
engines, how the structure of social networks affects the spread of information, how
the structure of a food web affects population dynamics, and so forth. Thus, the next
logical step after developing models of network structure, such as those described in
the previous sections of this review, is to look at the behavior of models of physical
(or biological or social) processes going on on those networks. Progress on this front
has been slower than progress on understanding network structure, perhaps because
without a thorough understanding of structure an understanding of the effects of that
structure is hard to come by. However, there have been some important advances
made, particularly in the study of network failure, epidemic processes on networks,
and constraint satisfaction problems. In this section we review what has been learned
so far.
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bond percolationsite percolation

Fig. 8.1 Site and bond percolation on a network. In site percolation, vertices (“sites” in the physics
parlance) are either occupied (solid circles) or unoccupied (open circles) and studies focus
on the shape and size of the contiguous clusters of occupied sites, of which there are three
in this small example. In bond percolation, it is the edges (“bonds” in physics) that are
occupied or not (black or gray lines) and the vertices that are connected together by occupied
edges that form the clusters of interest.

8.1. Percolation Theory and Network Resilience. One of the first examples to
be studied thoroughly of a process taking place on a network has been percolation pro-
cesses, mostly simple site and bond percolation—see Figure 8.1—although a number
of variants have been studied also. A percolation process is one in which vertices or
edges on a graph are randomly designated either “occupied” or “unoccupied” and one
asks about various properties of the resulting patterns of vertices. One of the main
motivations for the percolation model when it was first proposed in the 1950s was the
modeling of the spread of disease [73, 186], and it is in this context also that it was
first studied in the current wave of interest in real-world networks [324]. We consider
epidemiological applications of percolation theory in section 8.2. Here, however, we
depart from the order of historical developments to discuss first a simpler application
to the question of network resilience.

As discussed in section 3.4, real-world networks are found often to be highly
resilient to the random deletion of their vertices. Resilience can be measured in
different ways, but perhaps the simplest indicator of resilience in a network is the
variation (or lack of variation) in the fraction of vertices in the largest component of the
network, which we equate with the giant component in our models (see section 4.1).
If one is thinking of a communication network, for example, in which the existence
of a connecting path between two vertices means that those two can communicate
with one another, then the vertices in the giant component can communicate with
an extensive fraction of the entire network, while those in the small components
can communicate with only a few others at most. Following the numerical studies
of Broder et al. [74] and Albert, Jeong, and Barabási [15] on subsets of the Web
graph, it was quickly realized [81, 93] that the problem of resilience to random failure
of vertices in a network is equivalent to a site percolation process on the network.
Vertices are randomly occupied (working) or unoccupied (failed), and the number of
vertices remaining that can successfully communicate is precisely the giant component
of the corresponding percolation model.

A number of analytic results have been derived for percolation on networks with
the structure of the configuration model of section 4.2.1, i.e., a random graph with a
given degree sequence. Cohen et al. [93] made the following simple argument. Suppose
we have a configuration model with degree distribution pk. That is, a randomly chosen
vertex has degree k with probability pk in the limit of large number n of vertices.
Now suppose that only a fraction q of the vertices are “occupied,” or functional, that
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226 M. E. J. NEWMAN

fraction chosen uniformly at random from the entire graph. For a vertex with degree k,
the number k′ of occupied vertices to which it is connected is distributed binomially
so that the probability of having a particular value of k′ is

(
k
k′

)
qk
′
(1 − q)k−k

′
, and

hence the total probability that a randomly chosen vertex is connected to k′ other
occupied vertices is

(8.1) pk′ =
∞∑
k=k′

pk

(
k

k′

)
qk
′
(1− q)k−k

′
.

Since vertex failure is random and uncorrelated, the subset of all vertices that are
occupied forms another configuration model with this degree distribution. Cohen et al.
then applied the criterion of Molloy and Reed, (4.11), to determine whether this
network has a giant component. (One could also apply (4.12) and (4.13) to determine
the size of the giant and nongiant components, although this is not done in [93].)

One of the most interesting conclusions of the work of Cohen et al. is for the
case of networks with power-law degree distributions pk ∼ k−α for some constant α.
When α ≤ 3, they find that the critical value qc of q where the transition takes place at
which a giant component forms is zero or negative, indicating that the network always
has a giant component, or in the language of physics, the network always percolates.
This echoes the numerical results of Albert, Jeong, and Barabási [15], who found that
the connectivity of power-law networks was highly robust to the random removal of
vertices. In general, the method of Cohen et al. indicates that qc ≤ 0 for any degree
distribution with a diverging second moment.

An alternative and more general approach to the percolation problem on the con-
figuration model has been put forward by Callaway et al. [81], using a generalization
of the generating function formalism discussed in section 4.2.1. In their method, the
probability of occupation of a vertex can be any function of the degree k of that
vertex. Thus the constant q of the approach of Cohen et al. is generalized to qk,
the probability that a vertex having degree k is occupied. One defines generating
functions

(8.2) F0(x) =
∞∑
k=0

pkqkx
k, F1(x) =

∑
k kpkqkx

k−1∑
k kpk

,

and it can then be shown that the probability distribution of the size of the component
of occupied vertices to which a randomly chosen vertex belongs is generated by H0(x),
where

(8.3) H0(x) = 1− F0(1) + xF0(H1(x)), H1(x) = 1− F1(1) + xF1(H1(x)).

(Note that F0 is not a properly normalized generating function in the sense that
F0(1) �= 1.) From this, one can derive an expression for the mean component size:

(8.4) 〈s〉 = F0(1) +
F ′0(1)F1(1)
1− F ′1(1)

,

which immediately tells us that the phase transition at which a giant component forms
takes place at F ′1(1) = 1. The size of the giant component is given by

(8.5) S = F0(1)− F0(u), u = 1− F1(1) + F1(u).

For instance, in the case studied by Cohen et al. [93] of uniform occupation
probability qk = q, this gives a critical occupation probability of qc = 1/G′1(1), where

D
ow

nl
oa

de
d 

02
/0

7/
19

 to
 1

28
.8

4.
12

7.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 227

2 2.5 3 3.5

exponent   α

0

0.01

0.02

0.03

cr
iti

ca
l f

ra
ct

io
n

Fig. 8.2 The fraction of vertices that must be removed from a network to destroy the giant com-
ponent, if the network has the form of a configuration model with a power-law degree
distribution of exponent α, and vertices are removed in decreasing order of their degrees.

G1(x) is the generating function for the degree distribution itself, as defined in (4.6).
Taking the example of a power-law degree distribution pk = k−α/ζ(α), (4.15), we find

(8.6) qc =
ζ(α− 1)

ζ(α− 2)− ζ(α− 1)
.

This is negative (and hence unphysical) for α < 3, confirming the finding that the
system always percolates in this regime. Note that qc > 1 for sufficiently large α,
which is also unphysical. One finds that the system never percolates for α > αc,
where αc is the solution of ζ(α − 2) = 2ζ(α − 1), which gives αc = 3.4788 . . . . This
corresponds to the point at which the underlying network itself ceases to have a giant
component, as shown by Aiello, Chung, and Lu [8] and discussed in section 4.2.1.

The main advantage of the approach of Callaway et al. is that it allows us to
remove vertices from the network in an order that depends on their degree. If, for
instance, we set qk = θ(k − kmax), where θ(x) is the Heaviside step function, then we
remove all vertices with degrees greater than kmax. This corresponds precisely to the
experiment of Broder et al. [74], who looked at the behavior of the World Wide Web
graph as vertices were removed in order of decreasing degree. (Similar but not identical
calculations were also performed by Albert, Jeong, and Barabási [15].) In agreement
with the numerical calculations (see section 3.4), Callaway et al. find that networks
with power-law degree distributions are highly susceptible to this type of targeted
attack; one need only remove a small percentage of vertices to destroy the giant
component entirely. Similar results were also found independently by Cohen et al. [94],
using a closely similar method, and in a later paper [361] some of the same authors
extended their calculations to directed networks also, which show a considerably richer
component structure, as described in section 4.2.3.

As an example, consider Figure 8.2, which shows the fraction of the highest degree
vertices that must be removed from a network with a power-law degree distribution to
destroy the giant component, as a function of the exponent α of the power law [117,
318]. As the figure shows, the maximum fraction is less than three percent, and for
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most values of α the fraction is significantly less than this. This appears to imply
that networks like the Internet and the Web that have power-law degree distributions
are highly susceptible to such attacks [15, 74, 94].

These results are for the configuration model. Other models offer some further
insights. The finding by Cohen et al. [93] that the threshold value qc at which percola-
tion sets in for the configuration model is zero for degree distributions with a divergent
second moment has attracted particular interest. Vázquez and Moreno [399], for ex-
ample, have shown that the threshold may be zero even for finite second moment
if the degrees of adjacent vertices in the network are positively correlated (see sec-
tions 3.6 and 4.2.5). Conversely, if the second moment does diverge, there may still
be a nonzero threshold if there are negative degree correlations. Warren, Sander, and
Sokolov [407] have shown that there can also be a nonzero threshold for a network
incorporating geographical effects, in which each vertex occupies a position in a low-
dimensional space (typically two-dimensional), and probability of connection is higher
for vertex pairs that are close together in that space. A similar spatial model has been
studied by Rozenfeld et al. [358], and both models are closely related to continuum
percolation [277].

An issue related to resilience to vertex deletion is the issue of cascading failures.
In some networks, such as electrical power networks, that carry load or distribute a
resource, the operation of the network is such that the failure of one vertex or edge
results in the redistribution of the load on that vertex or edge to other nearby vertices
or edges. If vertices or edges fail when the load on them exceeds some maximum
capacity, then this mechanism can result in a cascading failure or avalanche in which
the redistribution of load pushes a vertex or edge over its threshold and causes it to
fail, leading to further redistribution. Such a cascading failure in the western United
States in August 1996 resulted in the spread of what was initially a small power outage
in El Paso, Texas, through six states as far as Oregon and California, leaving several
million electricity customers without power. Watts [412] has given a simple model of
this process that can be mapped onto a type of percolation model and hence can be
solved using generating function methods similar to those for simple vertex removal
processes above.

In Watts’s model, a vertex i fails if a given fraction φi of its neighbors have failed,
where the quantities {φi} are independent identically distributed (iid) variables drawn
from a distribution f(φ). The model is seeded by the initial failure of some nonzero
density Φ0 of vertices, chosen uniformly at random. It is assumed that Φ0 � 1,
so that the initial seed consists, to leading order, of single isolated vertices. Watts
considers networks with the topology of the configuration model (section 4.2.1), for
which, because of the vanishing density of short loops making the networks tree-like
at small length-scales, each vertex will have at most only a single failed neighboring
vertex in the initial stages of the cascade, and hence will fail itself if and only if its
threshold for failure satisfies φ < 1/k, where k is its degree. Watts calls vertices
satisfying this criterion vulnerable. The probability of a vertex being vulnerable is
qk =

∫ 1/k
0 f(φ) dφ, and the cascade will spread only if such vertices connect to form a

percolating (i.e., extensive) cluster on the network. Thus the problem maps directly
onto the generalized percolation process studied by Callaway et al. [81] above, allowing
us to find a condition for the spread of the initial seed to give a large-scale cascade.
The percolation model applies only to the vulnerable vertices, however, so to calculate
the final sizes of cascades Watts performs numerical simulations.

Models of cascading failure have also been studied by Holme and Kim [194, 198],
by Moreno et al. [296, 297], and by Motter and Lai [304]. In the model of Holme

D
ow

nl
oa

de
d 

02
/0

7/
19

 to
 1

28
.8

4.
12

7.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 229

and Kim, for instance, load on a vertex is quantified by the betweenness centrality of
the vertex (see section 3.9), and vertices fail when the betweenness exceeds a given
threshold. Holme and Kim give simulation results for the avalanche size distribution
in their model.

8.2. Epidemiological Processes. One of the original, and still primary, reasons
for studying networks is to understand the mechanisms by which diseases and other
things (information, computer viruses, rumors) spread over them. For instance, the
main reason for the study of networks of sexual contact [45, 154, 185, 217, 242, 264,
265, 302, 357] (section 2.1) is to help us understand and perhaps control the spread of
sexually transmitted diseases. Similarly one studies networks of email contact [136,
320] to learn how computer viruses spread.34

8.2.1. The SIR Model. The simplest model of the spread of a disease over a
network is the SIR model of epidemic disease [23, 26, 191].35 This model, first formu-
lated, though never published, by Lowell Reed and Wade Hampton Frost in the 1920s,
divides the population into three classes: susceptible (S), meaning they don’t have
the disease of interest but can catch it if exposed to someone who does, infective36 (I)
meaning they have the disease and can pass it on, and recovered (R), meaning they
have recovered from the disease and have permanent immunity, so that they can never
get it again or pass it on. (Some authors consider the R to stand for “removed,” a
general term that encompasses also the possibility that people may die of the disease
and remove themselves from the infective pool in that fashion. Others consider the R
to mean “refractory,” which is the common term among those who study the closely
related area of reaction diffusion processes [385, 423].)

In traditional mathematical epidemiology [23, 26, 191], one then assumes that any
susceptible individual has a uniform probability β per unit time of catching the disease
from any infective one and that infective individuals recover and become immune at
some stochastically constant rate γ. The fractions s, i, and r of individuals in the
states S, I, and R are then governed by the differential equations

(8.7)
ds
dt

= −βis, di
dt

= βis− γi,
dr
dt

= γi.

Models of this type are called fully mixed, and although they have taught us much
about the basic dynamics of diseases, they are obviously unrealistic in their assump-
tions. In reality diseases can only spread between those individuals who have actual
physical contact of one sort or another, and the structure of the contact network is
important to the pattern of development of the disease.

The SIR model can be generalized in a straightforward manner to an epidemic
taking place on a network, although the resulting dynamical system is substantially
more complicated than its fully mixed counterpart. The important observation that
allows us to make progress, first made by Grassberger [178], is that the model can

34Computer viruses are an interesting case in that the networks over which they spread are
normally directed, unlike the contact networks for most human diseases [228].

35One distinguishes between an epidemic disease such as influenza, which sweeps through the
population rapidly and infects a significant fraction of individuals in a short outbreak, and an endemic
disease such as measles, which persists within the population at a level roughly constant over time.
The SIR model is a model of the former. The SIS model discussed in section 8.2.2 is a model of the
latter.

36In everyday parlance the more common word is “infectious,” but infective is the standard term
among epidemiologists.
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230 M. E. J. NEWMAN

be mapped exactly onto bond percolation on the same network. Indeed, as pointed
out by Sander et al. [359], significantly more general models can also be mapped to
percolation, in which transmission probability between pairs of individuals and the
times for which individuals remain infective both vary but are chosen in iid fashion
from some appropriate distributions. Let us suppose that the distribution of infection
rates β, defined as the probability per unit time that an infective individual will
pass the disease onto a particular susceptible network neighbor, is drawn from a
distribution Pi(β). And suppose that the recovery rate γ is drawn from another
distribution Pr(γ). Then the resulting model can be shown [314] to be equivalent to
uniform bond percolation on the same network with edge occupation probability

(8.8) T = 1−
∫ ∞

0
Pi(β)Pr(γ) e−β/γ dβ dγ.

The extraction of predictions about epidemics from the percolation model is sim-
ple: the distribution of percolation clusters (i.e., components connected by occupied
edges) corresponds to the distribution of the sizes of disease outbreaks that start
with a randomly chosen initial carrier; the percolation transition corresponds to the
“epidemic threshold” of epidemiology, above which an epidemic outbreak is possible
(i.e., one that infects a nonzero fraction of the population in the limit of large system
size); and the size of the giant component above this transition corresponds to the
size of the epidemic. What the mapping cannot tell us, but standard epidemiolog-
ical models can, is the time progression of a disease outbreak. The mapping gives
us results only for the ultimate outcome of the disease in the limit of long times, in
which all individuals are in either the S or R states, and no new cases of the dis-
ease are occurring. Nonetheless, there is much to be learned by studying even the
non-time-varying properties of the model.

The solution of bond percolation for the configuration model was given by Calla-
way et al. [81], who showed that, for uniform edge occupation probability T , the dis-
tribution of the sizes of clusters (i.e., disease outbreaks in epidemiological language)
is generated by the function H0(x), where

(8.9) H0(x) = xG0(H1(x)), H1(x) = 1− T + TxG1(H1(x)),

where G0(x) and G1(x) are defined in (4.6). This gives an epidemic transition that
takes place at Tc = 1/G′1(1), a mean outbreak size 〈s〉 given by

(8.10) 〈s〉 = H ′0(1) = T

[
1 +

TG′0(1)
1− TG′1(1)

]
,

and an epidemic outbreak that affects a fraction S of the network, where

(8.11) S = 1−G0(u), u = 1− T + TG1(u).

Similar solutions can be found for a wide variety of other model networks, including
networks with correlations of various kinds between the rates of infection or the infec-
tivity times [314], networks with correlations between the degrees of vertices [300], and
networks with more complex structure, such as different types of vertices [21, 314].

One of the most important conclusions of this work is for the case of networks
with power-law degree distributions, for which, as in the case of site percolation (sec-
tion 8.1), there is no nonzero epidemic threshold so long as the exponent of the power
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 231

law is less than 3. Since most power-law networks satisfy this condition, we expect
diseases always to propagate in these networks, regardless of transmission probability
between individuals, a point that was first made, in the context of models of com-
puter virus epidemiology, by Pastor-Satorras and Vespignani [332, 335], although, as
pointed out by Lloyd and May [266, 276], precursors of the same result can be seen in
the earlier work of May and Anderson [275]. May and Anderson studied traditional
(fully mixed) differential equation models of epidemics, without network structure,
but they divided the population into activity classes with different values of the in-
fection rate β. They showed that the variation of the number of infective individuals
over time depends on the variance of this rate over the classes, and in particular
that the disease always multiplies exponentially if the variance diverges—precisely
the situation in a network with a power-law degree distribution and exponent less
than 3.

The conclusion that diseases always spread on scale-free networks has been
revised somewhat in the light of later discoveries. In particular, there may be
a nonzero percolation threshold for certain types of correlations between vertices
[56, 57, 58, 59, 300, 399] if the network is embedded in a low-dimensional (rather
than infinite-dimensional) space [358, 407] or if the network has high transitivity
[139] (see section 3.2).

An interesting combination of the ideas of epidemiology with those of network
resilience explored in the preceding section arises when one considers vaccination of a
population against the spread of a disease. Vaccination can be regarded as the removal
from a network of some particular set of vertices, and this in turn can be modeled as a
site percolation process. Thus one is led to consideration of joint site/bond percolation
on networks, which has also been solved, in the simplest uniformly random case, by
Callaway et al. [81]. If the site percolation is correlated with vertex degree (as in
(8.2) and following), for example, removing the vertices with highest degree, then
one has a model for targeted vaccination strategies also. A good discussion has been
given by Pastor-Satorras and Vespignani [334]. As with the models of section 8.1,
one finds that networks tend to be particularly vulnerable to removal of their highest
degree vertices, so this kind of targeted vaccination is expected to be particularly
effective. (This of course is not news to the public health community, who have long
followed a policy of focusing their most aggressive disease prevention efforts on the
“core communities” of high-degree vertices in a network.)

Unfortunately, it is not always easy to find the highest degree vertices in a so-
cial network. The number of sexual contacts a person has had, for instance, can
normally only be found by asking them, and perhaps not even then. An interesting
method that circumvents this problem has been suggested by Cohen, ben-Avraham,
and Havlin [92]. They observe that since the probability of reaching a particular vertex
by following a randomly chosen edge in a graph is proportional to the vertex’s degree
(section 4.2), one is more likely to find high-degree vertices by following edges than by
choosing vertices at random. They propose thus that a population can be immunized
by choosing a random person from that population and vaccinating a friend of that
person, and then repeating the process. They show both by analytic calculations and
by computer simulation that this strategy is substantially more effective than random
vaccination. In a sense, in fact, this strategy is already in use. The “contact tracing”
methods [250], used to control sexually transmitted diseases, and the “ring vaccina-
tion” method [180, 307], used to control smallpox and foot-and-mouth disease, are
both examples of roughly this type of acquaintance vaccination.
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232 M. E. J. NEWMAN

8.2.2. The SIS Model. Not all diseases confer immunity on their survivors. Dis-
eases that, for instance, are not self-limiting but can be cured by medicine, can usually
be caught again immediately by an unlucky patient. Tuberculosis and gonorrhea are
two much-studied examples. Computer viruses also fall into this category; they can
be “cured” by antivirus software, but without a permanent virus-checking program
the computer has no way to fend off subsequent attacks by the same virus.

With diseases of this kind carriers that are cured move from the infective pool
not to a recovered pool, but back into the susceptible one. A model with this type
of dynamics is called an SIS model, for obvious reasons. In the simplest, fully mixed,
single-population case, its dynamics are described by the differential equations

(8.12)
ds
dt

= −βis+ γi,
di
dt

= βis− γi,

where β and γ are, as before, the infection and recovery rates.
The SIS model is a model of endemic disease. Since carriers can be infected

many times, it is possible, and does happen in some parameter regimes, that the
disease will persist indefinitely, circulating around the population and never dying
out. The equivalent of the SIR epidemic transition is the phase boundary between
the parameter regimes in which the disease persists and those in which it does not.

The SIS model cannot be solved exactly on a network as the SIR model can, but a
detailed mean-field treatment has been given by Pastor-Satorras and Vespignani [331,
332] for SIS epidemics on the configuration model. Their approach is based on the
differential equations, (8.12), but they allow the rate of infection β to vary between
members of the population rather than holding it constant. (This is similar to the
approach of May and Anderson [275] for the SIR model, discussed in section 8.2.1,
but is more general, since it does not involve the division of the population into a
binned set of activity classes, as the May–Anderson approach does.) The calculation
proceeds as follows.

The quantity βi appearing in (8.12) represents the average rate at which sus-
ceptible individuals become infected by their neighbors. For a vertex of degree k,
Pastor-Satorras and Vespignani make the replacement βi → kλΘ(λ), where λ is the
rate of infection via contact with a single infective individual and Θ(λ) is the proba-
bility that the neighbor at the other end of an edge will in fact be infective. Note that
Θ is a function of λ since presumably the probability of being infective will increase
as the probability of passing on the disease increases. The remaining occurrences of
the variables s and i Pastor-Satorras and Vespignani replace by sk and ik, which are
degree-dependent generalizations representing the fraction of vertices of degree k that
are susceptible or infective. Then, noticing that ik and sk obey ik + sk = 1, we can
rewrite (8.12) as the single differential equation

(8.13)
dik
dt

= kλΘ(λ)(1− ik)− ik,

where we have, without loss of generality, set the recovery rate γ equal to 1. There
is an approximation inherent in this formulation, since we have assumed that Θ(λ) is
the same for all vertices, when in general it too will be dependent on vertex degree.
This is in the nature of a mean-field approximation and can be expected to give a
reasonable guide to the qualitative behavior of the system, although certain properties
(particularly close to the phase transition) may be quantitatively mispredicted.
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 233

Looking for stationary solutions, we find

(8.14) ik =
kλΘ(λ)

1 + kλΘ(λ)
.

To calculate the value of Θ(λ), one averages the probability ik of being infected over
all vertices. Since Θ(λ) is defined as the probability that the vertex at the end of
an edge is infective, ik should be averaged over the distribution kpk/z of the degrees
of such vertices (see section 4.2.1), where z =

∑
k kpk is, as usual, the mean degree.

Thus

(8.15) Θ(λ) =
1
z

∑
k

kpkik.

Eliminating ik from (8.13) and (8.15) we then obtain an implicit expression for Θ(λ):

(8.16)
λ

z

∑
k

k2pk
1 + kλΘ(λ)

= 1.

For particular choices of pk this equation can be solved for Θ(λ) either exactly or
approximately. For instance, for a power-law degree distribution of the form (4.15),
Pastor-Satorras and Vespignani solve it by making an integral approximation, and
hence show that there is no nonzero epidemic threshold for the SIS model in the
power-law case—the disease will always persist, regardless of the value of the infection
rate parameter λ [332]. They have also generalized the solution to a number of
other cases, including other degree distributions [331], finite-sized networks [333], and
models that include vaccination of some fraction of individuals [334, 335]. In the latter
case, they tackle both random vaccination and vaccination targeted at the vertices
with highest degree using a method similar to that of Cohen et al. [93] in which they
calculate the effective degree distribution of the network after the removal of a given
set of vertices and then apply their mean-field method to the resulting network. As
we would expect from the results of Cohen et al., propagation of the disease turns
out to be relatively robust against random vaccination, at least in networks with
right-skewed degree distributions, but highly susceptible to vaccination of the highest-
degree individuals. The mean-field method has also been applied to networks with
degree correlations of the type discussed in section 3.6; see Boguñá, Pastor-Satorras,
and Vespignani [58]. Of particular note is their finding that for the case of power-
law degree distributions neither assortative nor disassortative mixing by degree can
produce a nonzero epidemic threshold in the SIS model, at least within the mean-field
approximation. This contrasts with the case for the SIR model, where it was found
that disassortative mixing can produce a nonzero threshold [399].

The mean-field method can also be applied to the SIR model [24, 298]. Although
we have an exact solution for the SIR model as described in section 8.2.1, that solution
can only tell us about the long-time behavior of an outbreak—its expected final size
and so forth. The mean-field method, although approximate, can tell us about the
time evolution of an outbreak, so the two methods are complementary. The mean-
field method for the SIR model can also be used to treat approximately the effects of
network transitivity [24, 154, 227, 234].

8.3. Search on Networks. Another example of a process taking place on a net-
work that has important practical applications is network search. Suppose some
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resource of interest is stored at the vertices of a network, such as information on Web
pages, or computer files on a distributed database or file-sharing network. One would
like to determine rapidly where on the network a particular item of interest can be
found (or determine that it is not on the network at all). One way of doing this, which
is used by Web search engines, is simply to catalog exhaustively (or “crawl”) the entire
network, creating a distilled local map of the data found. Such a strategy is favored
in cases where there is a heavy communication cost to searching the network in real
time, so that it makes sense to create a local index. While performing a network
crawl is, in principle, straightforward (although in practice it may be technically very
challenging [72]), there are nonetheless some interesting theoretical questions arising.

8.3.1. Exhaustive Network Search. One of the triumphs of recent work on net-
works has been the development of effective algorithms for mining network crawl data
for information of interest, particularly in the context of the World Wide Web. The
important trick here turns out to be to use the information contained in the edges of
the network as well as in the vertices. Since the edges, or hyperlinks, in the World
Wide Web are created by people in order to highlight connections between the con-
tents of pairs of pages, their structure contains information about page content and
relevance which can help us to improve search performance. The good search engines
therefore make a local catalog not only of the contents of web pages, but also of which
ones link to which others. Then when a query is made of the database, usually in the
form of a textual string of interest, the typical strategy would be to select a subset
of pages from the database by searching for that string, and then to rank the results
using the edge information. The classic algorithm, due to Brin and Page [72] and
Page et al. [327], is essentially identical in its simplest form to the eigenvector central-
ity long used in social network analysis [66, 67, 362, 408]. Each vertex i is assigned
a weight xi > 0, which is defined to be proportional to the sum of the weights of all
vertices that point to i: xi = λ−1∑

j Aijxj for some λ > 0, or in matrix form

(8.17) Ax = λx,

where A is the (asymmetric) adjacency matrix of the graph, whose elements are
Aij , and x is the vector whose elements are the xi. This of course means that the
weights we want are an eigenvector of the adjacency matrix with eigenvalue λ and,
provided the network is connected (there are no separate components), the Perron–
Frobenius theorem then tells us that there is only one eigenvector with all weights
nonnegative, which is the unique eigenvector corresponding to the largest eigenvalue.
This eigenvector can be found trivially by repeated multiplication of the adjacency
matrix into any initial nonzero vector which is not itself an eigenvector.

This algorithm, which is implemented (along with many additional tricks) in
the widely used search engine Google, appears to be highly effective. In essence the
algorithm makes the assumption that a page is important if it is pointed to by other
important pages. A more sophisticated version of the same idea has been put forward
by Kleinberg [235, 236], who notes that, since the Web is a directed network, one
can ask not only about which vertices point to a vertex of interest, but also about
which vertices are pointed to by that vertex. This then leads to two different weights
xi and yi for each vertex. Kleinberg refers to a vertex that is pointed to by highly
ranked vertices as an authority—it is likely to contain relevant information. Such a
vertex gets a weight xi that is large. A vertex that points to highly ranked vertices is
referred to as a hub; while it may not contain directly relevant information, it can tell
you where to find such information. It gets a weight yi that is large. (Certainly it is
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THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 235

possible for a vertex to have both weights large; there is no reason why the same page
cannot be both a hub and an authority.) The appropriate generalization of (8.17) for
the two weights is then

(8.18) Ay = λx, ATx = µy,

where AT is the transpose of A. Most often we are interested in the authority weights
which, eliminating y, obey AATx = λµx, so that the primary difference between the
method of Brin and Page [72] and the method of Kleinberg is the replacement of the
adjacency matrix with the symmetric product AAT . More general forms than (8.18)
are also possible. One could, for example, allow the authority weight of a vertex to
depend on the authority weights of the vertices that point to it (and not just their
hub weights, as in (8.18)). This leads to a model that interpolates smoothly between
the Brin–Page and Kleinberg methods. As far as we are aware, however, this has not
been tried. Neither has Kleinberg’s method been implemented yet in a commercial
web search engine, to the best of our knowledge.

The methods described here can also be used for search on other directed infor-
mation networks. Kleinberg’s method is particularly suitable for ranking publications
in citation networks, for example. The Citeseer literature search engine implements
a form of article ranking of this type.

8.3.2. GuidedNetwork Search. An alternative approach to searching a network
is to perform a guided search. Guided search strategies may be appropriate for cer-
tain kinds of Web search, particularly searches for specialized content that could be
missed by generic search engines (whose coverage tends to be quite poor), and also
for searching on other types of networks such as distributed databases. Exhaustive
search of the type discussed in the preceding section crawls a network once to cre-
ate an index of the data found, which is then stored and searched locally. Guided
searches perform small special-purpose crawls for every search query, crawling only a
small fraction of the network, but doing so in an intelligent fashion that deliberately
seeks out the network vertices most likely to contain relevant information.

One practical example of a guided search is the specialized Web crawler or “spi-
der” of Menczer et al. [279, 280]. This is a program that performs a Web crawl to find
results for a particular query. The method used is a type of genetic algorithm [284] or
enrichment method [179] that in its simplest form has a number of “agents” that start
crawling the Web at random, looking for pages that contain, for example, particular
words or sets of words given by the user. Agents are ranked according to their success
at finding matches to the words of interest and those that are least successful are
killed off. Those that are most successful are duplicated so that the density of agents
will be high in regions of the Web graph that contain many pages that look promising.
After some specified amount of time has passed, the search is halted and a list of the
most promising pages found so far is presented to the user. The method relies for its
success on the assumption that pages that contain information on a particular topic
tend to be clustered together in local regions of the graph. Other than this, however,
the algorithm makes little use of statistical properties of the structure of the graph.

Adamic et al. [5, 6] have given a completely different algorithm that directly
exploits network structure and is designed for use on peer-to-peer networks. Their
algorithm makes use of the skewed degree distribution of most networks to find the
desired results quickly. It works as follows.

Simple breadth-first search can be thought of as a query that starts from a single
source vertex on a network. The query goes out to all neighbors of the source vertex
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and says, “Have you got the information I am looking for?” Each neighbor either
replies “Yes, I have it,” in which case the search is over, or “No, I don’t, but I have
forwarded your request to all of my neighbors.” Each of their neighbors, when they
receive the request, either recognizes it as one they have seen before, in which case they
discard it, or they repeat the process as above. A query of this kind takes aggregate
effort O(n) in the network size. Adamic et al. propose to modify this algorithm as
follows. The initial source vertex again queries each of its neighbors for the desired
information. But now the reply is either “Yes, I have it” or “No, I don’t, and I
have k neighbors,” where k is the degree of the vertex in question. Upon receiving
replies of the latter type from each of its neighbors, the source vertex finds which of
its neighbors has the highest value of k and passes the responsibility for the query
like a runner’s baton to that neighbor, who then repeats the entire process with their
neighbors. (If the highest-degree vertex has already handled the query in the past,
then the second highest is chosen, and so forth; complete recursive back-tracking is
used to make sure the algorithm never gets stuck in a dead end.)

The upshot of this strategy is that the baton gets passed rapidly up a chain of
increasing vertex degree until it reaches the highest degree vertices in the network. On
networks with highly skewed degree distributions, particularly scale-free (i.e., power-
law) networks, the neighbors of the high-degree vertices account for a significant
fraction of all the vertices in the network. On average, therefore, we need only go
a few steps along the chain before we find a vertex with a neighbor that has the
information we are looking for. The maximum degree on a scale-free network scales
with network size as n1/(α−1) (see section 3.3.2), and hence the number of steps
required to search O(n) vertices is of order n/n1/(α−1) = n(α−2)/(α−1), which lies
between O(n1/2) and O(logn) for 2 ≤ α ≤ 3, which is the range generally observed in
power-law networks (see Table 3.1). This is a significant improvement over the O(n)
of the simple breadth-first search, especially for the smaller values of α.

This result differs from that given by Adamic et al. [5, 6], who adopted the
more conservative assumption that the maximum degree goes as n1/α [8], which gives
significantly poorer search times between O(n2/3) and O(n1/2). They point out,
however, that if each vertex to which the baton passes is allowed to query not only
its immediate network neighbors but also its second neighbors, then the performance
improves markedly to O(n2(1−2/α)).

The algorithm of Adamic et al. has been tested numerically on graphs with the
structure of the configuration model [5] (section 4.2.1) and the Barabási–Albert pref-
erential attachment model [5, 231] (section 7.2) and shows behavior in reasonable
agreement with the expected scaling forms.

The reader might be forgiven for feeling that these algorithms are cheating a little,
since the running time of the algorithm is measured by the number of hands the baton
passes through. If one measures it in terms of the number of queries that must be
responded to by network vertices, then the algorithm is still O(n), just as the simple
breadth-first search is. Adamic et al. suggest that each vertex therefore keep a local
directory or index of the information (such as data files) stored at neighboring vertices,
so that queries concerning those vertices can be resolved locally. For distributed
databases and file sharing networks, where bandwidth, in terms of communication
overhead between vertices, is the costly resource, this strategy really does improve
scaling with network size, reducing overhead per query to O(logn) in the best case.

8.3.3. Network Navigation. The work of Adamic et al. [5, 6] discussed in the
preceding section considers how one can design a network search algorithm to exploit

D
ow

nl
oa

de
d 

02
/0

7/
19

 to
 1

28
.8

4.
12

7.
22

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



THE STRUCTURE AND FUNCTION OF COMPLEX NETWORKS 237

statistical features of network structure to improve performance. A complementary
question has been considered by Kleinberg [237, 238]: Can one design network struc-
tures to make a particular search algorithm perform well? Kleinberg’s work is mo-
tivated by the observation, discussed in section 3.8, that people are able to navigate
social networks efficiently with only local information about network structure. Fur-
thermore, this ability does not appear to depend on any particularly sophisticated
behavior on the part of the people. When performing the letter-passing task of Mil-
gram [282, 392], for instance, in which participants are asked to communicate a letter
or message to a designated target person by passing it through their acquaintance
network (section 2.1), the search for the target is performed, roughly speaking, using
a simple “greedy algorithm.” That is, at each step along the way the letter is passed
to the person that the current holder believes to be closest to the target. (This in
fact is precisely how participants were instructed to act in Milgram’s experiments.)
The fact that the letter often reaches the target in only a short time then indicates
that the network itself must have some special properties, since the search algorithm
clearly doesn’t.

Kleinberg suggested a simple model that illustrates this behavior. His model
is a variant of the small-world model of Watts [411] and Watts and Strogatz [415]
(section 6) in which shortcuts are added between pairs of sites on a regular lattice (a
square lattice in Kleinberg’s studies). Rather than adding these shortcuts uniformly
at random, as Watts and Strogatz proposed, Kleinberg adds them in a biased fashion,
with shortcuts more likely to fall between lattice sites that are close together in the
Euclidean space defined by the lattice. The probability of a shortcut falling between
two sites goes as r−α, where r is the distance between the sites and α is a constant.
Kleinberg proves a lower bound on the mean time t (i.e., number of steps) taken by
the greedy algorithm to find a randomly chosen target on such a network. His bound
is t ≥ cnβ where c is independent of n and

(8.19) β =
{

(2− α)/3 for 0 ≤ α < 2,
(α− 2)/(α− 1) for α > 2.

Thus the best performance of the algorithm is when α is close to 2, and precisely
at α = 2 the greedy algorithm should be capable of finding the target in O(logn)
steps. Kleinberg also gave computer simulation results confirming this result. More
generally, for networks built on an underlying lattice in d dimensions, the optimal
performance of the greedy algorithm occurs at α = d [237, 238]. (See also [192] for
some rigorous results on the performance of greedy algorithms on Watts–Strogatz-
type networks.)

Kleinberg’s work shows that many networks do not allow fast search using a
simple algorithm such as a greedy algorithm but that it is possible to design net-
works that do allow such fast search. The particular model he studies, however, is
quite specialized and certainly not a good representation of the real social networks
that inspired his investigations. An alternative model that shows similar behavior
to Kleinberg’s, but which may shed more light on the true structure of social net-
works, has been proposed by Watts, Dodds, and Newman [414] and independently
by Kleinberg [239]. The “index” experiments of Killworth and Bernard [229] and
Bernard et al. [50] indicate that people in fact navigate social networks by looking for
common features between their acquaintances and the target, such as geographical
location or occupation. This suggests a model in which individuals are grouped (at
least in the participants minds) into categories according, for instance, to their jobs.
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groups of individuals

Fig. 8.3 The hierarchical “social distance” tree proposed by Watts, Dodds, and Newman [414] and
by Kleinberg [239]. Individuals are grouped together by occupation, location, interest, etc.,
and then those groups are grouped together into bigger groups and so forth. The social
distance between two individuals is measured by how far one must go up the tree to find
the lowest “common ancestor” of the pair.

These categories may then themselves be grouped in to supercategories, and so forth,
creating a tree-like hierarchy of organization that defines a “social distance” between
any two people: the social distance between two individuals is measured by the height
of lowest level in tree at which the two are connected—see Figure 8.3.

The tree, however, is not the network; it is merely a mental construct that affects
the way the network grows. It is assumed that the probability of their being an edge
between two vertices is greater the shorter the social distance between those vertices,
and both Watts, Dodds, and Newman [414] and Kleinberg [239] assumed that this
probability falls off exponentially with social distance. The greedy algorithm for
communicating a message to a target person then specifies that the message should
at each step be passed to that network neighbor of the current holder who has the
shortest social distance to the target. Watts et al. showed by computer simulation that
such an algorithm performs well over a broad range of parameters of the model, and
Kleinberg showed that for appropriate parameter choices the search can be completed
in time again O(logn).

While this model is primarily a model of search on social networks (or possibly the
Web [239]), Watts et al. also suggested that it could be used as a model for designed
networks. If one could arrange for items in a distributed database to be grouped
hierarchically according to some identifiable characteristics, then a greedy algorithm
that is aware of those characteristics should be able to find a desired element in the
database quickly, possibly in time only logarithmic in the size of the database. This
idea has been studied in more detail by Iamnitchi, Ripeanu, and Foster [204] and
Arenas et al. [25].

One disadvantage of the hierarchical organizational model is that in reality the
categories into which network vertices fall almost certainly overlap, whereas in the
hierarchical model they are disjoint. Kleinberg has proposed a generalization of the
model that allows for overlapping categories and shows search behavior qualitatively
similar to the hierarchical model [239].

8.4. Phase Transitions on Networks. Another group of papers has dealt with
the behavior on networks of traditional statistical mechanical models that show phase
transitions. For example, several authors have studied spin models such as the Ising
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model on networks of various kinds. Barrat and Weigt [40] studied the Ising model on
networks with the topology of the small-world model [415] (see section 6) using replica
methods. They found, unsurprisingly, that in the limit n→∞ the model has a finite-
temperature transition for all values of the shortcut density p > 0. Further results for
Ising models on small-world networks can be found in [190, 201, 255, 336, 429], and
the model has also been studied on random graphs [112, 263] and on networks with
the topology of the Barabási–Albert growing network model [18, 51] (section 7.2).

The motivation behind studies of spin models on networks is usually either that
they can be regarded as simple models of opinion formation in social networks [426] or
that they provide general insight into the effects of network topology on phase tran-
sition processes. There are, however, other more direct approaches to both of these
issues. Opinion formation can be studied more directly using actual opinion formation
models [84, 108, 163, 380, 389, 402]. And Goltsev, Dorogovtsev, and Mendes [177]
have examined phase transition behavior on networks using the general framework
known as Landau theory. They find that the critical behavior of models on a network
depends in general on the degree distribution and is in particular strongly affected by
power-law degree distributions.

One class of networked systems showing a phase transition that is of real interest
is the class of NP-hard computational problems such as satisfiability and colorabil-
ity that show solvability transitions. The simplest example of such a system is the
colorability problem, which is related to problems in operations research such as
scheduling problems and also to the Potts model of statistical mechanics. In this
problem a number of items (vertices) are divided into a number of groups (colors).
Some pairs of vertices cannot be in the same group. Such a constraint is represented
by placing an edge between those vertices, so that the set of all constraints forms
a graph. A solution to the problem of satisfying all constraints simultaneously (if a
solution exists) is then equivalent to finding a coloring of the graph such that no two
adjacent vertices have the same color. Problems of this type are found to show a
phase transition between a region of low graph density (low ratio of edges to vertices)
in which most graphs are colorable, to one of high density in which most are not. A
considerable amount of work has been carried out on this and similar problems in the
computer science community [131]. However, this work has primarily been restricted
to Poisson random graphs; it is largely an open question how the results will change
when we look at more realistic network topologies. Walsh [405] has looked at col-
orability in the Watts–Strogatz small-world model (section 6) and found that these
networks are easily colorable for both small and large values of the shortcut density
parameter p but harder to color in intermediate regimes. Vázquez and Weigt [401]
examined the related problem of vertex covers and found that on generalized random
graphs solutions are harder to find for networks with strong degree correlations of the
type discussed in section 3.6.

8.5. Other Processes on Networks. Preliminary investigations, primarily nu-
merical in nature, have been carried out of the behavior of various other processes
on networks. A number of authors have looked at diffusion processes. Random
walks, for example, have been examined by Jespersen, Sokolov, and Blumen [215],
Pandit and Amritkar [328], and Lahtinen, Kertész, and Kaski [257, 258]. Solutions
of the diffusion equation can be expressed as linear combinations of eigenvectors of
the graph Laplacian, which has led a number of authors to investigate the Lapla-
cian and its eigenvalue spectrum [150, 173, 288]. Discrete dynamical processes have
also attracted some attention. One of the earliest examples of a statistical model
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of a networked system falls in this category, the random Boolean net of Kauff-
man [11, 16, 97, 98, 159, 223, 224, 225, 372], which is a model of a genetic regulatory
network (see section 2.4). Cellular automata on networks have been investigated by
Watts and Strogatz [411, 415], and voter models and models of opinion formation can
also be regarded as cellular automata [84, 255, 402]. Iterated games on networks have
been investigated by several authors [1, 135, 230, 415], and some interesting differ-
ences are seen between behavior on networks and on regular lattices. Other topics
of investigation have included weakly coupled oscillators [37, 200, 415], neural net-
works [256, 381], and self-organized critical models [106, 251, 299]. A useful discussion
of the behavior of dynamical systems on networks has been given by Strogatz [386].

9. Summary and Directions for Future Research. In this article we have re-
viewed some recent work on the structure and function of networked systems. Work
in this area has been motivated to a high degree by empirical studies of real-world
networks such as the Internet, the World Wide Web, social networks, collaboration
networks, citation networks, and a variety of biological networks. We have reviewed
these empirical studies in sections 2 and 3, focusing on a number of statistical proper-
ties of networks that have received particular attention, including path lengths, degree
distributions, clustering, and resilience. Quantitative measurements for a variety of
networks are summarized in Table 3.1. The most important observation to come out
of studies such as these is that networks are generally very far from random. They
have highly distinctive statistical signatures, some of which, such as high clustering
coefficients and highly skewed degree distributions, are common to networks of a wide
variety of types.

Inspired by these observations many researchers have proposed models of networks
that typically seek to explain either how networks come to have the observed structure
or what the expected effects of that structure will be. The largest portion of this review
has been taken up with discussion of these models, covering random graph models and
their generalizations (section 4), Markov graphs (section 5), the small-world model
(section 6), and models of network growth, particularly the preferential attachment
models (section 7).

In the last part of this review (section 8) we have discussed work on the behavior
of processes that take place on networks. The notable successes in this area so far
have been studies of the spread of infection over networks such as social networks
or computer networks, and studies of the effect of the failure of network nodes on
performance of communications networks. Some progress has also be made on phase
transitions on networks and on dynamical systems on networks, particularly discrete
dynamical systems.

In looking forward to future developments in this area it is clear that there is much
to be done. The study of complex networks is still in its infancy. Several general
areas stand out as promising for future research. First, while we are beginning to
understand some of the patterns and statistical regularities in the structure of real-
world networks, our techniques for analyzing networks are at present no more than
a grab-bag of miscellaneous and largely unrelated tools. We do not yet, as we do
in some other fields, have a systematic program for characterizing network structure.
We count triangles on networks or measure degree sequences, but we have no idea if
these are the only important quantities to measure (almost certainly they are not)
or even if they are the most important. We have as yet no theoretical framework to
tell us if we are even looking in the right place. Perhaps there are other measures,
so far un-thought-of, that are more important than those we have at present. A true
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understanding of which properties of networks are the important ones to focus on will
almost certainly require us to state first what questions we are interested in answering
about a particular network. And knowing how to tie the answers to these questions
to structural properties of the network is therefore also an important goal.

Second, there is much to be done in developing more sophisticated models of
networks, both to help us understand network topology and to act as a substrate for
the study of processes taking place on networks. While some network properties, such
as degree distributions, have been thoroughly modeled and their causes and effects
well understood, others such as correlations, transitivity, and community structure
have not. It seems certain that these properties will affect the behavior of networked
systems substantially, so our current lack of suitable techniques to handle them leaves
a large gap in our understanding.

Which leads us to our third and perhaps most important direction for future
study, the behavior of processes taking place on networks. The work described in
section 8 represents only a few first attempts at answering questions about such
processes, and yet this, in a sense, is our ultimate goal in this field: to understand the
behavior and function of the networked systems we see around us. If we can gain such
understanding, it will give us new insight into a vast array of complex and previously
poorly understood phenomena.
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[58] M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Absence of Epidemic Threshold in
Scale-Free Networks with Connectivity Correlations, Preprint 0208163 (2002); available
from http://arxiv.org/abs/cond-mat/.
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[387] P. Svenson, From Néel to NPC: Colouring Small Worlds, Preprint 0107015 (2001); available

from http://arxiv.org/abs/cs/.
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