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Abstract. We describe a parallel iterative least squares solver named LSRN that is based on
random normal projection. LSRN computes the min-length solution to minx∈Rn ‖Ax − b‖2, where
A ∈ R

m×n with m � n or m � n, and where A may be rank-deficient. Tikhonov regularization may
also be included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can
be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse
or a fast linear operator. The preconditioning phase consists of a random normal projection, which
is embarrassingly parallel, and a singular value decomposition of size �γ min(m,n)� × min(m,n),
where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is
well-conditioned, with a strong concentration result on the extreme singular values, and hence that
the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative
method. As we demonstrate, the Chebyshev method is particularly efficient for solving large prob-
lems on clusters with high communication cost. Numerical results show that on a shared-memory
machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized least squares
solver called Blendenpik on large dense problems, and it outperforms the least squares solver from
SuiteSparseQR on sparse problems without sparsity patterns that can be exploited to reduce fill-in.
Further experiments show that LSRN scales well on an Amazon Elastic Compute Cloud cluster.
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deficient, minimum-length solution, LAPACK, sparse matrix, iterative method, preconditioning,
LSQR, Chebyshev semi-iterative method, Tikhonov regularization, ridge regression, parallel com-
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1. Introduction. Randomized algorithms have become indispensable in many
areas of computer science, with applications ranging from complexity theory to com-
binatorial optimization, cryptography, and machine learning. Randomization has also
been used in numerical linear algebra (for instance, the initial vector in the power iter-
ation is chosen at random so that almost surely it has a nonzero component along the
direction of the dominant eigenvector), yet most well-developed matrix algorithms,
e.g., matrix factorizations and linear solvers, are deterministic. In recent years, how-
ever, motivated by large data problems, very nontrivial randomized algorithms for
very large matrix problems have drawn considerable attention from researchers, origi-
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C96 XIANGRUI MENG, MICHAEL SAUNDERS, AND MICHAEL MAHONEY

nally in theoretical computer science and subsequently in numerical linear algebra and
scientific computing. By randomized algorithms, we refer, in particular, to random
sampling and random projection algorithms [8, 23, 9, 22, 2]. For a comprehensive
overview of these developments, see the review of Mahoney [18], and for an excel-
lent overview of numerical aspects of coupling randomization with classical low-rank
matrix factorization methods, see the review of Halko, Martinsson, and Tropp [14].

We are interested in high-precision solving of linear least squares (LS) problems
that are strongly over- or underdetermined and possibly rank-deficient. In particular,
given a matrix A ∈ R

m×n and a vector b ∈ R
m, where m � n or m � n and we

do not assume that A has full rank, we wish to develop randomized algorithms to
accurately solve the problem

(1.1) minimizex∈Rn ‖Ax− b‖2.
If we let r = rank(A) ≤ min(m,n), then recall that if r < n (the LS problem is
underdetermined or rank-deficient), then (1.1) has an infinite number of minimizers.
In that case, the set of all minimizers is convex and hence has a unique element having
minimum length. On the other hand, if r = n so that the problem has full rank, there
exists only one minimizer to (1.1), and hence it must have the minimum length. In
either case, we denote this unique min-length solution to (1.1) by x∗, and we are
interested in computing x∗ in this work. That is,

x∗ = argmin ‖x‖2 subject to x ∈ argmin
z
‖Az − b‖2.(1.2)

LS problems of this form have a long history, traced back to Gauss, and they arise
in numerous applications. The demand for faster LS solvers will continue to grow in
light of new data applications and as problem scales become larger and larger.

In this paper, we describe an LS solver called LSRN for these strongly over- or
underdetermined, and possibly rank-deficient, systems. LSRN uses random normal
projections to compute a preconditioner matrix such that the preconditioned system
is provably extremely well-conditioned. Importantly for large-scale applications, the
preconditioning process is embarrassingly parallel, and it automatically speeds up
with sparse matrices and fast linear operators. LSQR [21] or the Chebyshev semi-
iterative (CS) method [12] can be used at the iterative step to compute the min-length
solution within just a few iterations. We show that the latter method is preferred on
clusters with high communication cost.

Because of its provably good conditioning properties, LSRN has a fully predictable
run-time performance, just like direct solvers, and it scales well in parallel environ-
ments. On large dense systems, LSRN is competitive with LAPACK’s DGELSD for
strongly overdetermined problems, and it is much faster for strongly underdetermined
problems, although solvers using fast random projections, like Blendenpik [2], are still
slightly faster in both cases. On sparse systems without sparsity patterns that can be
exploited to reduce fill-in (such as matrices with random structure), LSRN runs signif-
icantly faster than competing solvers, for both the strongly over- or underdetermined
cases.

In section 2 we describe existing deterministic LS solvers and recent random-
ized algorithms for the LS problem. In section 3 we show how to do preconditioning
correctly for rank-deficient LS problems, and in section 4 we introduce LSRN and dis-
cuss its properties. Section 5 describes how LSRN can handle Tikhonov regularization
for both over- and underdetermined systems, and in section 6 we provide a detailed
empirical evaluation illustrating the behavior of LSRN.
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2. Least squares solvers. In this section we discuss related approaches, in-
cluding deterministic direct and iterative methods as well as recently developed ran-
domized methods, for computing solutions to LS problems, and we discuss how our
results fit into this broader context.

2.1. Deterministic methods. It is well known that x∗ in (1.2) can be com-
puted using the singular value decomposition (SVD) of A. Let A = UΣV T be the
compact SVD, where U ∈ R

m×r, Σ ∈ R
r×r, and V ∈ R

n×r, i.e., only singular vectors
corresponding to the nonzero singular values are calculated. We have x∗ = V Σ−1UTb.
The matrix V Σ−1UT is the Moore–Penrose pseudoinverse of A, denoted by A†, which
is defined and unique for any matrix. Hence we can simply write x∗ = A†b. The SVD
approach is accurate and robust to rank-deficiency.

Another way to solve (1.2) is using a complete orthogonal factorization of A. If we
can find orthonormal matrices Q ∈ R

m×r and Z ∈ R
n×r, and a matrix T ∈ R

r×r, such
that A = QTZT, then the min-length solution is given by x∗ = ZT−1QTb. We can
treat SVD as a special case of complete orthogonal factorization. In practice, complete
orthogonal factorization is usually computed via rank-revealing QR factorizations,
making T a triangular matrix. The QR approach is less expensive than SVD, but it
is slightly less robust at determining the rank of A.

A third way to solve (1.2) is by computing the min-length solution to the normal
equation ATAx = ATb, namely

(2.1) x∗ = (ATA)†ATb = AT(AAT)†b.

It is easy to verify the correctness of (2.1) by replacing A by its compact SVD UΣV T.
If r = min(m,n), a Cholesky factorization of either ATA (if m ≥ n) or AAT (if m ≤ n)
solves (2.1) nicely. If r < min(m,n), we need the eigensystem of ATA or AAT to
compute x∗. The normal equation approach is the least expensive of the three direct
approaches, but it is also the least accurate, especially on ill-conditioned problems.
See Chapter 5 of Golub and Van Loan [11] for a detailed analysis.

Instead of these direct methods, we can use iterative methods to solve (1.1). If all
the iterates {x(k)} are in range(AT) and if {x(k)} converges to a minimizer, it must
be the minimizer having minimum length, i.e., the solution to (1.2). This is the case
when we use a Krylov subspace method starting with a zero vector. For example,
the conjugate gradient (CG) method on the normal equation leads to the min-length
solution (see Paige and Saunders [20]). In practice, CGLS [16] or LSQR [21] are
preferable because they are equivalent to applying CG to the normal equation in exact
arithmetic but they are numerically more stable. Other Krylov subspace methods such
as the CS method [12] and LSMR [10] can solve (1.1) as well.

Importantly, however, it is in general hard to predict the number of iterations for
CG-like methods. The convergence rate is affected by the condition number of ATA.
A classical result [17, p. 187] states that

(2.2)
‖x(k) − x∗‖ATA

‖x(0) − x∗‖ATA

≤ 2

(√
κ(ATA)− 1√
κ(ATA) + 1

)k

,

where ‖z‖ATA = zTATAz = ‖Az‖2 for any z ∈ R
n, and where κ(ATA) is the condition

number of ATA under the 2-norm. Estimating κ(ATA) is generally as hard as solving
the LS problem itself, and in practice the bound does not hold in any case unless
reorthogonalization is used. Thus, the computational cost of CG-like methods remains
unpredictable in general, except when ATA is very well-conditioned and the condition
number can be well estimated.

D
ow

nl
oa

de
d 

02
/0

6/
19

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C98 XIANGRUI MENG, MICHAEL SAUNDERS, AND MICHAEL MAHONEY

2.2. Randomized methods. In 2007, Drineas et al. [9] introduced two random-
ized algorithms for the LS problem, each of which computes an approximate solution
x̂ in O(mn log(n/ε)+n3/ε) time such that ‖Ax̂−b‖2 ≤ (1+ε)‖Ax∗−b‖2 given ε > 0.
Both of these algorithms apply a randomized Hadamard transform to the columns of
A thereby generating a problem of smaller size, one using uniformly random sampling
and the other using a sparse random projection. They proved that, in both cases, the
solution to the smaller problem leads to relative-error approximations of the original
problem. The algorithms are suitable when low accuracy is acceptable, but the ε
dependence quickly becomes the bottleneck otherwise. Using those algorithms as pre-
conditioners was also mentioned in [9]. This work laid the ground for later algorithms
and implementations.

Later, in 2008, Rokhlin and Tygert [22] described a related randomized algorithm
for overdetermined systems. They used a randomized transform named SRFT that
consists of m random Givens rotations, a random diagonal scaling, a discrete Fourier
transform, and a random sampling of rows. They considered using their method as
a preconditioning method for CG-like methods. They proved that if the sample size
is greater than 4n2, the condition number of the preconditioned system is bounded
above by a constant, with high probability. This leads to a total running time of
O((log n + log(1/ε))mn+ n4). However, sampling this many rows in practice would
adversely affect the running time of their solver. They illustrated examples for which
sampling 4n rows sufficed, which reduces the running time to O((log n+log(1/ε))mn+
n3), but they did not provide a rigorous proof.

Then, in 2010, Avron, Maymounkov, and Toledo [2] implemented a high-precision
LS solver, called Blendenpik, and compared it to LAPACK’s DGELS and to LSQR
without preconditioning. Blendenpik uses a Walsh–Hadamard transform, a discrete
cosine transform, or a discrete Hartley transform for blending the rows/columns,
followed by a random sampling, to generate a problem of smaller size. The R factor
from the QR factorization of the smaller matrix is used as the preconditioner for
LSQR. Based on their analysis, the condition number of the preconditioned system
depends on the coherence or statistical leverage scores of A, i.e., the maximal row
norm of U , where U is an orthonormal basis of range(A). We note that a solver for
underdetermined problems is also included in the Blendenpik package.

In 2011, Coakley, Rokhlin, and Tygert [3] described an algorithm that is also based
on random normal projections. It computes the orthogonal projection of any vector
b onto the null space of A or onto the row space of A via a preconditioned normal
equation. The algorithm solves the overdetermined LS problem as an intermediate
step. They show that the normal equation is well-conditioned and hence the solution
is reliable. Unfortunately, no implementation was provided. For an overdetermined
problem of sizem×n, the algorithm requires applying A orAT 3n+6 times, while LSRN
needs approximately 2n+200 matrix-vector multiplications under the default setting.
Asymptotically, LSRN will become faster as n increases beyond several hundred. See
section 4.4 for further complexity analysis of LSRN. Moreover, if this algorithm is
applied to (though not originally designed for) approximately rank-deficient problems,
it becomes less reliable than LSRN in determining the effective rank. See sections 4.3
and 6.4 for theoretical analysis and empirical evaluation, respectively.

2.3. Relationship with our contributions. All the approaches mentioned in
section 2.2 assume that A has full rank, and for those based on iterative solvers, none
provides a small constant upper bound on the condition number of the precondi-
tioned system with O(n) sample size that is independent of the coherence. For LSRN,
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Theorem 3.2 ensures that the min-length solution is preserved, independent of the
rank, and Theorems 4.4 and 4.5 provide bounds on the condition number and num-
ber of iterations, independent of the spectrum and the coherence of A. In addition
to handling rank-deficiency well, LSRN can even take advantage of it, resulting in a
smaller condition number and fewer iterations.

Some prior work on the LS problem has explored “fast” randomized transforms
that run in roughly O(mn logm) time on a dense matrix A, while the random normal
projection we use in LSRN takesO(mn2) time. Although this could be an issue for some
applications, the use of random normal projections comes with several advantages.
First, if A is a sparse matrix or a linear operator, which is common in large-scale
applications, then the FFT-based fast transforms are no longer “fast.” Second, the
random normal projection is easy to implement using threads or MPI, and it scales
well in parallel environments. Third, the strong symmetry of the standard normal
distribution helps give the strong high probability bounds on the condition number
in terms of sample size. These bounds depend on nothing but s/r, where s is the
sample size. For example, if s = 4r, Theorem 4.4 ensures that, with high probability,
the condition number of the preconditioned system is less than 3.

This last property about the condition number of the preconditioned system
makes the number of iterations and thus the running time of LSRN fully predictable,
as for a direct method. It also enables use of the CS method, which needs only one
level-1 and two level-2 BLAS operations per iteration, and is particularly suitable for
clusters with high communication cost because it does not have vector inner products
that require synchronization between nodes. Although the CS method has the same
theoretical upper bound on the convergence rate as CG-like methods, it requires ac-
curate bounds on the singular values in order to work efficiently. Such bounds are
generally hard to come by, limiting the popularity of the CS method in practice,
but they are provided for the preconditioned system by our Theorem 4.4, and we do
achieve high efficiency in our experiments.

3. Preconditioning for linear least squares. In light of (2.2), much effort
has been made to transform a linear system into an equivalent system with reduced
condition number. This preconditioning, for a square linear system Bx = d of full
rank, usually takes one of the following forms:

left preconditioning M
T
Bx = M

T
d,

right preconditioning BNy = d, x = Ny,

left and right preconditioning M
T
BNy = M

T
d, x = Ny.

Clearly, the preconditioned system is consistent with the original system, i.e., has the
same x∗ as the unique solution, if the preconditioners M and N are nonsingular.

For the general LS problem (1.2), more care should be taken so that the precon-
ditioned system will have the same min-length solution as the original. For example,
if we apply left preconditioning to the LS problem minx ‖Ax−b‖2, the preconditioned
system becomes minx ‖MTAx−MTb‖2, and its min-length solution is given by

x∗
left = (M

T
A)†MT

b.

Similarly, the min-length solution to the right preconditioned system is given by

x∗
right = N(AN)†b.
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The following lemma states the necessary and sufficient conditions for A† = N(AN)†

or A† = (MTA)†MT to hold. Note that these conditions holding certainly implies
that x∗

right = x∗ and x∗
left = x∗, respectively.

Lemma 3.1. Given A ∈ R
m×n, N ∈ R

n×p, and M ∈ R
m×q, we have

1. A† = N(AN)† if and only if range(NNTAT) = range(AT).
2. A† = (MTA)†MT if and only if range(MMTA) = range(A).

Proof. Let r = rank(A) and UΣV T be A’s compact SVD as in section 2.1, with
A† = V Σ−1UT. Before continuing our proof, we reference the following facts about
the pseudoinverse:

1. B† = BT(BBT)† for any matrix B.
2. For any matrices B and C such that BC is defined, (BC)† = C†B† if

(i) BTB = I or (ii) CCT = I or (iii) B has full column rank and C has
full row rank.

Let us now prove the “if” part of the first statement. If range(NNTAT) = range(AT) =
range(V ), we can find a matrix Z with full row rank such that NNTAT = V Z. Then,

N(AN)† = N(AN)T(AN(AN)T)† = NNTAT(ANNTAT)†

= V Z(UΣV
T
V Z)† = V Z(UΣZ)† = V ZZ†Σ−1U

T
= VΣ−1U

T
= A†.

Conversely, if N(AN)† = A†, we know that range(N(AN)†) = range(A†) = range(V )
and hence range(V ) ⊆ range(N). Then we can decompose N as (V Vc)( Z

Zc
) = V Z +

VcZc, where Vc is orthonormal, V TVc = 0, and ( Z
Zc

) has full row rank. Then,

0 = N(AN)† −A† = (V Z + VcZc)(UΣV
T
(V Z + VcZc))

† − VΣ−1U
T

= (V Z + VcZc)(UΣZ)† − V Σ−1UT

= (V Z + VcZc)Z
†Σ−1U

T − V Σ−1U
T
= VcZcZ

†Σ−1U
T
.

Multiplying by V T

c on the left and UΣ on the right, we get ZcZ
† = 0, which is

equivalent to ZcZ
T = 0. Therefore,

range(NNTAT) = range((V Z + VcZc)(V Z + VcZc)
TV ΣUT)

= range((V ZZ
T
V

T
+ VcZcZ

T

cV
T

c )V ΣU
T
)

= range(V ZZTΣUT)

= range(V ) = range(A
T
),

where we used the facts that Z has full row rank and hence ZZT is nonsingular, Σ is
nonsingular, and U has full column rank.

To prove the second statement, let us take B = AT. By the first statement, we
know B† = M(BM)† if and only if range(MMTBT) = range(BT), which is equivalent
to saying A† = (MTA)†MT if and only if range(MMTA) = range(A).

Although Lemma 3.1 gives the necessary and sufficient condition, it does not
serve as a practical guide for preconditioning LS problems. In this work, we are more
interested in a sufficient condition that can help us build preconditioners. To that
end, we provide the following theorem.

Theorem 3.2. Given A ∈ R
m×n, b ∈ R

m, N ∈ R
n×p, and M ∈ R

m×q, let x∗ be
the min-length solution to the LS problem minx ‖Ax− b‖2, x∗

right = Ny∗, where y∗ is
the min-length solution to miny ‖ANy − b‖2, and let x∗

left be the min-length solution

to minx ‖MTAx−MTb‖2. Then,
1. x∗

right = x∗ if range(N) = range(AT),
2. x∗

left = x∗ if range(M) = range(A).
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Proof. Let r = rank(A), and let UΣV T be A’s compact SVD. If range(N) =
range(AT) = range(V ), we can write N as V Z, where Z has full row rank. Therefore,

range(NNTAT) = range(V ZZTV TV ΣUT) = range(V ZZTΣUT)

= range(V ) = range(A
T
).

By Lemma 3.1, A† = N(AN)† and hence x∗
left = x∗. The second statement can be

proved by similar arguments.

4. Algorithm LSRN. In this section we present LSRN, an iterative solver for solv-
ing strongly over- or underdetermined systems based on “random normal projection.”
To construct a preconditioner we apply a transformation matrix whose entries are in-
dependent random variables drawn from the standard normal distribution. We prove
that the preconditioned system is almost surely consistent with the original system,
i.e., both have the same min-length solution. At least as importantly, we prove that
the spectrum of the preconditioned system is independent of the spectrum of the
original system, and we provide a strong concentration result on the extreme singular
values of the preconditioned system. This concentration result enables us to predict
the number of iterations for CG-like methods, and it also enables the use of the CS
method, which requires an accurate bound on the singular values to work efficiently.
We also present an error analysis for approximately rank-deficient problems.

4.1. The algorithm. Algorithm 1 shows the detailed procedure of LSRN to com-
pute the min-length solution to a strongly overdetermined problem, and Algorithm 2
shows the detailed procedure for a strongly underdetermined problem. We refer to
these two algorithms together as LSRN. Note that they only use the input matrix A for
matrix-vector and matrix-matrix multiplications, and thus A can be a dense matrix, a
sparse matrix, or a linear operator. In the remainder of this section we focus on anal-
ysis of the overdetermined case. We emphasize that analysis of the underdetermined
case is quite analogous.

Algorithm 1. LSRN (computes x̂ ≈ A†b when m� n).

1: Choose an oversampling factor γ > 1 and set s = 
γn�.
2: Generate G = randn(s,m), i.e., an s-by-m random matrix whose entries are

independent random variables following the standard normal distribution.
3: Compute Ã = GA.
4: Compute Ã’s compact SVD Ũ Σ̃Ṽ T, where r = rank(Ã), Ũ ∈ R

s×r, Σ̃ ∈ R
r×r,

Ṽ ∈ R
n×r, and only Σ̃ and Ṽ are needed.

5: Let N = Ṽ Σ̃−1.
6: Compute the min-length solution to miny ‖ANy− b‖2 using an iterative method.

Denote the solution by ŷ.
7: Return x̂ = Nŷ.

4.2. Theoretical properties. The use of random normal projection offers LSRN
some nice theoretical properties. We start with consistency.

Theorem 4.1. In Algorithm 1, we have x̂ = A†b almost surely.
Proof. Let r = rank(A) and UΣV T be A’s compact SVD. We have

range(N) = range(Ṽ Σ̃−1) = range(Ṽ )

= range(Ã
T
) = range(A

T
G

T
) = range(V Σ(GU)

T
).
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Algorithm 2. LSRN (computes x̂ ≈ A†b when m� n).

1: Choose an oversampling γ > 1 and set s = 
γm�.
2: Generate G = randn(n, s), i.e., an n-by-s random matrix whose entries are inde-

pendent random variables following the standard normal distribution.
3: Compute Ã = AG.
4: Compute Ã’s compact SVD Ũ Σ̃Ṽ T, where r = rank(Ã), Ũ ∈ R

n×r, Σ̃ ∈ R
r×r,

Ṽ ∈ R
s×r, and only Ũ and Σ̃ are needed.

5: Let M = Ũ Σ̃−1.
6: Compute the min-length solution to minx ‖MTAx − MTb‖2 using an iterative

method, denoted by x̂.
7: Return x̂.

Define G1 = GU ∈ R
s×r. Since G’s entries are independent random variables fol-

lowing the standard normal distribution and U is orthonormal, G1’s entries are also
independent random variables following the standard normal distribution. Then given
s ≥ γn > n ≥ r, we know G1 has full column rank r with probability 1. Therefore,

range(N) = range(V ΣGT

1) = range(V ) = range(AT),

and hence by Theorem 3.2 we have x̂ = A†b almost surely.
A more interesting property of LSRN is that the spectrum (the set of singular

values) of the preconditioned system is solely associated with a random matrix of size
s× r, independent of the spectrum of the original system.

Lemma 4.2. In Algorithm 1, the spectrum of AN is the same as the spectrum of
G†

1 = (GU)†, independent of A’s spectrum.
Proof. Continue to use the notation from the proof of Theorem 4.1. Let G1 =

U1Σ1V
T

1 be G1’s compact SVD, where U1 ∈ R
s×r, Σ1 ∈ R

r×r, and V1 ∈ R
r×r.

Since range(Ũ) = range(GA) = range(GU) = range(U1) and both Ũ and U1 are
orthonormal matrices, there exists an orthonormal matrix Q1 ∈ R

r×r such that U1 =
ŨQ1. As a result,

Ũ Σ̃Ṽ T = Ã = GUΣV T = U1Σ1V
T

1 ΣV
T = ŨQ1Σ1V

T

1 ΣV
T.

Multiplying by ŨT on the left-hand side of each, we get Σ̃Ṽ T = Q1Σ1V
T

1 ΣV
T. Taking

the pseudoinverse gives N = Ṽ Σ̃−1 = V Σ−1V1Σ
−1
1 QT

1. Thus,

AN = UΣV
T
V Σ−1V1Σ

−1
1 Q

T

1 = UV1Σ
−1
1 Q

T

1 ,

which gives AN ’s SVD. Therefore, AN ’s singular values are diag(Σ−1
1 ), the same as

G†
1’s spectrum, but independent of A’s.

We know that G1 = GU is a random matrix whose entries are independent
random variables following the standard normal distribution. The spectrum of G1 is
a well-studied problem in random matrix theory, and in particular the properties of
extreme singular values have been studied. Thus, the following lemma is important
for us. We use P(·) to refer to the probability that a given event occurs.

Lemma 4.3 (see Davidson and Szarek [4]). Consider an s× r random matrix G1

with s > r, whose entries are independent random variables following the standard
normal distribution. Let the singular values be σ1 ≥ · · · ≥ σr. Then for any t > 0,

(4.1) max
{P(σ1 ≥

√
s+
√
r + t),P(σr ≤

√
s−√r − t)

}
< e−t2/2.
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With the aid of Lemma 4.3, it is straightforward to obtain the concentration
result of σ1(AN), σr(AN), and κ(AN) as follows.

Theorem 4.4. In Algorithm 1, for any α ∈ (0, 1−√r/s), we have

(4.2) max
{
P
(
σ1(AN) ≥ 1

(1−α)
√
s−√

r

)
,P
(
σr(AN) ≤ 1

(1+α)
√
s+

√
r

)}
< e−α2s/2

and

(4.3) P
(
κ(AN) =

σ1(AN)

σr(AN)
≤ 1 + α+

√
r/s

1− α−√r/s

)
≥ 1− 2e−α2s/2.

Proof. Set t = α
√
s in Lemma 4.3.

In order to estimate the number of iterations for CG-like methods, we can now
combine (2.2) and (4.3).

Theorem 4.5. In exact arithmetic, given a tolerance ε > 0, a CG-like method
applied to the preconditioned system miny ‖ANy− b‖2 with y(0) = 0 converges within

(log ε− log 2)/ log(α+
√
r/s) iterations in the sense that

(4.4) ‖ŷCG − y∗‖(AN)T(AN) ≤ ε‖y∗‖(AN)T(AN)

holds with probability at least 1 − 2e−α2s/2 for any α ∈ (0, 1 − √r/s), where ŷCG

is the approximate solution returned by the CG-like solver and y∗ = (AN)†b. Let
x̂CG = NŷCG be the approximate solution to the original problem. Since x∗ = Ny∗,
(4.4) is equivalent to

(4.5) ‖x̂CG − x∗‖ATA ≤ ε‖x∗‖ATA,

or in terms of residuals,

(4.6) ‖r̂CG − r∗‖2 ≤ ε‖b− r∗‖2,
where r̂CG = b − Ax̂CG and r∗ = b − Ax∗. Notice that AT r∗ = 0. Equation (4.6)
implies

‖AT r̂CG‖2 = ‖AT r̂CG −AT r∗‖2 ≤ ε‖A‖2‖b− r∗‖2.

If n is large and thus s is large, we can set α very small but still make 1−2e−α2s/2

very close to 1. Moreover, the bounds in (4.3) and (2.2) are not tight. These facts
allow us to ignore α in a practical setting when we solve a large-scale problem. For
example, to reach precision ε = 10−14, it is safe in practice to set the maximum
number of iterations to (log ε − log 2)/ log

√
r/s ≈ 66/ log(s/r) for a numerically

stable CG-like method, e.g., LSQR. We verify this claim in section 6.2.
In addition to allowing us to bound the number of iterations for CG-like methods,

the result given by (4.2) also allows us to use the CS method. This method needs
only one level-1 and two level-2 BLAS operations per iteration, and, importantly,
because it does not have vector inner products that require synchronization between
nodes, this method is suitable for clusters with high communication cost. It does
need an explicit bound on the singular values, but once that bound is tight, the
CS method has the same theoretical upper bound on the convergence rate as other
CG-like methods. Unfortunately, in many cases, it is hard to obtain such an accurate
bound, which prevents the CS method from becoming popular in practice. In our case,
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however, (4.2) provides a probabilistic bound with very high confidence. Hence, we can
employ the CS method without difficulty. For example, let n = r = 1000 and choose
s = 2000 and α =

√−2 log(0.01)/s ≈ 0.0679. By (4.2), we have σ1(AN) < 0.0994
and σr(AN) > 0.0126 with probability at least 0.99. Moreover, because (4.2) is not
tight, we may be able to use tighter bounds in practice to get a better convergence
rate, while still maintaining a failure rate of 0.01. For completeness, Algorithm 3
describes the CS method we implemented for solving LS problems. For discussion of
its variations, see Gutknecht and Rollin [13].

Algorithm 3. Chebyshev semi-iterative (CS) method (computes x ≈ A†b).
1: Given A ∈ R

m×n, b ∈ R
m, and a tolerance ε > 0, choose 0 < σL ≤ σU such

that all nonzero singular values of A are in [σL, σU ] and let d = (σ2
U + σ2

L)/2 and
c = (σ2

U − σ2
L)/2.

2: Let x = 0, v = 0, and r = b.
3: for k = 0, 1, . . . , 
(log ε− log 2)/ log σU−σL

σU+σL
� do

4: β ←

⎧⎪⎨
⎪⎩
0 if k = 0,
1
2 (c/d)

2 if k = 1,

(αc/2)2 otherwise,

α←

⎧⎪⎨
⎪⎩
1/d if k = 0,

d− c2/(2d) if k = 1,

1/(d− αc2/4) otherwise.

5: v ← βv +ATr.
6: x← x+ αv.
7: r ← r − αAv.
8: end for

4.3. Approximate rank-deficiency. Our theory above assumes exact arith-
metic. For rank-deficient problems stored with limited precision, it is common for A
to be approximately but not exactly rank-deficient, i.e., to have small but not exactly
zero singular values. A common practice for handling approximate rank-deficiency is
to set a threshold and treat as zero any singular values smaller than the threshold.
(This is called truncated SVD.) In LAPACK, the threshold is the largest singular
value of A multiplied by a user-supplied constant, called RCOND. Let A ∈ R

m×n

with m� n be an approximately rank-k matrix that can be written as Ak+E, where
k < n and Ak is the best rank-k approximation to A. For simplicity, we assume that
a constant c > 0 is known such that σ1 ≥ σk � cσ1 � σk+1 = ‖E‖2. If we take the
truncated SVD approach, c can be used to determine the effective rank of A, and the
solution becomes x∗ = A†

kb. In LSRN, we can perform a truncated SVD on Ã = GA,

where the constant c is used to determine the effective rank of Ã, denoted by k̃. The
rest of the algorithm remains the same. In this section, we present a sufficient con-
dition for k̃ = k and analyze the approximation error of x̂, the solution from LSRN.
For simplicity, we assume exact arithmetic and exact solving of the preconditioned
system in our analysis. Recall that in LSRN we have

Ã = GA = GAk +GE,

where G ∈ R
s×m is a random normal projection. If γ = s/n is sufficiently large, e.g.,

2.0, and n is not too small, Lemma 4.3 implies that there exist 0 < q1 < q2 such that,
with high probability, G has full rank and

(4.7) q1‖Gw‖2 ≤ ‖w‖2 ≤ q2‖Gw‖2, ∀w ∈ range(A).
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Theorem 4.6. If (4.7) holds, σk+1 < cσ1q1/q2, and σk > cσ1(1 + q2/q1), we
have k̃ = k, so that LSRN determines the effective rank of A correctly, and

‖x̂− x∗‖2 ≤ 6‖b‖2
(σkq1/q2)(σkq1/q2 − σk+1)

· σk+1.

Proof. Equation (4.7) implies

σ1(Ã) = max
‖x‖2≤1

‖Ãx‖2 ≤ max
‖x‖2≤1

‖Ax‖2/q1 ≤ σ1/q1,(4.8)

σ1(Ã) = max
‖x‖2≤1

‖Ãx‖2 ≥ max
‖x‖2≤1

‖Ax‖2/q2 ≥ σ1/q2,(4.9)

and hence σ1/q2 ≤ σ1(Ã) ≤ σ1/q1. Similarly, we have ‖GE‖2 = σ1(GE) ≤ σk+1/q1.
Let Ãk be Ã’s best rank-k approximation and let ŨkΣ̃kṼ

T
k be its SVD. We have

(4.10) σk+1(Ã) = ‖Ãk − Ã‖2 ≤ ‖GAk − Ã‖2 = ‖GE‖2 ≤ σk+1/q1.

Note that range(Ak) ⊂ range(A). We have

σk(GAk) = min
v∈range((GAk)T ),‖v‖2=1

‖GAkv‖2 ≥ min
v∈range(AT

k ),‖v‖2=1
‖Akv‖2/q2 = σk/q2,

where range((GAk)
T ) = range(AT

k ) because G has full rank. Therefore,

(4.11) σk(Ã) = σk(Ãk) ≥ σk(GAk)− ‖Ãk −GAk‖2 ≥ σk/q2 − σk+1/q1.

Using the assumptions σk+1 < cσ1q1/q2 and σk > cσ1(1 + q2/q1) and the bounds
(4.8)–(4.11), we get

cσ1(Ã) ≥ cσ1/q2 > σk+1/q1 ≥ σk+1(Ã)

and

σk(Ã) ≥ σk/q2 − σk+1/q1 > σk/q2 − cσ1/q2 ≥ cσ1/q1 ≥ cσ1(Ã).

Thus if we use c to determine the effective rank of Ã, the result would be k, the same
as the effective rank of A.

Following the LSRN algorithm, the preconditioner matrix isN = ṼkΣ̃
−1
k . Note that

AN has full rank because k = rank(N) ≥ rank(AN) ≥ rank(GAN) = rank(Ũk) = k.
Therefore, LSRN’s solution can be written as

x̂ = N(AN)†b = (ANN †)†b = (AṼkṼ
T
k )†b.

For the matrix AṼkṼ
T
k , we have the following bound on its kth singular value:

σk(AṼkṼ
T
k ) = min

v∈range(Ṽk),‖v‖2=1
‖AṼkṼ

T
k v‖2 ≥ q1 min

v∈range(ÃT
k ),‖v‖2=1

‖GAṼkṼ
T
k v‖2

≥ q1 min
v∈range(ÃT

k ),‖v‖2=1
‖Ãkv‖2 = σkq1/q2 − σk+1.

The distance between Ak and AṼkṼ
T
k is also bounded:

‖Ak −AṼkṼk
T ‖2 ≤ q2‖GAk − ÃṼkṼk

T ‖2 ≤ q2

(
‖GAk − Ã‖2 + ‖Ã− ÃṼkṼ

T
k ‖2

)
≤ 2q2‖GAk − Ã‖2 ≤ 2q2‖GE‖2 ≤ 2σk+1q2/q1.
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For perturbation of a pseudoinverse, Wedin [25] shows that if rank(A) = rank(B),
then

‖B† −A†‖2 ≤ 3‖A†‖2‖B†‖2‖A−B‖2.

Applying this result, we get

‖x∗ − x̂‖2 ≤ ‖A†
k − (AṼkṼ

T
k )†‖2‖b‖2 ≤ 3‖A†

k‖2‖(AṼkṼ
T
k )†‖2‖Ak −AṼkṼ

T
k ‖2‖b‖2

≤ 6‖b‖2
(σkq1/q2)(σkq1/q2 − σk+1)

· σk+1.

Thus, x̂ is a good approximation to x∗ if σk+1 = ‖E‖2 is sufficiently small.
Theorem 4.6 suggests that, to correctly determine the effective rank, we need σk

and σk+1 well-separated with respect to the distortion q2/q1 introduced by G. For
LSRN, q2/q1 is bounded by a small constant with high probability if we choose the
oversampling factor γ to be a moderately large constant, e.g., 2. We note that the
distortion of the random normal projection used in Coakley, Rokhlin, and Tygert [3]
is around 1000, which reduces the reliability of determining the effective rank of an
approximately rank-deficient problem. We verify this claim empirically in section 6.9.

Remark. Theorem 4.6 assumes that G has full rank and the subspace embedding
property (4.7). It is not necessary for G to be a random normal projection matrix.
The result also applies to other random projection matrices satisfying this condition,
e.g., the randomized discrete cosine transform used in Blendenpik [2].

4.4. Complexity. In this section, we discuss the complexity of LSRN. For space
complexity, a careful implementation of LSRN should only use O(m+n2) RAM instead
of O(mn + n2), because we can generate G and compute GA in blocks. Note that
LSRN does not alter the input data. This is different from, for example, LAPACK’s
DGELSD, which modifies the input data to store right singular vectors. For DGELSD,
we might need to create a copy of the input data, which costs O(mn) RAM.

Next, we analyze the time complexity of LSRN (Algorithm 1) in terms of floating-
point operations (flops). Note that we need only Σ̃ and Ṽ , but not Ũ or a full SVD of
Ã in step 4 of Algorithm 1. In step 6, we assume that the dominant cost per iteration
is the cost of applying AN and (AN)T. Then the total cost is given by

sm× flops(randn) for generating G

+ s× flops(A
T
u) for computing Ã

+ 2sn2 + 11n3 for computing Σ̃ and Ṽ [11, p. 254]

+Niter × (flops(Av) + flops(A
T
u) + 4nr) for solving min

y
‖ANy − b‖2,

where lower-order terms are ignored. Here, flops(randn) is the average flop count
to generate a pseudorandom number from the standard normal distribution, while
flops(Av) and flops(ATu) are the flop counts for the respective matrix-vector products.
If A is a dense matrix, we have flops(Av) = flops(ATu) = 2mn. The total cost becomes

flops(LSRNdense) = sm flops(randn) + 2smn+ 2sn2 + 11n3 +Niter × (4mn+ 4nr).

Comparing this with the SVD approach, which uses 2mn2 +11n3 flops, we find LSRN

requires more flops, even if we only consider computing Ã and its SVD. However, the
actual running time is not fully characterized by the number of flops. It is also affected
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by how efficiently the computers can do the computation. We empirically compare
the running time in section 6. If A is a sparse matrix, we generally have flops(Av)
and flops(ATu) of order O(m). In this case, LSRN should run considerably faster than
the SVD approach. Finally, if A is an operator, it is hard to apply SVD, while LSRN

still works without any modification. If we set γ = 2 and ε = 10−14 and assume that
n is sufficiently large, we know Niter ≈ 100 with high probability by Theorem 4.5, and
hence LSRN needs approximately 2n+ 200 matrix-vector multiplications.

One advantage of LSRN is that the stages of generating G and computing Ã = GA
are embarrassingly parallel. Thus, it is easy to implement LSRN in parallel. For exam-
ple, on a shared-memory machine using p cores, the total running time decreases to

(4.12) Tmt,p
LSRN = Trandn/p+ Tmult/p+ Tmt,p

svd + Titer/p,

where Trandn, Tmult, and Titer are the running times for the respective stages if LSRN
runs on a single core, Tmt,p

svd is the running time of SVD using p cores, and commu-
nication cost among threads is ignored. Hence, multithreaded LSRN has very good
scalability with near-linear speedup on strongly over- or underdetermined problems.

Alternatively, let us consider a cluster of size p using MPI, where each node stores
a portion of rows of A (with m � n). Each node can generate random projections
and do the multiplication independently; then an MPI Reduce operation is needed to
obtain Ã. Since n is small, the SVD of Ã and the preconditioner N are computed
on a single node and distributed to all the other nodes via an MPI Bcast operation.
If LSQR is chosen as the iterative solver, we need two MPI Allreduce operations
per iteration in order to apply AT and to compute a vector norm, while if the CS
method is chosen as the iterative solver, we need only one MPI Allreduce operation
per iteration to apply AT. Note that all the MPI operations that LSRN uses are
collective. If we assume the cluster is homogeneous and has perfect load balancing,
the time complexity to perform a collective operation should be O(log p). Hence the
total running time becomes

(4.13) Tmpi,p
LSRN = Trandn/p+ Tmult/p+ Tsvd + Titer/p+ (C1 + C2Niter)O(log p),

where C1 corresponds to the cost of computing Ã and broadcasting N , and C2 cor-
responds to the cost of applying AT at each iteration. Therefore, the MPI imple-
mentation of LSRN still has good scalability as long as Tsvd is not dominant, i.e., as
long as Ã is not too big. In our empirical evaluations typical values of n (or m for
underdetermined problems) are around 1000, and thus this is the case.

5. Tikhonov regularization. We point out that it is easy to extend LSRN to
handle certain types of Tikhonov regularization, also known as ridge regression. Recall
that Tikhonov regularization involves solving the problem

(5.1) minimize
1

2
‖Ax− b‖22 +

1

2
‖Wx‖22,

where W ∈ R
n×n controls the regularization term. In many cases, W is chosen as

λIn for some value of a regularization parameter λ > 0. It is easy to see that (5.1) is
equivalent to the following LS problem, without any regularization:

(5.2) minimize
1

2

∥∥∥∥
(
A
W

)
x−

(
b
0

)∥∥∥∥
2

2

.
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This is an overdetermined problem of size (m+ n)× n. If m� n, then we certainly
have m+n� n. Therefore, if m� n, we can directly apply LSRN to (5.2) in order to
solve (5.1). On the other hand, if m� n, then although (5.2) is still overdetermined,
it is “nearly square” in the sense that m + n is only slightly larger than n. In this
regime, random sampling methods and random projection methods like LSRN do not
perform well. In order to deal with this regime, note that (5.1) is equivalent to

minimize
1

2
‖r‖22 +

1

2
‖Wx‖22

subject to Ax+ r = b,

where r = b − Ax is the residual vector. (Note that we use r to denote the matrix
rank in a scalar context and the residual vector in a vector context.) By introducing
z = Wx and assuming that W is nonsingular, we can rewrite the above problem as

minimize
1

2

∥∥∥∥
(
z
r

)∥∥∥∥
2

2

subject to
(
AW−1 Im

)(z
r

)
= b;

i.e., as when computing the min-length solution to

(5.3)
(
AW−1 Im

)(z
r

)
= b.

Note that (5.3) is an underdetermined problem of size m× (m+n). Hence, if m� n,
we have m � m + n, and we can use LSRN to compute the min-length solution to
(5.3), denoted by ( z∗

r∗ ). The solution to the original problem (5.1) is then given by
x∗ = W−1z∗. Here, we assume that W−1 is easy to apply (e.g., if W = λIn), so that
AW−1 can be treated as an operator. The equivalence between (5.1) and (5.3) was
first established by Herman, Lent, and Hurwitz [15].

In most applications of regression analysis, the optimal regularization parameter
is unknown and needs to be estimated, e.g., by cross-validation. This requires solving
a sequence of LS problems where only W differs. For overdetermined problems, we
need to perform a random normal projection on A only once. The marginal cost
to solve for each W is the following: a random normal projection on W , an SVD
of size 
γn� × n, and a predictable number of iterations. Similar results hold for
underdetermined problems when each W is a multiple of the identity matrix.

6. Numerical experiments. We implemented our LS solver LSRN and com-
pared it with competing solvers: DGELSD/DGELSY from LAPACK [1], spqr solve
(SPQR) from SuiteSparseQR [5, 6], and Blendenpik [2]. Table 1 summarizes the
properties of those solvers. It is impossible to compare LSRN with all of the LS
solvers. We choose solvers from LAPACK and SuiteSparseQR because they are the de
facto standards for dense and sparse problems, respectively. DGELSD takes the SVD
approach, which is accurate and robust to rank-deficiency. DGELSY takes the or-
thogonal factorization approach, which should be almost as robust as the SVD ap-
proach but less expensive. SPQR uses multifrontal sparse QR factorization. With the
“min2norm” option, it computes min-length solutions to full-rank underdetermined
LS problems. However, it does not compute min-length solutions to rank-deficient
problems. Note that the widely used MATLAB’s backslash calls LAPACK for dense
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Table 1

LS solvers and their properties.

solver
min-len solution to Taking advantage of

underdet? rank-def? sparse A operator A
DGELSD/DGELSY yes yes no no

SPQR yes no yes no
Blendenpik yes no no no

LSRN yes yes yes yes

problems and SuiteSparseQR for sparse problems.1 But it does not call the functions
that return min-length solutions to rank-deficient or underdetermined systems. We
choose Blendenpik out of several recently proposed randomized LS solvers, e.g., [22]
and [3], because a high-performance implementation is publicly available and it is
easy to adapt it to use multithreads. Blendenpik assumes that A has full rank.

6.1. Implementation and system setup. The experiments were performed
on either a local shared-memory machine or a virtual cluster hosted on Amazon’s
Elastic Compute Cloud (EC2). The shared-memory machine has 12 Intel Xeon CPU
cores at clock rate 2GHz with 128GB RAM. The virtual cluster consists of 20 m1.large
instances configured by a third-party tool called StarCluster.2 An m1.large instance
has two virtual cores with two EC2 Compute Units3 each. To attain top performance
on the shared-memory machine, we implemented a multithreaded version of LSRN

in C, and to make our solver general enough to handle large problems on clusters, we
also implemented an MPI version of LSRN in Python with NumPy, SciPy, and mpi4py.
Both packages are available for download.4 We use the multithreaded implementation
to compare LSRN with other LS solvers and use the MPI implementation to explore
scalability and to compare iterative solvers under a cluster environment. To generate
values from the standard normal distribution, we adopted the code from Marsaglia
and Tsang [19] and modified it to use threads; this can generate a billion samples in
less than two seconds on the shared-memory machine. For both the multi-threaded
version and the MPI version, the random seeds for each thread/process is determined
by its rank, which works well in practice. We compiled SuiteSparseQR with Intel
Threading Building Blocks (TBB) enabled, as suggested by its author. We also mod-
ified Blendenpik to call multithreaded FFTW routines. Blendenpik’s default settings
were used. All of the solvers were linked against the BLAS and LAPACK libraries
shipped with MATLAB R2011b. This is a fair setup because all the solvers can use
multithreading automatically and are linked against the same BLAS and LAPACK
libraries. The running times were measured in wall-clock times.

6.2. κ(AN) and number of iterations. Recall from Theorem 4.4 that κ(AN),
the condition number of the preconditioned system, is roughly bounded by (1 +√
r/s)/(1 −√r/s) when s is large enough such that we can ignore α in practice.

To verify this statement, we generate random matrices of size 104 × 103 with condi-
tion numbers ranging from 102 to 108. The left figure in Figure 1 compares κ(AN)
with κ+(A), the effective condition number of A, under different choices of s and r.

1As stated by Tim Davis, “SuiteSparseQR is now QR in MATLAB 7.9 and x = A\b when A is
sparse and rectangular.” http://www.cise.ufl.edu/research/sparse/SPQR/

2http://web.mit.edu/stardev/cluster/
3“One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron

or 2007 Xeon processor.” http://aws.amazon.com/ec2/faqs/
4http://www.stanford.edu/group/SOL/software/lsrn.html
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Fig. 1. Left: κ+(A) versus κ(AN) for different choices of r and s. A ∈ R
104×103 is randomly

generated with rank r ∈ {800, 1000} and effective condition number κ+(A) ∈ {102, 103, . . . , 108}.
For each (r, s) pair, we take the largest value of κ(AN) in ten independent runs for each κ+(A) and

plot them using circle marks. The estimate (1 +
√

r/s)/(1 −√
r/s) is drawn using a solid line for

each (r, s) pair. Right: Number of LSQR iterations versus r/s. The number of LSQR iterations is
merely a function of r/s, independent of the condition number of the original system.

We take the largest value of κ(AN) in ten independent runs as the κ(AN) in the plot.
For each pair of s and r, the corresponding estimate (1+

√
r/s)/(1−√r/s) is drawn in

a solid line of the same color. We see that (1+
√
r/s)/(1−√r/s) is indeed an accurate

estimate of the upper bound on κ(AN). Moreover, κ(AN) is not only independent of
κ+(A), but it is also quite small. For example, we have (1+

√
r/s)/(1−√r/s) < 6 if

s > 2r, and hence we can expect super fast convergence of CG-like methods. Loss of
orthogonality is not an issue here because of extremely good conditioning and small
iteration counts. Based on Theorem 4.5, the number of iterations should be less than
(log ε− log 2)/ log

√
r/s, where ε is a given tolerance. In order to match the accuracy

of direct solvers, we set ε = 10−14. The right figure in Figure 1 shows the num-
ber of LSQR iterations for different combinations of r/s and κ+(A). Again, we take
the largest iteration number in ten independent runs for each pair of r/s and κ+(A).
We also draw the theoretical upper bound (log ε − log 2)/ log

√
r/s in a dotted line.

We see that the number of iterations is basically a function of r/s, independent of
κ+(A), and the theoretical upper bound is very good in practice. This confirms that
the number of iterations is fully predictable given γ.

6.3. Tuning the oversampling factor γ. Once we set the tolerance and maxi-
mum number of iterations, there is only one parameter left: the oversampling factor γ.
To demonstrate the impact of γ, we fix the problem size to 105×103 and the condition
number to 106, set the tolerance to 10−14, and then solve the problem with γ ranged
from 1.2 to 3. Figure 2 illustrates how γ affects the running times of LSRN’s stages:
randn for generating random numbers, mult for computing Ã = GA, svd for comput-
ing Σ̃ and Ṽ from Ã, and iter for LSQR. We see that the running times of randn,
mult, and svd increase linearly as γ increases, while iter time decreases. Therefore,
there exists an optimal choice of γ. For this particular problem, we should choose γ
between 1.8 and 2.2. We experimented with various LS problems. The best choice of
γ ranges from 1.6 to 2.5, depending on the type and the size of the problem. We also
note that, when γ is given, the running time of the iteration stage is fully predictable.
Thus we can initialize LSRN by measuring randn/sec and flops/sec for matrix-vector
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Fig. 2. The overall running time of LSRN and the running time of each LSRN stage with different
oversampling factor γ for a randomly generated problem of size 105 × 103. For this particular
problem, the optimal γ that minimizes the overall running time lies in [1.8, 2.2].

multiplication, matrix-matrix multiplication, and SVD, and then determine the best
value of γ by minimizing the total running time (4.13). For simplicity, we set γ = 2.0
in all later experiments; although this is not the optimal setting for all cases, it is
always a reasonable choice.

6.4. Solution accuracy. Under the default settings γ = 2.0 and ε = 10−14,
we test LSRN’s solution accuracy on three types of LS problems: full rank, rank-
deficient, and approximately rank-deficient. As mentioned in section 4.3, LSRN uses
the common approach to determine the effective rank of Ã, whose singular values
smaller than cσ1(Ã) are treated as zeros, where c is a user input. A is generated by
constructing its SVD. For full-rank problems, we use the following MATLAB script:

U = orth (randn(m, n ) ) ; S = diag ( linspace (1 ,1/ kappa , n ) ) ;
V = orth (randn(n , n ) ) ; A = U∗S∗V’ ; x = randn(n , 1 ) ;
b = A∗x ; e r r = randn(m, 1 ) ; b = b+0.25∗norm(b)/norm( e r r )∗ e r r ;

For rank-deficient problems, we use

U = orth (randn(m, r ) ) ; S = diag ( linspace (1 ,1/ kappa , r ) ) ; V = orth (randn(n , r ) ) ;

The script for approximately rank-deficient problems is the same as for the full rank
one except that

S = diag ( [ linspace (1 ,1/ kappa , r ) , 1e−8 ∗ ones (1 , n−r ) ] ) ;

We choose m = 105, n = 100, r = 80, and κ = 106. DGELSD is used as a reference
solver with c (RCOND) set as 10−7. The metrics are relative differences in ‖x‖2 and
‖Ax− b‖2 and ‖AT (Ax− b)‖2, all scaled by 1/κ, which is generally more informative
(see [3, Remark 5.3]), and computed using quad precision. Table 2 lists the average
values of those metrics from 50 independent runs. We see that LSRN is accurate enough
to meet the accuracy requirement of most applications.

6.5. Dense least squares. Though LSRN is not designed for dense problems,
it is competitive with DGELSD/DGELSY and Blendenpik on large-scale strongly
over- or underdetermined LS problems. Figure 3 compares the running times of LSRN
and competing solvers on randomly generated full-rank LS problems. We use the
script from section 6.4 to generate test problems. The results show that Blendenpik
is the overall winner. The runners-up are LSRN and DGELSD. We find that the SVD-
based DGELSD actually runs much faster than the QR-based DGELSY on strongly
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Table 2

Comparing LSRN’s solution accuracy to DGELSD. DGELSD’s solution is denoted by x∗, and
LSRN’s denoted by x̂. The metrics are computed using quad precision. We show the average values
of those metrics from 50 independent runs. LSRN should be accurate enough for most applications.

‖x̂‖2−‖x∗‖2
c‖x∗‖2

‖Ax̂−b‖2−‖Ax∗−b‖2
c‖Ax∗−b‖2

‖AT (Ax∗−b)‖2
c

‖AT (Ax̂−b)‖2
c

Full rank -8.5e-14 0.0 3.6e-18 2.5e-17
Rank-def -5.3e-14 0.0 8.1e-18 1.5e-17

Approx. rank-def 9.9e-12 -7.3e-16 2.5e-17 2.7e-17
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Blendenpik
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DGELSY
DGELSD
LSRN
Blendenpik

Fig. 3. Running times on m× 1000 dense overdetermined problems with full rank (left) and on
1000 × n dense underdetermined problems with full rank (right). On the problem of size 106 × 103,
we have Blendenpik > DGELSD ≈ LSRN > DGELSY in terms of speed. On underdetermined
problems, LAPACK’s performance decreases significantly compared with the overdetermined cases.
Blendenpik’s performance decreases as well, while LSRN does not change much.

over- or underdetermined systems on the shared-memory machine. It may be because
of better use of multithreaded BLAS, but we do not have a definitive explanation.
The performance of LAPACK’s solvers decreases significantly for underdetermined
problems. We monitored CPU usage and found that LAPACK could not fully use
all of the CPU cores; i.e., it could not effectively call multithreaded BLAS. The
performance of Blendenpik also decreases, while that of LSRN does not change much,
making LSRN’s performance very close to Blendenpik’s.

Remark. The performance of DGELSD/DGELSY varies greatly, depending on
the LAPACK implementation. When we use the LAPACK library shipped with
MATLAB R2010b, the DGELSD from it takes nearly 150 seconds to solve a 106×103

LS problem, which is slower than LSRN. However, after we switch to MATLAB R2011b,
it runs slightly faster than LSRN does on the same problem.

LSRN is also capable of solving rank-deficient problems, and in fact it takes advan-
tage of any rank-deficiency (in that it finds a solution in fewer iterations). Figure 4
shows the results on over- and underdetermined rank-deficient problems generated
the same way as in previous experiments, except that we set r = 800. Blenden-
pik is not included because it is not designed to handle rank deficiency. DGELSY/
DGELSD remains the same speed on overdetermined problems as in full-rank cases,
and runs slightly faster on underdetermined problems. On the problem of size 106 ×
103, DGELSD spends 99.5 seconds, almost the same as in the full-rank case, while
LSRN’s running times reduce to 89.0 seconds, from 101.1 seconds on its full-rank
counterpart.
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Fig. 4. Running times on m × 1000 dense overdetermined problems with rank 800 (left) and
on 1000 × n dense underdetermined problems with rank 800 (right). LSRN takes advantage of rank-
deficiency. We have LSRN > DGSLS/DGELSD > DGELSY in terms of speed.

We see that, for strongly over- or underdetermined problems, DGELSD is the
fastest and most reliable routine among the LS solvers provided by LAPACK. How-
ever, it (or any other LAPACK solver) runs much slower on underdetermined problems
than on overdetermined problems, while LSRN works symmetrically on both cases.
Blendenpik is the fastest dense least squares solver in our tests. Though it is not de-
signed for solving rank-deficient problems, Blendenpik should be modifiable to handle
such problems following Theorem 3.2. We also note that Blendenpik’s performance
depends on the distribution of the row norms of U . We generate test problems ran-
domly so that the row norms of U are homogeneous, which is ideal for Blendenpik.
When the row norms of U are heterogeneous, Blendenpik’s performance may drop.
See Avron, Maymounkov, and Toledo [2] for a more detailed analysis.

6.6. Sparse least squares. The running time and flop count of SPQR depend
upon the fill-reducing ordering it finds (itself a heuristic for an NP-hard problem), and
thus the memory usage and factorization time are strongly dependent on the sparsity
pattern of A. LSRN relies instead on matrix-matrix and matrix-vector multiplications
involving A, and hence its flop count and memory usage are independent of how the
nonzero entries are distributed in A. LAPACK does not have any direct sparse LS
solver. Blendenpik uses fast transforms, which treat the input matrix as a dense
matrix in order to apply fast transforms.

We generated sparse LS problems using MATLAB’s “sprandn” function with
density 0.01 and condition number 106. All problems have full rank. Figure 5 shows
the results. DGELSD/DGELSY and Blendenpik basically perform the same as in the
dense case. For overdetermined problems, we see that SPQR handles sparse problems
very well when m < 105. As m grows larger, the factor R becomes increasingly dense
in general and SPQR slows down. For our test cases, SPQR runs even longer than
DGELSD when m ≥ 3 × 105. LSRN becomes the fastest solver among the five when
m ≥ 105. It takes only 26.1 seconds on the overdetermined problem of size 106× 103.
On large underdetermined problems, LSRN still leads by a huge margin.

LSRN makes no distinction between dense and sparse problems. The speedup
on sparse problems is due to faster matrix-vector and matrix-matrix multiplications.
Hence, although no test was performed, we expect a similar speedup on fast linear
operators as well. Also note that, in the multithreaded implementation of LSRN,
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Fig. 5. Running times on m×1000 sparse overdetermined problems with full rank (left) and on
1000×n sparse underdetermined problems with full rank (right). DGELSD/DGELSY and Blenden-
pik perform almost the same as in the dense case. SPQR performs very well for small and medium-
scaled problems, but it runs slower than the dense solver Blendenpik on the problem of size 106×103.
LSRN starts to lead as m goes above 105, and it leads by a huge margin on the largest problem. The
underdetermined case is very similar to its overdetermined counterpart.

Table 3

Real-world problems and corresponding running times in seconds. DGELSD does not take
advantage of sparsity, with its running time determined by the problem size. Though SPQR may
not output min-length solutions to rank-deficient problems, we still report its running times (marked
with “ ∗”). Blendenpik either does not apply to rank-deficient problems or runs out of memory
(OOM). LSRN’s running time is mainly determined by the problem size and the sparsity.

Matrix m n nnz Rank Cond DGELSD SPQR Blendenpik LSRN

landmark 71952 2704 1.15e6 2671 1.0e8 18.64 4.920∗ - 17.89
rail4284 4284 1.1e6 1.1e7 full 400.0 > 3600 505.9 OOM 146.1
tnimg 1 951 1e6 2.1e7 925 - 510.3 72.14∗ - 41.08
tnimg 2 1000 2e6 4.2e7 981 - 1022 168.6∗ - 82.63
tnimg 3 1018 3e6 6.3e7 1016 - 1628 271.0∗ - 124.5
tnimg 4 1019 4e6 8.4e7 1018 - 2311 371.3∗ - 163.9
tnimg 5 1023 5e6 1.1e8 full - 3105 493.2 OOM 197.6

we use a naive multithreaded routine for sparse matrix-vector and matrix-matrix
multiplications, which is far from optimized and thus leaves room for improvement.

6.7. Real-world problems. In this section, we report results on some real-
world large data problems. The problems are summarized in Table 3, along with
running times. DGELSY is not included because it is inferior to DGELSD.

landmark and rail4284 are from the University of Florida Sparse Matrix Col-
lection [7]. landmark originated from a rank-deficient LS problem. rail4284 has full
rank and originated from a linear programming problem on Italian railways. Both
matrices are very sparse and have structured patterns. Though SPQR runs extremely
fast on landmark, it does not guarantee to return the min-length solution. Blendenpik
is not designed to handle the rank-deficient landmark, and it unfortunately runs out
of memory (OOM) on rail4284. LSRN takes 17.55 seconds on landmark and 136.0
seconds on rail4284. DGELSD is slightly slower than LSRN on landmark and much
slower on rail4284.

tnimg is generated from the TinyImages collection [24], which provides 80 million
color images of size 32× 32. For each image, we first convert it to grayscale, compute
its two-dimensional DCT (Discrete Cosine Transform), and then keep only the top 2%
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Table 4

Test problems on the Amazon EC 2 cluster and corresponding running times in seconds. When
we enlarge the problem scale by a factor of 10 and increase the number of cores accordingly, the
running time only increases by a factor of 50%. It shows LSRN’s good scalability. Though the CS
method takes more iterations, it is faster than LSQR by saving communication cost.

Solver Ncores Matrix m n nnz Niter Titer Ttotal

LSRN w/ CS
4 tnimg 4 1024 4e6 8.4e7

106 34.03 170.4
LSRN w/ LSQR 84 41.14 178.6
LSRN w/ CS

10 tnimg 10 1024 1e7 2.1e8
106 50.37 193.3

LSRN w/ LSQR 84 68.72 211.6
LSRN w/ CS

20 tnimg 20 1024 2e7 4.2e8
106 73.73 220.9

LSRN w/ LSQR 84 102.3 249.0
LSRN w/ CS

40 tnimg 40 1024 4e7 8.4e8
106 102.5 255.6

LSRN w/ LSQR 84 137.2 290.2

largest coefficients in magnitude. This gives a sparse matrix of size 1024× 8e7 where
each column has 20 or 21 nonzero elements. Note that tnimg does not have apparent
structured pattern. Since the whole matrix is too big, we work on submatrices of
different sizes. tnimg i is the submatrix consisting of the first 106 × i columns of the
whole matrix for i = 1, . . . , 80, where empty rows are removed. The running times of
LSRN are approximately linear in n. Both DGELSD and SPQR are slower than LSRN

on the tnimg problems. More importantly, their running times show that DGELSD
and SPQR do not have linear scalability. Blendenpik either does not apply to the
rank-deficient cases or runs OOM.

We see that, though both methods take advantage of sparsity, SPQR relies heavily
on the sparsity pattern and its performance is unpredictable until the sparsity pattern
is analyzed, while LSRN does not rely on the sparsity pattern and always delivers
predictable performance and, moreover, the min-length solution.

6.8. Scalability and choice of iterative solvers on clusters. In this section,
we move to the Amazon EC2 cluster. The goals are to demonstrate that (1) LSRN scales
well on clusters, and (2) the CS method is preferred to LSQR on clusters with high
communication cost. The test problems are submatrices of the tnimg matrix in the
previous section: tnimg 4, tnimg 10, tnimg 20, and tnimg 40, solved with 4, 10, 20,
and 40 cores, respectively. Each process stores a submatrix of size 1024×1e6. Table 4
shows the results, averaged over five runs. Ideally, from the complexity analysis (4.13),
when we double n and double the number of cores, the increase in running time should
be a constant if the cluster is homogeneous and has perfect load balancing (which we
have observed is not true on Amazon EC2). For LSRN with CS, from tnimg 10 to
tnimg 20 the running time increases 27.6 seconds, and from tnimg 20 to tnimg 40
the running time increases 34.7 seconds. We believe the difference between the time
increases is caused by the heterogeneity of the cluster, because Amazon EC2 does not
guarantee the connection speed among nodes. From tnimg 4 to tnimg 40, the problem
scale is enlarged by a factor of 10 while the running time only increases by a factor
of 50%. The result still demonstrates LSRN’s good scalability. We also compare the
performance of LSQR and CS as the iterative solvers in LSRN. For all problems LSQR
converges in 84 iterations and CS converges in 106 iterations. However, LSQR is slower
than CS. The communication cost saved by CS is significant on those tests. As a result,
we recommend CS as the default LSRN iterative solver for cluster environments. Note
that to reduce the communication cost on a cluster, we could also consider increasing
γ to reduce the number of iterations.
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Table 5

Running times (in seconds) on full-rank dense overdetermined problems of size 106 × n, where
n ranges from 1000 to 4000. LSRN is slightly slower than CRT 11 when n = 1000 and becomes faster
when n = 2000, 3000, and 4000, which is consistent with our theoretical analysis.

n = 1000 n = 2000 n = 3000 n = 4000
CRT11 98.0 327.7 672.3 1147.9
LSRN 101.1 293.1 594.0 952.2

6.9. Comparison with Coakley, Rokhlin, and Tygert. Coakley, Rokhlin,
and Tygert [3] introduced a least squares solver, referred to as CRT11, based on pre-
conditioned normal equation, where the preconditioning matrix is computed via a
random normal projection G, with G ∈ R

(n+4)×m. We implemented a multithreaded
version of CRT11 that shares the code base used by LSRN and uses O(m + n2) RAM
by computing in blocks. In this section, we report some comparison results between
CRT11 and LSRN.

It is easy (and thus we omit details) to derive the time complexity of CRT11, which
requires applying A or AT 3n + 6 times, while from section 4.4 we know that LSRN
needs roughly 2n + 200 matrix-vector multiplications under the default setting. So
LSRN is asymptotically faster than CRT11 in theory. We compare the running times of
LSRN and CRT11 on dense strongly overdetermined least square problems, where m is
fixed at 106 while n ranges from 1000 to 3000, and A has full rank. The test problems
are generated the same way as in section 6.5. We list the running times in Table 5,
where we see that LSRN is slightly slower than CRT11 when n = 1000 and becomes
faster when n = 2000, 3000, and 4000.

Hardware limitations prevented testing larger problems. We believe that the
difference should be much clearer if A is an expensive operator, for example, if applying
A orAT requires solving a partial differential equation. Based on the evaluation result,
we would recommend CRT11 over LSRN if n ≤ 1000, and LSRN over CRT11 otherwise.

In [3], the authors showed that, unlike the original normal equation approach,
CRT11 is very reliable on a broad range of matrices because the condition number
of the preconditioned system is not very large (≈ 1000). This is true for full-rank
matrices. However, the authors did not show how CRT11 works on approximately
rank-deficient problems. Based on our analysis in section 4.3, we need σk and σk+1

well-separated with respect to the distortion introduced by G in order to determine the
effective rank correctly. In LSRNwe chooseG ∈ R

2n×m, which leads to a small constant
distortion (with high probability), while in CRT11 we have G ∈ R

(n+4)×m, which leads
to a relatively large distortion. It suggests CRT11 might be less reliable than LSRN in
estimating the rank of an approximately rank-deficient problem. To verify this, we
use the following MATLAB script to generate a test problem:

sigma = [ ones (1 , n/4) , 1/kappa∗ ones (1 , n/4) , e∗ones (1 , n / 2 ) ] ;
U = orth (randn(m, n ) ) ; A = U∗diag ( sparse ( sigma ) ) .

where we choose m = 10000, n = 100, κ = 106, and e = 10−7. Thus we have A’s
effective rank k = 50, σ1(A) = 1, σk = 10−6, and σk+1 = 10−7; To estimate the
effective rank, we set c =

√
σkσk+1/σ1 = 10−6.5, and singular values of Ã = GA

that are smaller than cσ1(Ã) are treated as zeros. Figure 6 compares the singular
values of A and GA for both CRT11 and LSRN (rescaled by 1/

√
s for better alignment,

where s = n+ 4 for CRT11 and s = 2n for LSRN). We see that CRT11 introduces more
distortion to the spectrum of A than LSRN. In this example, the rank determined
by CRT11 is 47, while LSRN outputs the correct effective rank. We note that LSRN
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Fig. 6. Left: Comparison of the spectrum of A and GA for both CRT 11 and LSRN (rescaled by
1/

√
s for better alignment, where s = n+4 for CRT 11 and s = 2n for LSRN) and the cutoff values in

determining the effective rank of A. Right: Zoomed in to show that the effective rank estimated by
CRT 11 is 47, while LSRN outputs the correct effect rank, which is 50.

is not risk-free for approximately rank-deficient problems, which still should have
sufficient separation between σk and σk+1. However, it is more reliable than CRT11

on approximately rank-deficient problems because of less distortion introduced by G.

7. Conclusion. We developed LSRN, a parallel solver for strongly over- or un-
derdetermined and possibly rank-deficient systems. LSRN uses random normal projec-
tion to compute a preconditioner matrix for an iterative solver such as LSQR or the
Chebyshev semi-iterative (CS) method. The preconditioning process is embarrass-
ingly parallel and automatically speeds up on sparse matrices, fast linear operators,
and rank-deficient data. We proved that the preconditioned system is consistent and
extremely well-conditioned, and derived strong bounds on the number of iterations of
LSQR or the CS method, and hence on the total running time. On large dense sys-
tems, LSRN is competitive with the best existing solvers, and runs significantly faster
than competing solvers on strongly over- or underdetermined sparse systems without
sparsity patterns that can be exploited to reduce fill-in. LSRN is easy to implement
using threads or MPI, and scales well in parallel environments. The LSRN package can
be downloaded from http://www.stanford.edu/group/SOL/software/lsrn.html.
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