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1. Introduction

Clustering, or partitioning into dissimilar groups of similar items, is a problem with
many variants in mathematics and the applied sciences. The availability of vast
amounts of data has revitalized research on the problem. Over the years, several
clever heuristics have been invented for clustering. While many of these heuristics
are problem-specific, the method known asspectral clusteringhas been applied suc-
cessfully in a variety of different situations. Roughly speaking, spectral clustering
is the technique of partitioning the rows of a matrix according to their compo-
nents in the top few singular vectors of the matrix (see Section 1.1 for a detailed
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description). The main motivation of this article was to analyze the performance
of spectral clustering. Such an evaluation, however, is inextricably linked to the
question of how to measure the quality of a clustering. The justification provided
by practitioners is typically case-by-case and experimental (“it works well on my
data”). Theoreticians, meanwhile, have been busy studying quality measures that
are seductively simple to define (e.g.,k-median, minimum sum, minimum diameter,
etc.). The measures thus far analyzed by theoreticians are easy to fool, that is, there
are simple examples where the “right” clustering is obvious but optimizing these
measures produces undesirable solutions (see Section 2). Thus, neither approach
has been entirely satisfactory.

In this article we propose a new bicriteria measure of the quality of a clustering,
based on expansion-like properties of the underlying pairwise similarity graph. The
quality of a clustering is given by two parameters:α, the minimumconductance1

of the clusters andε, the ratio of the weight of inter-cluster edges to the total
weight of all edges. The objective is to find an (α, ε)-clustering that maximizes
α and minimizesε. Note that the conductance provides a measure of the quality
of an individual cluster (and thus of the overall clustering) whilst the weight of
the inter-cluster edges provides a measure of the cost of the clustering. Hence,
imposing a lower bound,α, on the quality of each individual cluster we strive to
minimize the cost,ε, of the clustering; or conversely, imposing an upper bound
on the cost of the clustering we strive to maximize its quality. In Section 2, we
motivate the use of this more complex, bicriteria measure by showing that it does
not have the obvious drawbacks of the simpler quality measures.

While the new measure might be qualitatively attractive, it would be of little
use if optimizing it were computationally intractable. In Section 3, we study a
recursive heuristic designed to optimize the new measure. Although finding an
exact solution is NP-hard, the algorithm is shown to have simultaneous poly-
logarithmic approximations guarantees for the two parameters in the bicriteria
measure (Corollary 3.2).

In Section 4, we turn to spectral algorithms for clustering. These algorithms are
popular in part because of their speed (see Section 5) and applicability in a variety
of contexts [Alpert et al. 1999; Dhillon 2001; Shi and Malik 2000; Weiss 1999;
Eigencluster]. However, while performing quite well in practice, they had hitherto
eluded a rigorous worst-case analysis. This could be attributed to the fact that
existing measures of quality have serious drawbacks, and did not capture the quality
of the algorithm; even an exact algorithm for optimizing these measures might
do poorly in many practical settings. We show that a simple recursive variant of
spectral clustering has effective worst-case approximation guarantees with respect
to the bicriteria measure (Corollary 4.2). It is worth noting that both our worst-case
guarantees follow from the same general theorem (see Theorem 3.1 in Section 3).
Another variant of spectral clustering has the following guarantee: if the input data
has a rather good clustering (i.e.,α is large andε is small), then the spectral algorithm
will find a clustering that is “close” to the optimal clustering (Theorem 4.3).

1.1. SPECTRAL CLUSTERING ALGORITHMS. Spectral clustering refers to the
general technique of partitioning the rows of a matrix according to their components

1Conductance will be defined precisely in Section 2; it measures how well-knit a graph is.
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in the top few singular vectors of the matrix. The underlying problem, that of clus-
tering the rows of a matrix, is ubiquitous. We mention three special cases that are
all of independent interest:

—The matrix encodes the pairwise similarities of vertices of a graph.
—The rows of the matrix are points in ad-dimensional Euclidean space. The

columns are the coordinates.
—The rows of the matrix are documents of a corpus. The columns are terms. The

(i, j ) entry encodes information about the occurrence of thej th term in thei th
document.

Given a matrixA, the spectral algorithm for clustering the rows ofA is given
below.

Spectral Algorithm I

Find the top k right singular vectors v1, v2, . . . , vk.

Let C be the matrix whose jth column is given by Avj .

Place row i in cluster j if Ci j is the largest entry in the ith row of C.

The algorithm has the following interpretation.2 Suppose the rows ofAare points
in a high-dimensional space. Then the subspace defined by the topk right singular
vectors ofA is the rank-k subspace that best approximatesA. The spectral algorithm
projects all the points onto this subspace. Each singular vector then defines a cluster;
to obtain a clustering we map each projected point to the (cluster defined by the)
singular vector that is closest to it in angle.

In Section 4, we study a recursive variant of this algorithm.

2. What is a Good Clustering?

How good is the spectral algorithm? Intuitively, a clustering algorithm performs
well if points that are similar are assigned the same cluster and points that
are dissimilar are assigned to different clusters. Of course, this may not be pos-
sible to do for every pair of points, and so we compare the clustering found by the
algorithm to theoptimal one for the given matrix. This, though, leads to another
question: what exactly is an optimal clustering? To provide a quantitative answer,
we first need to define a measure of the quality of a clustering. In recent years,
several combinatorial measures of clustering quality have been investigated in de-
tail. These includeminimum diameter, k-center, k-median,andminimum sum(e.g.,
Charikar et al. [1997, 1999], Dyer and Frieze [1985], Indyk [1999], and Jain and
Vazirani [2001], and others.)

All these measures, although mathematically attractive due to their simplicity, are
easy to fool. That is, one can construct examples with the property that the “best”
clustering is obvious and yet an algorithm that optimizes one of these measures
finds a clustering that is substantially different (and therefore unsatisfactory). Such
examples are presented in Figures 1 and 2, where the goal is to partition the points

2 Computationally, it is useful to note that thej th column ofC is also given byλ j u j ; hereλ j is the
j th singular value ofA anduj is the j th left singular vector.
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FIG. 1. Optimizing the diameter produces B while A is clearly more desirable.

FIG. 2. The inferior clustering B is found by optimizing the 2-median measure.

into two clusters. Observe that all the measures given above seek to minimize some
objective function. In the figures, nearby points (which represent highly similar
points) induce low cost edges; points that are farther apart (and represent dissimilar
points) induce high cost edges.

Consider a clustering that minimizes the maximum diameter of the clusters; the
diameter of a cluster being the largest distance, say, between two points in a cluster.
It is NP-hard to find such a clustering, but this is not our main concern. What
is worrisome about the example shown in Figure 1 is that the optimal solution
(B) produces a cluster which contains points that should have been separated.
Clustering with respect to the minimum sum andk-center measures will produce
the same result. The reason such a poor cluster is produced is that although we
have minimized the maximum dissimilarity between points in a cluster, this was
at the expense of creating a cluster with many dissimilar points. The clustering
(A) on the other hand, although it leads to a larger maximum diameter, say, is
desirable since it better satisfies the goal of “similar points together and dissimilar
points apart”. This problem also arises for thek-median measure (see, e.g., the case
shown in Figure 2); it may produce clusters of poor quality.

We will find it more convenient to model the input as a similarity graph rather
than as a distance graph. This is indeed often the case in practice. Thus the input
is an edge-weighted complete graph whose vertices need to be partitioned. The
weight of an edgeai j represents the similarity of the vertices (points)i and j . Thus,
the graph for points in space would have high edge weights for points that are
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FIG. 3. The second subgraph is of higher quality as a cluster even though it has a smaller minimum
cut.

close together and low edge weights for points that are far apart. So the graph is
associated with ann× n symmetric matrixA with entriesaij ; here we assume that
theaij are nonnegative.

Let us now return to the question of what a good clustering is. The quality of a
cluster should be determined by how similar the points within a cluster are. Note
that each cluster is represented by a subgraph. In particular, if there is a cut of small
weight that divides the cluster into two pieces of comparable size then the cluster
has lots of pairs of vertices that are dissimilar and hence it is of low quality. This
might suggest that the quality of a subgraph as a cluster is the minimum cut of the
subgraph. However, this is misleading as is illustrated by Figure 3. In this example
edges represent high-similarity pairs and non-edges represent pairs that are highly
dissimilar. The minimum cut of the first subgraph is larger than that of the second
subgraph. This is because the second subgraph has low degree vertices. However,
the second subgraph is a higher quality cluster. This can be attributed to the fact
that in the first subgraph there is a cut whose weight is smallrelative to the sizes of
the pieces it creates. A quantity that measures the relative cut size is theexpansion.
The expansion of a graph is the minimum ratio over all cuts of the graph of the total
weight of edges of the cut to the number of vertices in the smaller part created by
the cut. Formally, we denote the expansion of a cut (S, S̄) by:

ψ(S) =
∑

i∈S, j 6∈S ai j

min(|S|, |S̄|)
We say that the expansion of a graph is the minimum expansion over all the cuts of
the graph. Our first measure of quality of a cluster is the expansion of the subgraph
corresponding to it. The expansion of a clustering is the minimum expansion of
one of the clusters.

The measure defined above gives equal importance to all the vertices of the
given graph. This, though, may lead to a rather taxing requirement. For example, in
order to accommodate a vertexi with very little similarity to all the other vertices
combined (i.e.,

∑
j aij is small), thenαwill have to be very low. Arguably, it is more

prudent to give greater importance to vertices that have many similar neighbors and
lesser importance to vertices that have few similar neighbors. This can be done by
a direct generalization of the expansion, called theconductance, in which subsets
of vertices are weighted to reflect their importance.

The conductance of a cut (S, S̄) in G is denoted by:

φ(S) =
∑

i∈S, j 6∈S ai j

min(a(S),a(S̄))
.
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FIG. 4. Assigning the outliers leads to poor quality clusters.

Herea(S) = a(S,V) = ∑i∈S

∑
j∈V aij . The conductance of a graph is the min-

imum conductance over all the cuts of the graph;φ(G) = minS⊆V φ(S). In order
to quantify the quality of a clustering, we generalize the definition of conductance
further. Take a clusterC ⊆ V and a cut (S,C\S) within C, whereS⊆ C. Then we
say that theconductanceof S in C is:

φ(S,C) =
∑

i∈S, j∈C\S aij
min(a(S),a(C \ S))

.

The conductanceφ(C) of a clusterC will then be the smallest conductance of a cut
within the cluster. The conductance of a clustering is the minimum conductance
of its clusters. This conductance measure seems extremely well suited to achieve
our intuitive goal, that is, clustering similar points and separating dissimilar points.
We then obtain the following optimization problem: given a graph and an inte-
gerk, find ak-clustering with the maximum conductance. Notice that optimizing
the expansion/conductance gives the right clustering in the examples of Figures 1
and 2. To see this assume, for example, that the points induce an unweighted
graph (i.e. zero-one edge weights). Thus, a pair of vertices induces an edge if and
only if the two vertices are close together. Clustering (A) will then be obtained in
each example.

There is still a problem with the above clustering measure. The graph might
consist mostly of clusters of high quality and maybe a few points that create clusters
of very poor quality, so that any clustering necessarily has a poor overall quality
(since we have defined the quality of a clustering to be the minimum over all the
clusters). In fact, to boost the overall quality, the best clustering might create many
clusters of relatively low quality so that the minimum is as large as possible. Such
an example is shown in Figure 4.

One way to handle the problem might be to avoid restricting the number of
clusters. But this could lead to a situation where many points are in singleton (or
extremely small) clusters. Instead, we measure the quality of a clustering using two
criteria, the first is the minimum quality of the clusters (calledα), and the second
is the fraction of the total weight of edges that are not covered by the clusters
(calledε).

Definition 2.1. We call a partition{C1,C2, . . . ,Cl } of V an (α, ε)-clustering
if :

(1) The conductance of eachCi is at leastα.
(2) The total weight of intercluster edges is at most anε fraction of the total edge

weight.
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Thus, we obtain a bicriteria measure of the quality of a clustering. Associated with
this bicriteria measure is the following optimization problem (note that the number
of clusters is not restricted).

Problem1. Givenα, find an (α, ε)-clustering that minimizesε (alternatively,
givenε, find an (α, ε)-clustering that maximizesα).

It is not hard to see that optimizing this measure of cluster quality, does
well on the earlier “bad” examples. While it is impossible for any measure
to be universally theright measure, an important question is to find the class
of applications for which the proposed measure is suitable. Empirical results
suggest that the bicriteria measure seems natural for a variety of applications.
The focus of the rest of this paper, however, is to consider the measure from
a theoretical standpoint and to examine in detail the performance of spectral
clustering algorithms.

It may be noted that there is a monotonic functionf that represents the optimal
(α, ε) pairings. For example, for eachα there is a minimum value ofε, equal to
f (α), such that an (α, ε)-clustering exists. In the following sections, we present
two approximation algorithms for the clustering property. One nice characteristic
of these algorithms is that in a single application they can be used to obtain an
approximation f ′ for the entire functionf , not just for f evaluated at a single
point. Thus the user need not specify a desired value ofα or ε a priori. Rather, the
desired conductance/cost trade-off may be determined after consideration of the
approximation functionf ′.

3. Approximation Algorithms

Problem 1 is NP-hard. To see this, consider maximizingα whilst settingε to zero.
This problem is equivalent to finding the conductance of a given graph, which is
well known to be NP-hard [Garey and Johnson 1979]. Here, we present a simple
heuristic and provide worst-case approximation guarantees for it.

Approximate-Cluster Algorithm

Find a cut that approximates the minimum conductance cut in G.

Recurse on the pieces induced by the cut.

The idea behind our algorithm is simple. GivenG, find a cut (S, S̄) of minimum
conductance. Then, recurse on the subgraphs induced bySandS̄. Finding a cut of
minimum conductance is hard, and hence we need to use an approximately mini-
mum cut. There are two well-known approximations for the minimum conductance
cut, one is based on a linear programming relaxation and the other is derived from
the second eigenvector of the graph. Before we discuss these approximations, we
prove a general theorem for general approximation heuristics.

LetA be an approximation algorithm that produces a cut of conductance at most
K xν if the minimum conductance isx, whereK is independent ofx (e.g.,K could
be a function ofn) andν is a fixed constant between between 0 and 1. The following
theorem (which is the main theorem of this article) provides a guarantee for the
approximate-cluster algorithm usingA as a subroutine.
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THEOREM 3.1. If G has an(α, ε)-clustering, then the approximate-cluster al-
gorithm will find a clustering of quality((

α

6K log n
ε

)1/ν

, (12K + 2)εν log
n

ε

)
.

PROOF. Let the cuts produced by the algorithm be (S1, T1), (S2, T2), . . . , where
we adopt the convention thatSj is the “smaller” side (i.e.,a(Sj ) ≤ a(Tj )). Let
C1,C2, . . .Cl be an (α, ε)-clustering. We use the termination condition ofα∗ =
α

6 log n
ε

. We will assume that we apply the recursive step in the algorithm only if
the conductance of a given piece as detected by the heuristic for the minimum
conductance cut is less thanα∗. In addition, purely for the sake of analysis we
consider a slightly modified algorithm. If at any point we have a clusterCt with the
property thata(Ct ) < ε

na(V) then we splitCt into singletons. The conductance of
singletons is defined to be 1. Then, upon termination, each cluster has conductance
at least (

α∗

K

)1/ν

=
(

α

6K log n
ε

)1/ν

.

Thus, it remains to bound the weight of the intercluster edges. Observe thata(V)
is twice the total edge weight in the graph, and soW = ε

2 a(V) is the weight of the
intercluster edges in this optimal solution.

Now we divide the cuts into two groups. The first group,H , consists of cuts with
“high” conductance within clusters. The second group consists of the remaining
cuts. We will use the notationw(Sj , Tj ) =

∑
u∈Sj ,v∈Tj

auv. In addition, we denote
by wI (Sj , Tj ) the sum of the weights of the intracluster edges of the cut (Sj , Tj ),
that is,wI (Sj , Tj ) =

∑l
i=1 w(Sj ∩ Ci , Tj ∩ Ci ). We then set

H =
{

j : wI (Sj , Tj ) ≥ 2α∗
l∑

i=1

min(a(Sj ∩ Ci ),a(Tj ∩ Ci ))

}
.

We now bound the cost of the high conductance group. For allj ∈ H , we have,

α∗a(Sj ) ≥ w(Sj , Tj ) ≥ wI (Sj , Tj ) ≥ 2α∗
∑

i

min(a(Sj ∩ Ci ),a(Tj ∩ Ci )).

Consequently, we observe that∑
i

min(a(Sj ∩ Ci ),a(Tj ∩ Ci )) ≤ 1

2
a(Sj )

From the algorithm’s cuts,{(Sj , Tj )}, and the optimal clustering,{Ci }, we define
a new clustering via a set of cuts{(S′j , T ′j )} as follows: For eachj ∈ H , we
define a cluster-avoiding cut (S′j , T

′
j ) in Sj ∪ Tj in the following manner: For each

i, 1≤ i ≤ l , if a(Sj ∩Ci ) ≥ a(Tj ∩Ci ), then place all of (Sj ∪ Tj ) ∩Ci into S′j . If
a(Sj ∩Ci ) < a(Tj ∩Ci ), then place all of (Sj ∪Tj )∩Ci into T ′j . An example is given
in Figure 5, where the original cut is shown by the solid line and the cluster-avoiding
cut by the dashed line. Notice that, since|a(Sj ) − a(S′j )| ≤ 1

2a(Sj ), we have that
min(a(S′j ),a(T ′j )) ≥ 1

2a(Sj ). Now we will use the approximation guarantee for the
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FIG. 5. The proof of Theorem 3.1.

cut procedure to get an upper bound onw(Sj , Tj ) in terms ofw(S′j , T
′
j ).

w(Sj , Tj )

a(Sj )
≤ K

(
w(S′j , T

′
j )

min{a(S′j ),a(T ′j )}

)ν

≤ K

(
2w(S′j , T

′
j )

a(Sj )

)ν
.

Hence, we have bounded the overall cost of the high conductance cuts with respect
to the cost of the cluster-avoiding cuts. We now bound the cost of these cluster-
avoiding cuts. LetP(S) denote the set of intercluster edges incident at a vertex
in S, for any subsetS of V . Also, for a set of edgesF , let w(F) denote the sum
of their weights. Then,w(S′j , T

′
j ) ≤ w(P(S′j )), since every edge in (S′j , T

′
j ) is an

intercluster edge. So we have,

w(Sj , Tj ) ≤ K
(
2w(P(S′j ))

)ν
a(Sj )

1−ν. (1)

Next we prove the following claim.

CLAIM 1. For each vertex u∈ V , there are at mostlog n
ε

values of j such that u
belongs to Sj . Further, there are at most2 log n

ε
values of j such that u belongs to

S′j .

PROOF. To prove the claim, fix a vertexu ∈ V . Let

Iu = { j : u ∈ Sj } Ju = { j : u ∈ S′j \ Sj }
Clearly, if u ∈ Sj ∩ Sk (with k > j ), then (Sk, Tk) must be a partition ofSj or a
subset ofSj . Now we have,a(Sk) ≤ 1

2a(Sk ∪ Tk) ≤ 1
2a(Sj ). Soa(Sj ) reduces by a

factor of 2 or greater between two successive timesu belongs toSj . The maximum
value ofa(Sj ) is at mosta(V) and the minimum value is at leastεna(V), so the first
statement of the claim follows.

Now supposej, k ∈ Ju; j < k. Suppose alsou ∈ Ci . Thenu ∈ Tj ∩ Ci . Also,
later,Tj (or a subset ofTj ) is partitioned into (Sk, Tk) and, sinceu ∈ S′k \ Sk, we
havea(Tk ∩ Ci ) ≤ a(Sk ∩ Ci ). Thusa(Tk ∩ Ci ) ≤ 1

2a(Sk ∪ Tk) ≤ 1
2a(Tj ∩ Ci ).

Thusa(Tj ∩Ci ) halves between two successive times thatj ∈ Ju. So,|Ju| ≤ log n
ε
.
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FIG. 6. Proof of Claim 1.

This proves the second statement in the claim (sinceu ∈ S′j implies thatu ∈ Sj

or u ∈ S′j \ Sj ). These concepts are shown pictorially in Figure 6, where the cuts
(Sj , Tj ) and (Sk, Tk) are represented by solid lines and the cuts (S′j , T

′
j ) and (S′k, T

′
k)

by dashed lines.
Using this claim, we can bound the overall cost of the group of cuts with high

conductance within clusters with respect to the cost of the optimal clustering as
follows: ∑

j∈H

w(Sj , Tj ) ≤
∑
all j

K
(
2w(P(S′j ))

)ν
a(Sj )

1−ν

≤ K

(
2
∑
all j

w(P(S′j ))

)ν (∑
j

a(Sj )

)1−ν

≤ K
(
2ε log

n

ε
a(V)

)ν (
2 log

n

ε
a(V)

)1−ν

≤ 2K εν log
n

ε
a(V). (2)

Here, we used H¨older’s inequality.
Next, we deal with the group of cuts with low conductance within clusters that is,

thosej not in H . First, suppose that all the cuts together induce a partition ofCi into
Pi

1, Pi
2, . . . , Pi

ri
. Every edge between two vertices inCi that belongs to different

sets of the partition must be cut by some cut (Sj , Tj ) and, conversely, every edge
of every cut (Sj ∩Ci , Tj ∩Ci ) must have its two end points in different sets of the
partition. So, given thatCi has conductanceα, we obtain∑

all j

wI (Sj ∩ Ci , Tj ∩ Ci ) = 1

2

ri∑
s=1

w(Pi
s ,Ci \ Pi

s )

≥ 1

2
α
∑

s

min(a(Pi
s ),a(Ci \ Pi

s )).

For each vertexu ∈ Ci there can be at most logn
ε

values of j such thatu belongs
to the smaller (according toa(·)) of the two setsSj ∩Ci andTj ∩Ci . So, we have
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that
ri∑

s=1

min(a(Pi
s ),a(Ci \ Pi

s )) ≥ 1

log n
ε

∑
j

min(a(Sj ∩ Ci ),a(Tj ∩ Ci )).

Thus, ∑
all j

wI (Sj , Tj ) ≥ α

2 log n
ε

l∑
i=1

∑
j

min(a(Sj ∩ Ci ),a(Tj ∩ Ci )).

Therefore, from the definition ofH , we have∑
j /∈H

wI (Sj , Tj ) ≤ 2α∗
∑
all j

l∑
i=1

min(a(Sj ∩ Ci ),a(Tj ∩ Ci )) ≤ 2

3

∑
all j

wI (Sj , Tj ).

Thus, we are able to bound the intracluster cost of the low conductance group of
cuts in terms of the intracluster cost of the high conductance group. Applying (2)
then gives ∑

j /∈H

wI (Sj , Tj ) ≤ 2
∑
j∈H

wI (Sj , Tj ) ≤ 4K εν log
n

ε
a(V). (3)

In addition, since each intercluster edge belongs to at most one cutSj , Tj , we have
that ∑

j /∈H

(w(Sj , Tj )− wI (Sj , Tj )) ≤ ε

2
a(V). (4)

We then sum up (2), (3) and (4). To get the total cost, we note that splitting up
all theVt with a(Vt ) ≤ ε

na(V) into singletons costs us at mostε
2 a(V) on the whole.

Substitutinga(V) as twice the total sum of edge weights gives the bound on the
cost of intercluster edge weights. This completes the proof of Theorem 3.1.

The Leighton–Rao algorithm for approximating the conductance finds a cut
of conductance at most 2 logn times the minimum [Leighton and Rao 1999]. In
our terminology, it is an approximation algorithm withK = 2 logn andν = 1.
Applying Theorem 3.1 leads to the following guarantee.

COROLLARY 3.2. If the input has an(α, ε)-clustering, then, using the Leighton–
Rao heuristic, the approximate–cluster algorithm finds an(

α

12 logn log n
ε

, 26ε logn log
n

ε

)
-clustering.

We now assess the running time of the algorithm using this heuristic. The fastest
implementation for this heuristic, due to Benczur and Karger [1996], runs inÕ(n2)
time (where thẽO notation suppresses factors of logn). Since the algorithm makes
less thann cuts, the total running time is̃O(n3). This might be slow for some real-
world applications. We discuss a potentially more practical algorithm in the next
section.
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4. Performance Guarantees for Spectral Clustering

In this section, we describe and analyse a recursive variant of the spectral algorithm.
This algorithm, outlined below, has been used in the field of computer vision [Shi
and Malik 2000] and also in the field of web search engines [Eigencluster ]. Note
that the algorithm is a special case of the approximate-cluster algorithm described in
the previous section; here we use a spectral heuristic to approximate the minimum
conductance cut.

Spectral Algorithm II

Normalize A and find its 2nd right eigenvector v.
Find the best ratio cut wrt v.
Recurse on the pieces induced by the cut.

Thus, we find a clustering by repeatedly solving a one-dimensional clustering
problem. Since the latter is easy to solve, the algorithm is efficient. The fact that it
also has worst-case quality guarantees is less obvious.

We now elaborate upon the basic description of this variant of the spectral al-
gorithm. Initially, we normalize our matrixA by scaling the rows so that the row
sums are all equal to one. At any later stage in the algorithm we have a partition
{C1,C2, . . . ,Cs}. For eachCt , we consider the|Ct | × |Ct | submatrixB of A re-
stricted toCt . We normalizeB by settingbii to 1−∑ j∈Ct , j 6=i bij . As a result,B is
also nonnegative with row sums equal to one.

Observe that upon normalization of the matrix, our conductance measure corre-
sponds to the familiar Markov Chain conductance measure, that is,

φ(S) =
∑

i∈S, j 6∈S aij
min(a(S),a(S̄))

=
∑

i∈S, j 6∈Sπi bij
min(π (S), π (S̄))

whereπ is the stationary distribution of the Markov Chain.
We then find the second eigenvector ofB. This is the right eigenvectorv cor-

responding to the second largest eigenvalueλ2, that is,Bv = λ2v. Then order the
elements (rows) ofCt decreasingly with respect to their component in the direction
of v. Given this ordering, say{u1, u2, . . . ,ur }, find the minimumratio cut in Ct .
This is the cut that minimizesφ({u1, u2, . . . ,u j },Ct ) for some j , 1≤ j ≤ r − 1.
We then recurse on the pieces{u1, . . . ,u j } andCt \ {u1, . . . ,u j }.

4.1. WORST-CASE GUARANTEES. We will use the following theorem to prove
a worst-case guarantee for the algorithm. This result was essentially proved by
Sinclair and Jerrum [1989] (in their proof of Lemma 3.3, although not mentioned in
the statement of the lemma). For completeness, and due to the fact that Theorem 4.1
is usually not explicitly stated in the Markov Chain literature (or usually includes
some other conditions which are not relevant here), we include a proof of this
result. Observe that, via the use of the second eigenvalue, the theorem bounds the
conductance of the cut found by the heuristic with respect to that of the optimal
cut.

THEOREM 4.1. Suppose B is a N× N matrix with nonnegative entries with
each row sum equal to1and suppose there are positive real numbersπ1, π2, . . . πN

summing to1 such thatπi bij = π j bj i for all i , j . If v is the right eigenvector of B
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corresponding to the second largest eigenvalueλ2, and i1, i2, . . . , i N is an ordering
of 1, 2, . . . , N so that vi1 ≥ vi2 · · · ≥ vi N , then

min
S⊆{1,2,...N}

∑
i∈S, j /∈Sπi bij

min(
∑

i∈Sπi ,
∑

j /∈Sπ j )
≥ 1− λ2

≥ 1

2

(
min

l ,1≤l≤N

∑
1≤u≤l ;l+1≤v≤N πiubiuiv

min(
∑

1≤u≤l πiu,
∑

l+1≤v≤N πi v )

)2

.

Before proving this theorem, let us use it along with Theorem 3.1 to get a worst-
case guarantee for spectral algorithm II. In our terminology, the above theorem says
that the spectral heuristic for minimum conductance is an approximation algorithm
with K = √2 andν = 1/2.

COROLLARY 4.2. If the input has an(α, ε)-clustering, then, using the spectral
heuristic, the approximate-cluster algorithm finds an(

α2

72 log2 n
ε

, 20
√
ε log

n

ε

)
-clustering.

PROOF OFTHEOREM4.1. We first evaluate the second eigenvalue. Towards this
end, letD2 = diag(π ). Then, from the time-reversibility property ofB, we have
D2B = BT D2. HenceQ = DB D−1 is symmetric. The eigenvalues ofB andQ are
the same, with their largest eigenvalue equal to 1. In addition,πT D−1Q = πT D−1

and thereforeπT D−1 is the left eigenvector ofQ corresponding to the eigenvalue
1. So we have,

λ2 = max
πT D−1x=0

xTDBD−1x

xT x
.

Thus, substitutingy = D−1x, we obtain

1− λ2 = min
πT D−1x=0

xT D(I − B)D−1x

xT x
= min

πT y=0

yT D2(I − B)y

yT D2y
.

The numerator can be rewritten:

yT D2(I − B)y = −
∑
i 6= j

yi yjπi bij +
∑

i

πi (1− bii )y
2
i

= −
∑
i 6= j

yi yjπi bij +
∑
i 6= j

πi bij
y2

i + y2
j

2

=
∑
i< j

πi bij (yi − yj )
2.

Denote this final term byE(y, y). Then

1− λ2 = min
πT y=0

E(y, y)∑
i πi y2

i

.
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To prove the first inequality of the theorem, let (S, S̄) be the cut with the minimum
conductance. Define a vectorw as follows

wi =


√

1∑
u a(u)

π (S̄)
π (S) if i ∈ S

−
√

1∑
u a(u)

π (S)
π (S̄) if i ∈ S̄.

It is then easy to check that
∑

i πi wi = 0 and that

φ(S) ≥ E(w,w)∑
i πi w2

i

≥ 1− λ2.

Hence we obtain the desired lower bound on the conductance.
We will now prove the second inequality. Suppose that the minimum above is

attained wheny is equal tov. ThenDv is the eigenvector ofQ corresponding to
the eigenvalueλ2 and,v is the right eigenvector ofB corresponding toλ2. Our
ordering is then with respect tov in accordance with the statement of the theorem.
Assume that, for simplicity of notation, the indices are reordered (i.e., the rows and
corresponding columns ofB and D are reordered) so thatv1 ≥ v2 ≥ · · · ≥ vN .
Now definer to satisfyπ1 + π2 + · · · + πr−1 ≤ 1

2 < π1 + π2 + · · · + πr , and let
zi = vi − vr for i = 1, . . . ,n. Thenz1 ≥ z2 ≥ · · · ≥ zr = 0 ≥ zr+1 ≥ · · · ≥ zn,
and
E(v, v)∑

i πi v2
i

= E(z, z)

−v2
r +

∑
i πi z2

i

≥ E(z, z)∑
i πi z2

i

=
(∑

i< j πi bij (zi − zj )2
) (∑

i< j πi bij (|zi | + |zj |)2
)

(∑
i πi z2

i

) (∑
i< j πi bij (|zi | + |zj |)2

)
Consider the numerator of this final term. By Cauchy-Schwartz(∑

i< j

πi bij (zi−zj )
2

)(∑
i< j

πi bij (|zi | + |zj |)2

)
≥
(∑

i< j

πi bij |zi−zj |(|zi | + |zj |)
)2

≥
(∑

i< j

πi bij

j−1∑
k=i

|z2
k+1−z2

k|
)2

(5)

Here the second inequality follows from the fact that ifi < j , then|zi − zj |(|zi | +
|zj |) ≥

∑ j−1
k=i |z2

k+1− z2
k|. This follows from observations that

(i) If zi andzj have the same sign (i.e.,r 6∈ {i, i +1, . . . , j }), then|zi − zj |(|zi |+
|zj |) = |z2

i − z2
j |.

(ii) Otherwise, ifzi andzj have different signs, then|zi − zj |(|zi |+ |zj |) = (|zi |+
|zj |)2 > z2

i + z2
j .

Also, ∑
i< j

πi bij (|zi | + |zj |)2 ≤ 2
∑
i< j

πi bij

(
z2

i + z2
j

) ≤ 2
∑

i

πi z
2
i .
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As a result, we have,

E(v, v)∑
i πi v2

i

≥
(∑

i< j πi bij (zi − zj )2
) (∑

i< j πi bij (|zi | + |zj |)2
)

(∑
i πi z2

i

) (∑
i< j πi bij (|zi | + |zj |)2

)
≥
(∑

i< j πi bij
∑ j−1

k=i |z2
k+1− z2

k|
)2

2
(∑

i πi z2
i

)2 .

SetSk = {1, 2, . . . , k}, Ck = {(i, j ) : i ≤ k < j } and

α̂ = min
k,1≤k≤N

∑
(i, j )∈Ck

πi bij

min
(∑

i :i≤k πi ,
∑

i :i>k πi
) .

Sincezr = 0, we obtain∑
i< j

πi bij

j−1∑
k=i

|z2
k+1−z2

k| =
N−1∑
k=1

|z2
k+1− z2

k|
∑

(i, j )∈Ck

πi bij

≥ α̂
(

r−1∑
k=1

(
z2

k− z2
k+1

)
π (Sk)+

N−1∑
k=r

(
z2

k+1− z2
k

)
(1−π (Sk))

)

= α̂
(

N−1∑
k=1

(
z2

k − z2
k+1

)
π (Sk)+ (z2

N − z2
r

))

= α̂
N∑

k=1

πkz2
k.

Consequently, ifπT y = 0, then

1− λ2 = E(v, v)∑
i πi v2

i

≥ α̂
2

2
.

4.2. IN THE PRESENCE OFA GOOD BALANCED CLUSTERING. In this section,
we consider the situation in which a given input matrixA has a particularly good
clustering. Here the matrix can be partitioned into blocks such that the conductance
of each block as a cluster is high and the total weight of inter-cluster edges is small.
We present a result which shows that, in such a circumstance, the spectral algorithm
will find a clustering that is close to the optimal clustering; that is, only a small
number of rows will be placed in the incorrect cluster.

First, we show how to model this situation. We will use the following terminology.
Denote by|x| the 2-norm (length) of a vectorx. The 2-norm of ann ×m matrix
A is

max
x∈Rm,|x|=1

‖Ax‖.

We assume thatA can be written asB + E, whereB is a block diagonal matrix
with row sums equal to 1. The blocks ofB, sayB1, B2, . . . , Bk, induce the clusters
of the optimal clustering, andE corresponds to the set of edges that run bet-
ween clusters.
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Rather than conductance, it will be easier to state the result in terms of the
minimum eigenvalue gapof the blocksB1, B2, . . . , Bk. The eigenvalue gap of a
matrix isβ = 1− λ2

λ1
. and is closely related to the conductance (φ2

2 ≤ β ≤ 2φ).
Ideally, we would like to show that ifA = B + E whereβ is large for each block
in B and the total weight of edges inE is small then the spectral algorithm works.
While this might be expected for a typical input, it is possible to construct examples
where applying spectral algorithm I does not work. So we consider the following
slightly modified version of spectral algorithm I. As before, project the points onto
the space spanned by the topk singular right vectors (eigenvectors). LetC be the
n× k matrix obtained. For each rowci of C, we define a setSi as follows:

Si =
{

j :
ci · cj

|ci | |cj | ≥
3

4

}
.

Observe that these sets are clearly not disjoint. Now, to define the final clustering,
pick the largestSi , then delete all its elements fromC. Repeat in this greedy manner
on the remaining sets until all the elements are covered.

Theorem 4.3 shows that if the 2-norm ofE and thek + 1st eigenvalue ofB
are small then this spectral algorithm finds a clustering very close to the optimal
one. For analyses in a similar spirit, see Papadimitriou et al. [2000] and Azar et al.
[2001]. The condition below requires a gap between thekth andk+1st eigenvalues
of the input matrix. Intuitively, this also corresponds to the gap between the top
two eigenvalues of any block, and thus captures the fact that each block has high
conductance.

THEOREM 4.3. Suppose the input matrix A can be written as B+ E, where
B satisfies the following conditions:(1) it is block-diagonal matrix with k blocks,
(2) the largest block size is O(n

k ), (3) it has all row sums equal to1, and (4)
λk+1(B) + ‖E‖ ≤ δ < 1/2. Then the spectral clustering algorithm applied to A
misclassifies O(δ2n) rows.

PROOF. SinceB is block-diagonal withk blocks, its topk eigenvalues are all 1
(the top eigenvalue of each block is 1). Let the blocks ofB beB1, B2, . . . , Bk and let
their sizes ben1, n2, . . . ,nk. The i th eigenvector ofB has support corresponding
to the rows ofBi , and each entry in its support has value 1/

√
ni . Let Yk be the

n × k matrix whose columns are these eigenvectors. SoB = Bk + Bn−k where
Bk = YkYT

k . Therefore,

A = Bk + Bn−k + E = Bk + E′

where, by assumption,

‖E′‖ ≤ ‖Bn−k‖ + ‖E‖ = λk+1(Bn)+ ‖E‖ ≤ δ.
Let Xk be the matrix whose columns are the topk eigenvectors ofA. By Stewart’s

theorem Stewart [1973, Theorem 4.11, page 745] applied toA, Bk andE′,

X̄k = Yk(I + PT P)−
1
2

is an invariant subspace forA, that is,Xk = X̄kU for some orthonormal matrixU ,
and

‖P‖ ≤ 2‖E′‖
1− 2‖E′‖ .
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It follows that

Xk = YkU + F,

where

‖F‖ ≤ 2δ

1− 2δ
.

The matrix we use for clustering isC = AXk. Let us compare this withYkU .

‖C − YkU‖ = ‖(Bk + E′)(YkU + F)− YkU‖
= ‖Bk F + E′YkU + E′F‖
≤ ‖F‖ + ‖E′‖ + ‖E′‖ ‖F‖
≤ 2δ

1− 2δ
+ δ + 2δ2

1− 2δ

= 3δ

1− 2δ
.

This means thatC is close to a rotated version ofYk!
The bound on the 2-norm also implies a bound on the Frobenius norm:

‖C − YkU‖2F ≤ k‖C − YkU‖2 ≤ 9δ2k

(1− 2δ)2
. (6)

Let y1, y2, . . . , yn be the rows ofYkU . Each yi that belongs to blockj has
|yi | = 1/

√
nj (rotation preserves lengths). Note that for anyi, j from the same

block of B, yi = yj and fori, j from different blocks,yi · yj = 0. Letc1, c2, . . . , cn
be the rows ofC. We will next show that for mosti , ci is close toyi .

Call an elementi distortedif |ci − yi | ≥ |yi |/9. Let the set of distorted rows be
D. Supposem rows are distorted. Then∑

i∈D

|ci − yi |2 ≥ 1

81

∑
i∈D

|yi |2 ≥ m

81n′
.

wheren′ is the size of the largest block. However, using (6),

m

n′
≤ 81

∑
i∈D

|ci − yi |2 ≤ 81‖C − YkU‖2F ≤
36δ2k

(1− 2δ)2
.

Hence,

m≤ 36δ2kn′

(1− 2δ)2
= O(δ2n)

with our assumptions thatn′ = Ä(n/k) andδ < 1/2.
Next, consider the set that is not distorted. For anyi, j such thati, j 6∈ D,

ci · cj = (yi + ci − yi ) · (yj + cj − yj )
= yi · yj + (ci − yi ) · yj + (cj − yj ) · yi + (ci − yi ) · (cj − yj ).
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Hence,

|ci · cj − yi · yj | = |(ci − yi ) · yj + (cj − yj ) · yi + (ci − yi ) · (cj − yj )|
≤ |(ci − yi ) · yj | + |(cj − yj ) · yi | + |(ci − yi ) · (cj − yj )|
≤ 2

9
|yi | |yj | + 1

81
|yi | |yj |

≤ 19

80
|ci | |cj |

<
1

4
|ci | |cj |.

Here, we have used the fact that fori 6∈ D,

|yi |2 ≤ |ci |2+ |yi − ci |2 ≤ |ci |2+ 1

81
|yi |2

and hence|yi |2 ≤ 81
80|ci |2. This implies that for two undistorted rowsi, j , we have

ci · cj >
3
4|ci | |cj | if i, j are from the same block ofB, andci · cj <

1
4|ci | |cj |

otherwise. The theorem follows (the key observation is that two undistorted rows
from different clusters stay in different clusters).

5. Conclusion

There are two basic aspects to analyzing a clustering algorithm

—Quality: how good is the clustering produced?
—Speed: how fast can it be found?

In this article, we have mostly dealt with the former issue while taking care that the
algorithms are polynomial time. The spectral algorithms depend on the time it takes
to find the top (or topk) singular vector(s). While this can be done in polynomial
time, it might still too expensive for applications such as information retrieval. The
work of Frieze et al. [1998] and Drineas et al. [1999] on randomized algorithms
for low-rank approximation addresses this problem. The running time of their first
algorithm depends only on the quality of the desired approximation and not on the
size of the matrix, but it assumes that the entries of the matrix can be sampled in a
specific manner. Their second algorithm needs no assumptions and has a running
time that is linear in the number of nonzero entries. More recently, Cheng et al.
[2003] describes an efficient implementation of spectral algorithm II that maintains
sparsity, and also gives experimental evidence that it performs favorably compared
to other well-known clustering algorithms.
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