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ABSTRACT Categories and Subject Descriptors
Counting the frequency of small subgraphs is a fundamental G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
technique in network analysis across various domains, most gorithms; G.2.1 [Discrete Mathematics]: Combinatorics—
notably in bioinformatics and social networks. The special Counting problems; E.1 [Data Structures]: Graphs and
case of triangle counting has received much attention. Get- networks; H.2.8 [Database Management]: Database Ap-
ting results for 4-vertex patterns is highly challenging, and plications—Data mining; G.3 [Probability and Statis-
there are few practical results known that can scale to mas- tics]: Probabilistic algorithms (including Monte Carlo)

sive sizes. Indeed, even a highly tuned enumeration code
takes more than a day on a graph with millions of edges.
Most previous work that runs for truly massive graphs em-
ploy clusters and massive parallelization. Algorithms, Theory

We provide a sampling algorithm that provably and accu-
rately approximates the frequencies of all 4-vertex pattern

General Terms

subgraphs. Our algorithm is based on a novel technique of Key words
3-path sampling and a special pruning scheme to decrease Subgraph counting; sampling algorithms; path sampling;
the variance in estimates. We provide theoretical proofs for motif counting; graphlet distribution

the accuracy of our algorithm, and give formal bounds for
the error and confidence of our estimates. We perform a

detailed empirical study and show that our algorithm pro- 1. INTRODUCTION
vides estimates within 1% relative error for all subpatterns
(over a large class of test graphs), while being orders of mag-
nitude faster than enumeration and other sampling based
algorithms. Our algorithm takes less than a minute (on a
single commodity machine) to process an Orkut social net-
work with 300 million edges.

Counting the number of occurrences of small subgraphs
in a graph is a fundamental network analysis technique used
across diverse domains: bioinformatics, social sciences, and
infrastructure networks studies [18, 10, 25, 23, 7, 26, 13, 19,
2, 14, 33, 40, 32]. The subgraphs whose counts are desired
are variously referred as “pattern subgraphs,” “motifs,” or
“graphlets.” It is repeatedly observed that certain small sub-
graphs occur substantially more often in real-world networks
than in a randomly generated network [18, 39, 23]. Motifs

*This work was funded by the GRAPHS Program at distributions have been used in bioinformatics to evaluate
DARPA and by the Applied Mathematics Program at the network models [26, 19]. Analysis of triadic (3-vertex) mo-
U.S. Department of Energy. Sandia National Laboratories is tifs has a long history in social network analysis and model-
a multi-program laboratory managed and operated by San- ing [18, 7, 13, 30, 12]. Work in the data mining community

dia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract

has applied motif frequencies for spam detection and group
classification of sets of nodes [2, 37].

DE-AC04-94AT1,85000. The main challenge of motif counting is combinatorial ex-
Work done while the author was a postdoc at Sandia Na- plosion. Even in a moderately sized graph with millions
tional Laboratories, Livermore. of edges, the subgraph counts (even for 4-vertex patterns)

is in the billions. Any exhaustive enumeration method (no
matter how cleverly designed) is forced to touch each oc-
currence of the subgraph, and cannot truly scale. One may
apply massive parallelism to counteract this problem, but
that does not avoid the fundamental combinatorial explo-
sion. An alternative approach is based on sampling. Here,
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Figure 1: List of all connected 4-vertex motifs

Sampling approaches have been employed for triangle count-

ing with good success [28, 34, 36, 35, 31]. There also exists
work for counting larger motifs, as we shall discuss later.
Most methods (especially in bioinformatics) [19, 4, 41, 27]
work for graphs of at most 100K edges, much smaller than
the massive social networks we encounter.

1.1 The main problem

We focus on estimating frequency of all connected 4-vertex
subgraphs on massive input graphs. There are six connected
4-vertex graphs (Fig.1): (i) the 3-path, (ii) the 3-star, (iii)
the tailed-triangle, (iv) the 4-cycle, (v) the chordal-4-cycle,
and (vi) the 4-clique. Throughout this work, we refer to
these motifs by their numbering in this list. For example
the “6-th motif” is the 4-clique.

Our aim is to give an accurate and fast estimate of all
4-vertex subgraph counts. Triadic analysis is now a standard
aspect of network analysis. Recent work of Ugander et al [37]
specifically use 4-vertex pattern counts to provide a “map” of
egonets, and show significant patterns among these counts.
Such analyses require fairly precise frequency counts.

1.2 Related Work

Motif counting for bioinformatics was arguably initiated
by a seminal paper of Milo et al. [23]. This technique has
been used for graph modeling [26, 19], graph comparisons [26,
16], and even decomposing a network [20]. Refer to [4, 41]
for more details.

Triangle counting has a rich history in social sciences and
related analyses, that we simply refer the reader to the re-
lated work sections of [35, 31]. The significance of 4-vertex
patterns was studied in recent work of Ugander et al. [37],
who propose a “coordinate system” for graphs based on the
motifs distribution. This is used for improved network clas-
sification, and the input graphs were comparatively small
(thousands of vertices).

Previous studies tailored to 4-vertex patterns [15, 22] pro-
vide both exact and approximation algorithms. However,
the asymptotic bounds in these graphs are far from practical,
and they are only applied to small graphs. For example, a
graph with 90K edges requires 40 minutes of processing [22].
Color coding [1], Monte-Carlo Markov Chain sampling [5],
and edge sampling to speedup edge iteration based algo-
rithms [27] have been adopted to count patterns in graphs.
We will provide ‘detailed comparisons with these methods
in §6.1. To exploit more powerful computing platforms, in-
cremental pattern building algorithms for Map-Reduce have
been described in [24, 6].
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Most relevant to this work are previous studies on wedge
sampling [28, 31, 21]. This method samples paths of length 2
to estimate various triangle statistics. Our method of 3-path
sampling can be seen as building on wedge sampling. We
employ new path pruning techniques to improve the algo-
rithm’s efficiency. These pruning techniques are inspired by
degeneracy ordering algorithms for triangle counting [9, 29].
We can actually provide mathematical error bars for real
runs and instances (as opposed to just a theoretical proof of
convergence of estimate).

1.3 Summary of our contributions

We design a new randomized algorithm, based on 3-path
sampling, that outputs accurate estimates of all 4-vertex
subgraphs counts. The algorithm is provably correct and
makes no distributional assumption on the graph. All prob-
abilities are over the internal randomness of the algorithm
itself (which is independent of the instance). We run de-
tailed simulations on a large variety of datasets, including
product co-purchasing networks, web networks, autonomous
systems networks, and social networks. All experiments are
done on a single commodity machine using 64GB memory.

Extremely fast. Our algorithm relies on a sampling
based approach making it extremely fast even on very large
graphs. Indeed, there are instances where a finely tuned
enumeration code takes almost a day to compute counts of
4-vertex motifs whereas our algorithm only takes less than
a minute to output accurate estimates. Refer to Fig. 2a for
speedup over a well-tuned enumeration code. Our algorithm
takes less a minute on an Orkut social network with 200
million edges, where the total count of each motif is over
a billion (and most counts are over 10 billion). An input
Flickr social network has more than 10 billion 4-cliques; we
get estimate of this number with less than 0.5% error within
30 seconds on a commodity machine. We do not preprocess
any of the graphs, and simply read them as a list of edges.

Excellent empirical accuracy. We empirically validate
our algorithm on a large variety of datasets, and it consis-
tently gives extremely accurate answers. Refer to Fig.2b.
We get < 1% relative error for all subgraph counts on all
datasets, even those with more than 100M edges. (Exact
counts were obtained by brute-force enumerations that took
several days.) This is much more accurate than any exist-
ing method to count such motifs. We compare with existing
sampling methods, and demonstrate that our algorithm is
faster and more accurate than the state-of-the-art.

Provable guarantees with error bars. Our algorithm
has a provable guarantee on accuracy and running time.
Furthermore, we can quantify the accuracy/confidence on
real inputs and runs of our algorithm. For a given number
of samples, we can have a method to put an explicit error bar
on our estimate, based on asymptotically tight versions of
Chernoft’s bound. While these error bars are not as tight as
the real errors in Fig. 2b, we can still mathematically prove
that the errors are mostly within 5% and always within 10%.

Trends in 4-vertex pattern counts: Given the rapid
reporting of 4-vertex pattern counts, our algorithm can be
used as a tool for motif analysis. We detect common trends
among a large variety of graphs. Not surprisingly, the 3-star
is the most frequent 4-vertex motif in all graphs we exper-
imented upon. The least frequent is either the 4-cycle or
the 4-clique. The chordal-4-cycle frequency is always more
than that of the 4-cycle or 4-clique. Ugander et al [37] study
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Figure 2: Summary of 3-path sampling algorithm behavior over a large variety of datasets: The left figure shows speedup
over a tuned enumeration code. The right figure shows the relative error of each estimate, which is always less than 1% (and

mostly much smaller).

what trends are merely implied by graph theory, and what
are actually features of real-world graphs. Such analyses re-
quire accurate estimates quickly, which our algorithm can
provide. It is a promising direction to use our algorithm to
provide more input to such studies.

2. FORMAL DESCRIPTION OF THE PROB-

LEM

Our input is an undirected simple graph G = (V| E), with
n vertices and m edges. For vertex v, d, is the degree of v.

It is critical to distinguish subgraphs from induced sub-
graphs. A subgraph is simply some subset of edges. An
induced subgraph is obtained by taking a subset V' of ver-
tices, and consider all edges among these vertices. Refer
to Fig. 3. The edges (vi,v2), (v2,v3), (v3,v4), (va,v1) form a
4-cycle, but the vertex set {vi,vz,vs,vs} induces a chordal-
4-cycle. We collectively refer to the 4-vertex subgraphs as
“motifs”.

It is technically convenient to think of induced subgraph
counts. We denote the number of induced occurrences of
the ¢-th subgraph (of Fig.1) by C;. So, C4 is the number
of induced 4-cycles in G, which is the number of distinct
subsets of 4 vertices that induce a 4-cycle. When we talk of
a “vanilla” subgraph, we mean the usual subgraph setting (a
subset of edges). In general, if we do not say “induced”, we
mean vanilla.

Our aim is to get an estimate of all C; values. Let N;
denote the number of (vanilla) subgraph occurrences of the
ith subgraph, There is a simple linear relationship between
induced and non-induced counts, given below. The (4,7)
entry of the matrix A below is simply the number of distinct
copies of the ith subgraph in the jth subgraph (so A2 4 =4,
the number of 3-paths in the 4-cycle).

10102 4 C Ny
01 246 12| (C N,
0010 4 12| [cs] |Ns )
00011 3 Ci| =~ | N
0000T1 6 Cs Ns
00000 1 Co Ne
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Figure 3: An example graph.

3. THE BASIC ALGORITHM: ESTIMATING
COUNTS VIA 3-PATH SAMPLING

Our algorithm for estimating counts of 4-vertex motifs is
based on 3-path sampling. In this section, we discuss a basic
version of this method. In the next section, we enhance it
to improve accuracy.

We begin with a simple procedure that samples a uniform
(vanilla) random 3-path. For each edge e = (u,v) € E,
denote 7. = (dy — 1)(dy — 1). We denote W = 3" _ 7e.

Algorithm 1: sample

1 Compute 7. for all edges and set pe = 7./W.

2 Pick edge e = (u,v) with probability pe.

3 Pick uniform random neighbor u’ of w other than v.
4 Pick uniform random neighbor v’ of v other than wu.
5 Output the three edges {(uv',u), (u,v), (v,v")}.

Observe that the output of sample can either be a triangle
(if ' = ') or a 3-path.

CLAM 3.1. Fiz any 3-path. The probability that sample
outputs this S-path is exactly 1/W .

Proor. Fix a 3-path (v/,u), (u,v), (v,v") (u,u,v,v" are
all distinct). The probability that e = (u,v) is selected as
the middle edge (in Step 2) is exactly (du — 1)(dy, — 1)/W.
Conditioned on this event, the probability that ' is selected
as a neighbor of u is 1/(dy — 1) (note that the neighbor
v is excluded). Similarly, v' is selected with probability
1/(dy —1). Putting it all together, the 3-path is chosen with
probability [(dy —1)(dv —1)/W]-[1/(du —1)]-[1/(dv —1)] =
1/W. The probability is the same for all 3-paths, proving
our claim. [J



All motifs of Fig. 1, except the 3-star, contain a 3-path.
So one can perform the following experiment. Run sample
to get a collection of edges, and hence a set of (at most 4)
vertices. Check the motif induced by this set of vertices.
Repeat this experiment many times to estimate the true
counts C; (¢ € [2,6]). Finally, we use the formula of (1) to
estimate Cp. This is exactly the algorithm 3-path-sampler,
as given in Alg. 2. We remind the reader that As; is the
number of 3-paths in the ith motif.

Algorithm 2: 3-path-sampler
Input: graph G = (V, E), samples k

1 Run sample k times to get k sets of edges. Let Sy
denote the set of corresponding vertices for the ¢th set.
Initialize count; = 0 for i € [2,6].
For £ € [1,k],

Determine subgraph induced by S;.

If this is the ith motif, increment count;.
For each i € [2, 6],

Set Ci = (count;/k) - (W/A2).

Set N1 =3, (%)
Set (induced 3-stars) C1 = N1 — C5 — 2C5 — 4Cs.

© 0 N O ok~ W N

We prove that 3-path-sampler outputs unbiased estimates
for all C;s.

THEOREM 3.2. For every i € [1,6], E[Ci] = Ci.

ProoOF. First, let use deal with subgraphs other than the
3-star, so fix some ¢ # 1. For each £ € [k], let X, be the indi-
cator random variable for S, inducing the ith motif. So X,
is 1 iff the ¢th call to sample outputs a 3-path contained in
a copy of the ith motif. The total number of (distinct) such
3-paths is exactly As; - C;. By Claim 3.1, the probability
that X, =1 is A2,i . CZ/W Hence, E[XA =C;- AQ,Z‘/W.

We have E[count;] = 3 b_, E[X,] = (kC;A2,;)/W, by lin-
earity of expectation. Hence, E[C;] = Ci. Now, we detail
with C;. Note that Ny, the number of 3-star subgriphs,

is exactly > o\ (dS”). By linearity of expectation, E[C4] =

Ny — E[Cs] — 2E[C5] — 4E[C], which is Ny — Cs —2Cs —4Cs
= C (as given by (1)). O

We can also prove concentration results using the Hoeffd-
ing bound [17]. This is useful as a proof of concept, but does
not give useful bounds in practice. (We give more details
later.) This analysis is analogous to that of wedge sampling
results [29, 31].

THEOREM 3.3 (HOEFFDING [17]). Let X1, Xo,..
independent random variables with 0 < X; < 1 for all i =
1,...,k. Define X = %ZLI X;. Let p = E[X]. Then for
e €(0,1), we have

Pr[|X — u| > €] < 2exp(—2ke?).

We can derive concentration results quite directly from
this bound. Note that the bound is for a fixed i € [2, 6], i.e.,
a fixed motif that is not the 3-star.

THEOREM 3.4. Fiz d,e € (0,1) and i € [2,6]. Set k =
[(26) 7% 1n(2/6)]. For all i € [2,6]: with probability at least
1-9, |61 — Ci| < eW/As,;. With probability at least 1 — 6,
‘61 — Cl‘ < eW.

., Xk be

PROOF. We have fixed i # 1. For each ¢ € [k], define X,
to be the indicator random variable for Sy inducing the ith
motif. Observe that when i is fized, each X, is independent,
since it is simply the result on an independent sample. In
other words, the chance of the ¢th sample inducing the ith
motif is independent over the sample index /.

Apply Theorem 3.3 to Xi,...,X,. With probability at
most §, |X — E[X]| > ¢ (we use the notation from The-
orem3.3). It remains to interpret X. Note that 61 =
(count;/k) - (W/Az;). Since count; = Sy, Xo, Ci=X-
(W/A2,). So |X — E[X]| > ¢ implies |51 —Ci| > g, as
desired.

Since C; is obtained by subtracting out other terms, it
appears that the errors could add up. With a little care, we
can get the same bound as the other Cy’s. Define random
variable Y; as follows: if S, induces a tailed triangle, Y; =
1/A2,3 =1/2. If Sy induces a chordal-4-cyle, Yy = 2/As 5 =
2/6. If Sy induces a 4-clique, Yy = 4/A26 = 4/12. In
all other cases, Y, = 0. We have constructed this random
variable, so that E[Y;] = (Cs + 2C5 4+ 4Cs)/W.

Observe that C can also be expressed as N -, Ye/k)W.
The additive error |61 — (] is the same as W - |Y — E[Y]|.
Applying Theorem 3.3, with probability at least 1 —§, |61 -
Cl| <eW. O

To get error bounds for obtaining all estimates, we take
the union bound. Hence, with probability at least 1 — 64,
we get the same accuracy guarantee of Theorem 3.4 simul-
taneously for all counts.

THEOREM 3.5. The running time (including all prepro-
cessing) of 3-path-sampler is O(m + klogk). The total
storage is O(m + k).

PRrROOF. We store the graph as an adjacency list. We as-
sume that each list is a hash table, so we can access the
degree d,, find a random neighbor of v, and check for exis-
tence of edge (u,v) in (expected over hash table) constant
time.

The preprocessing required to determine each value of 7.
is linear in m. Generating k£ 3-path samples can be done
by sorting k£ random numbers in (0,1) and merging with
a list of partial sums of 7.. This takes O(klogk) time.
(It is possible to get these samples in O(k) using Walker’s
alias method [38], but it rarely gives a benefit in practice.)
Checking the motif induced by the path takes O(1) time
by the hash table representation. The total running time is
bounded by O(m+klog k). The only additional storage over
the graph are the values 7. and the various counts. Hence,
the storage can be bounded by O(m + k). O

3.1 The challenge of cycle-based motifs

Theorem 3.2 and Theorem 3.4 seem to give us all we want,
so why aren’t we done? The catch is that the concentration
bound of Theorem 3.4 is actually too weak to give reasonable
estimates for real world graphs. Let us do some rough cal-
culations, ignoring the constants. To get an estimate such
that |Ci — Ci| < eW, we require k ~ 1/2. But for such
an estimate to be useful, we need to understand how W re-
lates to C;. So € needs to be of the order of C;/W, and
consequently, k needs to be (W/C;)%.

Refer to Tab.1 for the values of W and a few C;s. (For
convenience, we just give the order of magnitude of each



Table 1: W vs C;: counts given as orders of magnitude.

Graph w Co Cs Cy Cs

amazon0312 || E4+09 | E408 | E+08 | E4+06 | E406
as-skitter E+12 | E+11 | E+11 | E4+10 | E408
orkut E+13 | E+13 | E+12 | E4+10 | E+09

number. Full numbers are given later.) For ¢ € {1,2,3}
(3-star, 3-path, and tailed triangle), (W/C;)? is usually <
10*. This is fairly reasonable number of samples to take,
and leads to an efficient and accurate algorithm. On the
other hand, for ¢ € {4,5,6} (4-cycle, chordal-4-cycle, and 4-
clique), (W/C;)? is often > 10%, which is too many samples
to take.

In other words, 3-path-sampler does not perform well
for motifs containing a 4-cycle. This leads us to a new algo-
rithm for dealing with these motifs, as described in the next
section.

4. IMPROVED ESTIMATION OF 4-CYCLE-
BASED MOTIFS VIA ceNTERED 3-PATHS

We denote the 4-cycle, chordal-4-cycle, and 4-clique as
cycle-based motifs. We design a better algorithm to estimate
them. While the algorithm is provably correct for any graph,
the fact that it gives a significant improvement is dependent
on the structure of real-world graphs.

Our aim is to find a subset S of 3-paths with the following
properties:

e Every cycle-based motif is guaranteed to contain a
fixed number of 3-paths from S.

e [t is possible to quickly generate uniform random sam-
ples from S.

e |S| is significantly smaller than W = 37 _, (du —
1)(dv — 1).

Let us go back to sample, and think of enumerating all 3-
paths. For edge (u,v), we take every neighbor of v and every
neighbor of v to generate a 3-path. We basically take the
Cartesian product of the adjacency lists of v and v. Could
we prune the adjacency lists so this product is smaller?

Suppose we order all vertices based on degree and vertex
id. So we say u < v if: d, < d, or, if d, = d,, the vertex
id of u is less than that of v. We could prune the lists
using this ordering. When looking for 3-paths where (u,v)
is the middle edge, we only look at the portion of u’s list
“greater” than v, and the portion of v’s list greater than w.
In general, many 3-paths are generated when d,, and d, are
large. But in that case, we hope that many neighbors of u
and v are of lower degree. The pruning ignores such vertices
and (hopefully) reduces the set of 3-paths considered. Let
us define the set S of centered 3-paths.

DEFINITION 4.1  (CENTERED 3-PATH). A 3-path formed
by edges {(t,u), (u,v), (v,w)} is centered if: v < ¢, u < w,
and the edge (t,w) exists in the graph (so t,u,v,w form a
4-cycle).

We prove the important property that every cycle-based mo-
tif contains a fixed number of centered 3-paths.

LEMMA 4.2. Every induced 4-cycle and chordal-4-cycle con-

tains exactly one centered 3-path. FEvery induced 4-clique
contains exactly three centered 3-paths.

PrOOF. Consider any (vanilla) 4-cycle, formed by vertices
(in order) ¢, u, v, w. Pick the smallest vertex, say u. Pick the
neighbor of u that is smaller, say v. We show that the 3-
path {(¢,u), (u,v), (v, w)} is the only centered 3-path in this
4-cycle.

By the choice of (u,v), v < t and v < w. Hence, we
see that {(¢,u), (u,v),(v,w)} is centered. The only other
possible centered 3-path is {(u,t), (t,w), (w,v)}. Because
v < t, this path cannot be centered. That completes the
proof for the induced 4-cycle case.

Now, suppose t, u, v, w forms an induced chordal-4-cycle.
The extra 3-paths contain the chord in the middle, and such
3-paths do not lie on a 4-cycle. So there only exists one
centered 3-path.

A 4-clique contains three 4-cycles that partition the 12
different 3-paths. Each of these 4-cycles has a centered 3-
path, yielding a total of three such 3-paths. [

We now show how to sample a uniform random centered 3-
path. It is quite analogous to sample. First, some notation.
Let L., be the number of neighbors of u greater than v.
By sorting all adjacency lists according to vertex degree and
id, we can compute for every edge e = (u,v), the value
Xe = Lywlyn. Let A=3" Ac.

Algorithm 3: sample-centered

1 Compute A for all edges and set pe = Ac/A.

2 Pick edge e = (u,v) with probability pe.

3 Pick uniform random neighbor v’ of u such that v < v’.
4 Pick uniform random neighbor v’ of v such that u < v’.
5 Output the three edges {(uv', ), (u,v), (v,v")}.

Note that it is possible that sample-centered outputs a
3-path that is not centered (if the 3-path does not lie on a
4-cycle). Nonetheless, analogous to Claim 3.1, we have the
following.

CrLAaM 4.3. Fiz any centered 3-path. The probability that
sample-centered outputs this 3-path is exactly 1/A.

Now, we give the algorithm that estimates the number of
cycle-based motifs. It is analogous to 3-path-sampler, only
using centered 3-paths. For convenience, let B; denote the
number of centered 3-paths in the ith motif. So By = Bs =1
and Bg = 3, by Lemma4.2.

Algorithm 4: centered-sampler
Input: graph G = (V, E), samples k

1 Run sample-centered k times to get k set of edges. Let
Ty denote the set of corresponding edges for the ¢th set.
Initialize count; = 0 for i € [4, 6].
For £ € [1, k],
If Ty is a centered 3-path,

Determine subgraph induced by Se.

If this is the ith motif, increment count;.
For each i € [4, 6],

Set C; = (count;/k) - (A/B;).

o N0 A W@ N

Analogous to Theorem 3.4, we can prove the following.
Observe how W is replaced by A.



THEOREM 4.4. Fizd,e € (0,1) and set k = [(2¢) "2 1n(2/6)].

For all i € [4,6]: with probability at least 1 — 4, |6Z - Cil <

For the same number of samples, the performance of centered-

sampler requires an additional logarithmic factor because
of additional preprocessing. In general, d, is much smaller
than n (and is effectively constant for most vertices), so the
additional logarithmic factor is not too expense. We require
fewer samples for the same accuracy, so centered-sampler
wins at scale.

THEOREM 4.5. The running time of centered-sampler
is O3, dvlog dy+klog k) and the total storage is O(m+k).

PrOOF. As discussed earlier, we need to sort the adja-
cency lists to determine each value of A\.. That leads the
running time bound. We store adjacency lists as (vari-
able sized) array. This allows us to sort a list of size d,
in time O(dylogd,). The total running time of this step
is O(3_, dvlogdy). Once the lists are sorted, the remain-
ing analysis is identical to that of Theorem 3.5 for 3-path-
sampler. []

4.1 Why centered 3-paths help

We put the value of W and A for various real world net-
works in Tab. 2. Observe how A is at least an order of mag-
nitude smaller than . This is a huge difference when it
comes to the sampling bounds in Theorem 3.4 and Theo-
rem4.4. These bounds show that two orders of magnitude
less samples suffice for the same error (in estimating cycle-
based motifs). This improvement is extremely significant for
getting good accuracy with fewer samples.

Table 2: Difference between the number of 3-paths and the
number of centered 3-paths.

Graph w A W/A
amazon0312 1.40E+09 | 9.36E+407 15
amazon0505 1.59E409 | 1.02E+08 16
amazon0601 1.57E+09 | 1.01E+08 15
as-skitter 1.43E+12 | 9.05E+10 16
cit-Patents 9.16E4+09 | 8.78E+08 10
web-BerkStan || 1.69E+12 | 1.28E+11 13
web-Google 2.05E+10 | 6.34E408 32
web-Stanford 1.85E+11 | 1.36E+10 14
wiki-Talk 1.31E+12 | 9.08E+09 | 144
youtube 1.19E+11 | 1.68E+09 71
flickr 1.31E+13 | 8.42E+11 16
livejournal 1.67E+12 | 1.14E+11 15
orkut 2.22E+13 | 9.48E+11 23

The final algorithm is simply obtained by running both
3-path-sampler and centered-sampler. The former gives
estimates for C1,C2,Cs (we simply discard the remaining
estimates), and the latter estimates C4, Cs, C.

S. GETTING PRACTICAL ERROR BARS

While the Hoeffding bound used above provides theoreti-
cal convergence, we do not get practical error bars from it.
In this section, we show how to get useful error bars for our
algorithm on real instances.

All of our sampling algorithms have the same underlying
primitive: try to estimate the expectation p of a Bernoulli
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random variable. We generate a binomial random variable
X ~ B(k,p) (by performing k i.i.d. Bernoulli trials), and
hope that the outcome is close enough to the expectation.

We employ a standard Bayesian viewpoint to generate an
error bar. Suppose, our outcome of the binomial draw is
X = r. Conditioned on a choice of p, we calculate the prob-
ability that X = r. This gives a prior on p. Of course, this
cannot be done explicitly because of computational issues,
but we can use tail bounds for B(k,p) to get appropriate
estimates. We use the following theorem of Chernoff [8] (we
use notation of Equation 1.4 from [11]) that gives good tail
bounds for B(k,p).

THEOREM 5.1
a € (0,1).
Pr[X/k > a] < exp(—D(a,p)k) ifa>p
Pr[X/k < a] < exp(—D(a,p)k) ifa<p
where D(a,b) = aln(a/b)+(1—a)In((1—a)/(1-0)) (the KL-

divergence between Bernoulli distributions with expectation
a andb).

(CHERNOFF). Suppose X ~ B(k,p). Fiz

Suppose the outcome of X/k = a. We can use the Cher-
noff bound to get a range of likely values of p. Think
of exp(—D(a,p)k) as a function of p. The basic proper-
ties of the KL-divergence (and simple algebra) imply that
exp(—D(a,p)k) is a unimodal function with a maximum
value of 1 at p = o and a minimum of 0 at p = 0,1. That
motivates the following definition.

DEFINITION 5.2. Fiz parameters k,a,z € (0,1). Then
pi(k, o, ) (lower) and py(k, o, x) (upper) are the two unique
values of p such that exp(—D(a, p)k) = x.

With this definition, we can give precise error bars. In
other words, given the outcome of a binomial random vari-
able B(k,p), we can give an interval of plausible values (up
to any desired confidence ¢) for p.

COROLLARY 5.3  (BINOMIAL DISTRIBUTION ERROR BAR).
Fiz binomial distribution B(k,p), and «, 6 € (0,1) Then, for
a‘ny p ¢ [pl(k7 Cl, 5)7pu(k7 CY, 5)];

Pr [X/k=a]<9
X~B(k,p)

How does this relate to our algorithms? Observe that
in both Alg. 2 and Alg. 4, the variables count; are bino-
mial random variables. So we can produce errors bars for
count;/k using the above corollary. The final estimates are
of the form 62 = (count;/k)-K; (i # 1, and K; is some fixed
scaling, depending on the algorithm and ). So error bars for
count;/k directly translate to error bars for 61 Fori=1
(3-stars), we simply add up the errors (in 3-path-sampler)
for 63, 265, and 466.

6. EXPERIMENTAL RESULTS

Preliminaries: We implemented our algorithms in C and
ran our experiments on a computer equipped with a 2x2.4GHz
Intel Xeon processor with 6 cores and 256KB L2 cache (per
core), 12MB L3 cache, and 64GB memory. We performed
our experiments on 13 graphs from SNAP [43]. In all cases,
directionality is ignored, and duplicate edges are omitted.



Tab. 3 has the properties of these graphs, where |V| and | E|
are the numbers of vertices and edges, respectively.

Exact counts for the motifs are obtained by a well-tuned
enumeration (counts and runtime given in Tab. 3). This al-
gorithm only enumerates the 4-cycle, the chordal-4-cycle,
and the 4-clique, and uses direct approaches to get other
counts. For convenience, we refer to this the enumeration
code. We do not get into details, but note that this code pro-
cesses million edge Amazon networks in only 5 seconds®. It
uses vertex orderings for speedup, analogous to using de-
generacy orderings for triangle enumeration [9, 29]. For
getting 3-path sampling estimates, we run both 3-path-
sampler and centered-sampler as described earlier, with
k = 200K. We use the outputs of 61, 52, 53 as given by 3-
path-sampler, and 647 65, 66 from centered-sampler. The
runtimes are in the last column of Tab. 3.

Convergence of estimates: To show convergence, we
perform detailed runs on the as-skitter graph. We choose
this because it is the most difficult to get accurate estimates,
since the cycle-based motif counts are small relative to the
graph size. We vary the numbers of samples in increments of
2.5K. For each choice of the number of samples, we perform
50 runs of our algorithm. We plot those results in Fig.4
for tailed-triangles, chordal-4-cycles, and 4-cliques. (Other
patterns are omitted due the space considerations, and had
even better convergence.) The output of each run (for a
given number of samples) is depicted by a blue dot. For
4-clique counts, we can see the spread of outputs reducing.
The figure only goes up to 35K samples. (The convergence
is so rapid that at around 50K samples, the spread is im-
possible to see.)

Accuracy: Fig.2b presents the relative errors for all 13
graphs and all 6 motifs, using 200K samples for both 3-
path-sampler and centered-sampler. All relative errors
are less than 1% in all instances. As expected the relative
errors tend to be larger for the less frequent patterns such
as 4-cycles and 4-cliques.

Speedup: Fig.2a presented the speedups achieved over
full enumeration by using our path sampling algorithm. Enu-
meration for flickr and orkut takes order of a day. Since the
motifs counts are in the order of tens of billions, there is no
hope of getting any scalability. Our algorithms takes less
than a minute (even including I/O) for all these graphs.

The benefit of centered 3-paths: We could simply
use the basic 3-path sampling given in 3-path-sampler to
approximate all counts. We compare this approach to our fi-
nal algorithm that use centered-sampler for Cy4, Cs, Cs esti-
mates. Comparisons between the relative errors for Cy, Cs, Cg
are given in Fig.5. (“Basic” denotes simply using 3-path-
sampler, and “centered” is the main algorithm.) We used
200K samples for both algorithms. Some instances of using
3-path-sampler give somewhat large errors, and centered-
sampler really cuts these errors down. It shows the power
of centered 3-path sampling.

Error bounds: We use Corollary 5.3 (as explained in §5)
to compute 99% confidence error bounds for all of our runs.
So, for a single run of our algorithm on a candidate graph, we
have a mathematical bound on the error that is solely based
on output estimates. (These are critical in the situation

! This is quite competitive with the best existing numbers in
the literature of [22], whose algorithm takes 40 minutes on
a 90K autonomous systems graph.
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Figure 6: Provable error bounds

where we do not know the true answer, and need confidence
that the estimates are accurate.) Fig.6 shows the accuracy
of our error bounds with 99% confidence, so § = 0.01 in
Corollary 5.3. In all cases, the provable bounds on the error
are always less than 10% and mostly at most 5%. (We stress
that the actual error is much smaller.) To the best of our
knowledge, no previous sampling based algorithm for motif
counting comes with hard mathematical error bars that are
practically reasonable.

Trends in patterns: The most frequent connected in-
duced motif is the 3-star. The least frequent is either the
4-cycle or the 4-clique. We find it intriguing that (among
cycle-based motifs) the chordal-4-cycle is the most frequent.
(The orkut graph is a notable exception in that 4-cycles are
more frequent.) A future direction is to connect these counts
with the subgraph frequency approaches of [37].

6.1 Comparison with previous work

Here we present an empirical comparison between our pro-
posed methods and other sampling based algorithms. We
focus on color coding methods [19, 4, 42], MCMC based
sampling algorithms [5], and edge sampling algorithms [27].
These methods are specifically designed for practicality and
scalability. We give a short synopsis of these methods.

GUISE [5]: This employs a Markov Chain Monte Carlo
(MCMC) method to uniformly sample a motif from the
space of all (induced) occurrences of motifs of sizes 3, 4,
and 5. We use the implementation of GUISE from http:
//cs.iupui.edu/~alhasan/software.html.

GRAFT [27]: This algorithm samples a set of edges uni-
formly at random from the input graph and then counts the
number of occurrences of each motif that uses any of these
sampled edges. These counts can then be scaled appropri-
ately to obtain unbiased estimates. Observe that if edges
are sampled with probability 1, this gives an algorithm for
exact counting using an edge iteration. For our experiments,
we have used our own implementation.

Color Coding [1, 19, 4, 42]: This is a general technique for
pattern counting, which samples to prune the enumeration
search tree. We randomly color the vertices of the graph and
then only enumerate over motifs all of whose vertices have
distinct colors. These counts can be appropriately scaled
to get unbiased estimates for the true frequencies. For our
experiments, we implemented color coding (with 4 colors),
and used the same algorithmic techniques that we used for
our enumeration algorithm.


http://cs.iupui.edu/~alhasan/software.html
http://cs.iupui.edu/~alhasan/software.html

Table 3: Exact values of pattern counts and runtimes (in seconds).

Datasets V] |E| 3-star 3-path Tailed 4-cycle Chordal 4-clique Enum. | 3-path
triangle 4-cycle time time
amazon0312 4.01E45 | 2.35E+6 | 1.07E+410 | 8.44E408 | 1.90E+08 | 3.23E406 | 1.71E4+07 | 3.98E406 4.42 0.47
amazon0505 4.10E+5 | 2.44E+6 | 1.21E4+10 | 9.63E408 | 2.19E4-08 | 3.30E+06 | 1.91E4+07 | 4.36E4-06 4.75 0.48
amazon0601 4.03E45 | 2.44E+6 | 1.11E410 | 9.41E408 | 2.17TE+08 | 3.22E4-06 | 1.92E+07 | 4.42E406 4.74 0.48
as-skitter 1.70E+6 | 1.11E+7 | 9.64E+13 | 8.19E+11 | 1.62E411 | 4.27E410 | 1.96E+10 | 1.49E+08 5128.93 2.7
cit-Patents 3.77TE+6 | 1.65E+7 | 6.11E+9 | 6.54E4-09 | 5.52E4+08 | 2.69E+08 | 6.28E4-07 | 3.50E4-06 46.46 3.33
flickr 1.86E+6 | 1.56E+7 | 1.90E+13 | 6.89E+12 | 1.18E+11 | 1.18E+11 | 2.30E+11 | 2.67TE+10 | 217274.39 2.53
livejournal 5.28E+6 | 4.87E+7 | 4.46E+12 | 1.14E4+12 | 1.26E+411 | 5.21E+09 | 1.90E+10 | 1.14E410 11894.63 6.86
orkut 3.07TE4+6 | 2.24E+8 | 9.78E+413 | 1.86E+13 | 1.51E+12 | 7.01E410 | 4.78E+10 | 3.22E409 70966.96 16.24
web-BerkStan | 6.85E+5 | 6.65E+6 | 3.82E+14 | 3.14E+10 | 4.76E+11 | 2.53E+10 | 9.86E+410 | 1.07E+409 6462.56 3.77
web-Google 8.76E+5 | 4.32E+6 | 6.50E411 | 4.06E4+09 | 6.72E+09 | 3.80E4-07 | 3.82E+08 | 3.99E407 52.29 0.88
web-Stanford | 2.82E+5 | 1.99E+6 | 2.51E+4+13 | 1.28E+410 | 5.08E+10 | 4.48E+09 | 8.60E409 | 7.88E407 831.50 1.76
wiki-Talk 2.39E+6 | 4.66E+6 | 1.92E+14 | 1.17TE4+12 | 6.41E+410 | 9.24E+08 | 1.03E+09 | 6.49E+407 1346.76 1.04
youtube 1.16E+6 | 4.95E+6 | 5.73E+12 | 9.156E+10 | 1.24E410 | 2.32E4-08 | 2.22E408 | 4.99E+06 141.78 0.61
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Figure 4: Increasing number of samples decreases error: Each blue dot is an output of a run of the algorithm with the number

of samples in the z-axis. The red line is the true count.

All these methods are quite general and work for motifs
of any size. These algorithms are more general than our ap-
proach. But our focus on the specific six subgraphs in Fig. 1
allows for the design of faster and more accurate algorithms,
that work better than these generic methods.

For a fair comparison, all running times for previous algo-
rithms are for estimating frequencies of only the cycle-based
motifs. (We are being conservative here, since we compare
with the entire time for 3-path sampling.) Both GUISE
and GRAFT take as input a number of samples. We ran
GUISE for 10 million samples, since for fewer samples, the
errors were usually around 100%. At 10 million samples, the
running time was more than the enumeration cost (usually
over 5 times that), so we simply terminated. We increased
the number of samples for GRAFT until the errors were
within 5% or the running time became larger than 5 times
the enumeration cost. For moderately sized graphs, the enu-
meration running time is typically 2-3 orders of magnitude
more than that of 3-path sampling. Color coding takes no
parameters, and uses 4 colors.

Our results are summarized in Fig. 7 (running time com-
parison) and Tab. 4 (accuracy comparison). For ease of pre-
sentation, we focus on 4 graphs: as-skitter, cit-patents, web-
Stanford, and wiki-Talk. These range from a million to 10
million edges. Our results were similar on other graphs.
We present results for a single run of each algorithm. (We
ran for numerous iterations, and all results were consistent.)
In summary, our algorithm is many orders of magnitude
faster and more accurate than these methods. We stress
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Figure 7: Runtimes of the existing algorithms normalized
with respect to runtimes of 3-path sampling algorithm

that these results are consistent with the literature, where
previous methods were only employed on graphs with about
100K edges.

Scalability and speed. Previous works either leverage
Map-Reduce clusters or max out at a million (or so) edges.
Our 3-path sampler runs on a single commodity machine
with 64GB memory, and easily handles graphs with more
than a hundred million edges.

Running time comparisons are in Fig. 7, where for each graph,
we normalize by the running time of 3-path sampler. This
figure is limited to only moderate sized graphs due to large
runtimes of the other algorithms. At about a million edges,
3-path sampling is already hundreds of times faster than
other algorithms. (As we explain in the next section and
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Figure 5: Comparing the accuracy of estimations using basic 3-path sampling and centered 3-path sampling

Tab. 4, the accuracy of 3-path sampling is much better than
GRAFT and GUISE, and comparable to color coding.) We
note that our enumeration code is actually competitive with
existing sampling algorithms. Color coding is consistently
(a little) faster than enumeration. GUISE and GRAFT do
not yield accurate approximations even when run for many
multiples of the enumeration time. We believe that this is
an issue of scale, since previous algorithm were not run for
graphs with many millions of edges.
We provide some explanations for these runtimes. GRAFT
provides a speedup over edge iteration enumeration proce-
dures. However, edge-iteration algorithms are not the best
methods for enumeration, as is well-known for triangle enu-
meration [29, 3]. Enumeration using vertex orderings is sig-
nificantly faster. The same principles to apply to count-
ing 4-vertex patterns. For small sizes (100K edges or less),
GRAFT may give improvements over the best enumeration,
but this is not true for larger sizes.
GUISE estimates the relative frequencies of the motifs, not
the exact frequencies. GUISE has to perform relatively long
random walks before it can obtain samples from the station-
ary distribution. This limits the number of samples that can
be made. More problematically, the universe from which
GUISE samples from uniformly is prohibitively large. In
particular, focusing only on 4-vertex motifs, we see that (say
for as-Skitter), the fraction of cliques in the universe of 4-
vertex motifs is less than 107%. This means that roughly a
million samples are needed to witness a single 4-clique, and
the square of a million samples to estimate accurately.
Color coding is hindered by the sheer size of the output.
Color coding cuts down the set of motifs by enumerating
only polychromatic motifs (i.e. all vertices with distinct
colors), but this set is still quite large. In particular, for
4-vertex motifs, the reduction of the output is only of the
order of one-tenth (or 3/32 to be precise — the probability
that four vertices of a motif all get different colors when us-
ing 4 colors). This means enumerating over a billion motifs
in as-skitter, for example. There is also the extra overhead
of actually searching through neighborhoods to perform this
enumeration. We do see that color coding provides some
benefit over enumeration, and is probably the best algorithm
for 4-vertex pattern counting among previous work.
Accuracy. We present the accuracies of the various al-
gorithms in Tab. 4. We focus on 4-clique counts for brevity.
Even after running for times more than enumeration, GRAFT
and GUISE give low accuracies. GUISE generally fails to
even find a 4-clique, and GRAFT has not processed enough
samples to converge. Color coding is extremely accurate,
and 3-path sampling is competitive. But the running time
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Table 4: Relative error in 4-clique count. For GUISE, we
choose 10M samples. For GRAFT, we report the errors after
running the algorithm for up to 5 times the enumeration
time.

3-path | Color Coding | Graft | Guise
as-skitter 0.7 0.1 95 99
cit-Patents 0.7 0.4 78 54
web-Stanford 0.8 0.8 29 99
wiki-Talk 0.3 0.5 5 99

of color coding is a hundred to thousand times that of 3-path
sampling on these instances.

7. CONCLUSIONS AND FUTURE WORK

We get accurate results for all 4-vertex motif frequencies
on a large number of graphs, and believe this is useful for
motif analyses. Previous work usually focuses on a small,
specific set of larger motifs [19, 4, 42], or gives coarser ap-
proximations for more motifs [5]. It is natural to ask if we
can extend this sampling scheme further to estimate counts
of 5-vertex (or even higher order) motifs.
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