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1. INTRODUCTION 

One of the most fundamental quantities in linear algebra is the rank of 
a matrix. This is a well understood, easy to compute number. The purpose 
of this paper is to study a higher dimensional analogue, namely the rank of 
a three-dimensional tensor. 

Let us define this number before we continue. For comparison we first 
give a slightly unusual definition of matrix rank. A matrix is a two-dimen- 
sional array of numbers. It has rank 1 iff it can be written as the outer 
product of two vectors. By this we mean that there are vectors x and y 
such that mij = xiyj. The rank of a general matrix M is now the minimal 
number of rank 1 matrices Mi such that M = CM,. In the same way, a 
three-dimensional tensor is a three-dimensional array of numbers. It has 
rank 1 iff it can be written as the outer product of three vectors and the 
rank of a general tensor T is the minimal number of rank 1 tensors T. 
such that T = CT. 

Despite the fact that the rank of a tensor is a very natural object, our 
knowledge of its properties is surprisingly limited. For instance, it does not 
seem to be known in any field what the maximal rank of an n x 12 x n 
tensor is. In this paper we prove that over most fields it is NP-hard to 
compute the rank of a tensor. Thus unless NP = P there will no easily 
computable characterization of rank and, furthermore, if NP # coNP 
there will be no easy to verify characterization of the property “having 
rank at least r.” These facts might explain at least partly the lack of 
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progress in the study of tensor rank. One can here draw a parallel with 
graph theory where the NP-complete problem of Hamiltonian circuit has 
been much more elusive than many other properties of graphs. 

In spite of the interesting and natural questions above, our main 
motivation to study tensor rank is its connection with the multiplicative 
complexity of collections of bilinear forms. It is well known (see, for 
instance, [Sll) that the rank of the corresponding tensor is exactly equal to 
minimal number of multiplications needed to compute a collection of 
bilinear forms by a bilinear noncommutative algorithm. Our interest in 
tensor rank was initiated by an effort to prove lower bounds on this 
measure of complexity. With this in mind, our present result has some 
negative implications. Unless NP = coNP there will not be any optimal, 
easy to verify, lower bound proof techniques for the complexity of general 
bilinear forms. It is very amusing to observe how complexity theory bites 
its own tail in this argument. On the other hand, one should not be too 
pessimistic. It is still possible that it is easier to prove close to optimal 
lower bounds or that the bilinear forms we are interested in will be easier 
to handle than general bilinear forms. In particular, in view of the 
enormous efforts spent on obtaining upper bounds on the complexity of 
matrix multiplication (the current champion is [CW]) it would be very 
interesting to improve the lower bounds beyond 2n2 - 1 in the general 
case [AS] and beyond 2.5~~ - o(n2) in the GF(2) case LB]. 

The fact that estimating the number of multiplications when computing 
bilinear forms was NP-complete has been proved before in some restricted 
cases. In particular, when no subtraction is allowed and only the constants 
0 and 1 may be used the result was proved by Gonzalez and Ja’Ja’ [GoJ]. 
These restrictions, however, make the nature of the problem much more 
combinatorial and NP-completeness comes easier. Our result was conjec- 
tured in their paper. This is the journal version of the conference paper 
[HI. The conference paper contains a longer, more selfcontained proof of 
the main theorem and hence that might be easier to read for the 
non-expert. 

2. MAIN RESULT 

We will be working with three-dimensional tensors and we will use the 
notation T = (tijk), where i will range from 1 to n,, j will range from 1 to 
n2, and k will range from 1 to n3. The matrix obtained by fixing the eth 
coordinate to a given value will be called an e-slice of T. Let us now make 
a formal definition. Let F be,a field. 

Tensor rank our F. Given numbers in F, tijk, where 1 I i I n,, 1 I j I 
n2, and 1 I k I n3 and an integer r. Are there vectors v$‘), 1 I 1 5 r, 
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1 I e I 3, where ZIP” E F”e such that tijk = C;,,v’,‘)(i)u’:)(j)v~)(~) for all 
i, j, k? 

We will sometimes write the last equation as 

dropping the indices i, j, and k. We will use the phrase “M appears in the 
expansion of T,” if M is a rank 1 matrix and M is a scalar multiple of the 
outer product of L$) and u$) for some 1. The pair of indices e, and e2 will 
be clear from the context. The rank of T will be denoted by r(T). 

Now we can state our main theorem. 

THEOREM 1. Tensor rank is NP-complete for any finite field and NP-hard 
for the rational numbers. 

Proof. First observe that it is easy to verify the problem is in NP for a 
finite field, since we have no trouble guessing the vectors @. Over the 
rational numbers there might be some problem that the number of bits 
needed to specify these vectors might be large. 

We now reduce 3SAT which is known to be NP-complete [Cl (cf. [GaJ]) 
to tensor tank. 3SAT is the problem of given a Boolean formula of n 
variables in CNF-form with at most three variables in each of m clauses, is 
it possible to find a satisfying assignment for the formula. We transform 
this to the problem of computing the rank of a tensor T of size (2 + n + 
2m) X 3n X (3n + m). T has the following 3-slices: 

1. n variable matrices y 
2. n help matrices Si 

3. n help matrices Mi 

4. m clause matrices C,. 

Let us describe these matrices in detail: 

vi. The matrix y has a 1 in positions (1,2i - 1) and (2,2i) while all 
other elements are 0. 

Si. The matrix Si has a 1 in position (1,2n + i) and is otherwise 0. 
Mi. The matrix Mi has a 1 in positions (1,2i - l>, (2 + i,2i), and 

(2 + i, 2n + i) and is 0 otherwise. 
C,. Let xi be a vector with only a 1 in position 2i - 1 and let fi be a 

vector with 1 in positions 2i - 1 and 2i. Now we can identify literals with 
vectors. Suppose the clause c, contains the literals ul, u2, and us. Then 
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we define the matrix C, as follows: 
Row 1 is the vector ul. 
Row 2 + n + 21 - 1 is the vector - u, u2. 
Row 2 + n + 21 is the vector u1 - ug. 

Before we continue let us give an example and the intuition behind the 
construction. Let us construct the tensor corresponding to three variables 
and the two clauses (x, V x2 V x,) A (X, V T, V X,): 

‘1 0 0 0 0 0 0 0 0’ 
010000000 
000000000 
000000000 

v~=ooooooooo, 
000000000 
000000000 
000000000 

\o 0 0 0 0 0 0 0 0, 

v, = 

v, = 

s, = 

0 0 1 0 0 0 0 0 o\ 
000100000 
000000000 
0 0 0 0 0 0 0 0 0 
000000000, 
000000000 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 o/ 

000010000 
000001000 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
000000000 
000000000 
0 0 0 0 0 0 0 0 0 
000000000 
.o 0 0 0 0 0 0 0 0 

000000100 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
000000000 
000000000 
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s, = 

s, = 

M, = 

‘0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 
000000000 
000000000 
000000000 
0 0 0 0 0 0 0 0 0 
000000000 
000000000 

GO 0 0 0 0 0 0 0 0 

000000001 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
000000000 
0 0 0 0 0 0 0 0 0 

100000000 
0 0 0 0 0 0 0 0 0 
010000100 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
000000000 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

(0 0 1 0 0 0 0 0 0 
000000000 
000000000 
000100010 

M,=OooOOOOOo 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
000000000 

\o 0 0 0 0 0 0 0 0 

JO 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
000000000 

M,=OooOo1oo1 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

\o 0 0 0 0 0 0 0 0 



c, = 

i 

f 1 
0 
0 
0 

c,= 0 
0 
0 
1 

\ 1 
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0 0 
0 0 
0 0 
0 0 
0 0 
0 -1 
0 0 
0 0 
0 0 

1 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 -1 
1 0 

- 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 -1 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
1 0 0 0 
0 -1 -1 0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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Let us explain the idea behind the construction. As can be seen from 
the example, the 3-slices are fairly independent in the sense that they have 
very few common nonzero elements. Now use the characterization that the 
rank is the minimal number of rank 1 matrices Ni such that any of the 
above 3-slices can be written as a linear combination of the Ni. By 
the above-mentioned independence the same rank 1 matrix cannot be 
useful in too many places. In particular, the matrices Mi and Si make sure 
that the matrices K are written as a sum of two matrices using one of the 
two equations 

We get a matrix whose only nonzero row is the first and that takes value 
xi or fi. Then one only needs the fact that one of these is helpful for 
obtaining C, iff the literal appears in the corresponding clause. Let us now 
make this formal. We have: 

LEMMA 2. The constructed tensor has rank 4n + 2m iff the formula is 
satisfiable. Otherwise the rank is larger. 

Remark. Clearly Lemma 2 implies Theorem 1. 

Proof. Let us first prove that if the formula is satisfiable the rank is at 
most 4n + 2m. Let xi = ai be a satisfying assignment. We now construct 
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4n + 2m rank 1 matrices such that the F, Si, M,, and C, can be written as 
linear combinations of these matrices: 

Matrices K.(l) and Kc*), where V(l) has first row equal to xi iff oyi = 1 
and otherwise -Fj. All the other row; are 0. We set l$@) = F - V,(l). 

Matrices Si. 
Matrices M!‘), where A4,“) = Mi - VI:(‘) if (yi = 1 and Mj’) = iVi - 

VI’) - Si if cfi =I 0. I 
Matrices Cj” and C, . (2) Let x. = (Y~ be the assignment that makes the 

clause c1 true. Then C1 - K (I) has rank 2, since either it has just two 
nonzero rows (in the case where xi is the first variable in the clause) or it 
has three nonzero rows of which two are equal. In both cases we just need 
two additional rank 1 matrices. 

The total number of rank 1 matrices sufficient is 2n + IZ + 12 + 2m = 
4n + 2m and thus the rank of the constructed tensor is at most 4n + 2m 
when the formula is satisfiable. That the rank is exactly 4n + 2m is not 
needed for the NP-completeness proof but will follow from the argument 
below showing that the rank is greater than 4n + 2m when the formula is 
not satisfiable. Let us now turn to proving the lower bound. 

In T the l-slices corresponding to i = 3,4,. . . , n + 2m + 2 are all of 
rank 1 and are linearly independent, hence by [HK, Lemma 21, these slices 
can all be made to appear in a minimal expansion of T. We do not know 
what multiples of these matrices are to be subtracted from the first two 
l-slices and we hence leave these as variables for the moment. We obtain 

r(T) = II + 2m + min r(F), 

where f is a 2 x 3n x (3n + m) tensor described by the following 3-slices: 

The matrices F and Si truncate to two rows. 
Matrices Gi. The first row of ki is eZi-, + k,‘(e,, + e2n+i), while the 

second row is kf(e,, + e2n+i). 

Matrices C,. The first row of Cl is (1 + ci + cf)ui - c:u2 - cFu3 and 
the second is (dj + dF)u, - diu, - dfu,. 

Here kj, kf, c:, c;, d:, and df are independent scalar variables, and the 
minimum is taken over these variables. 

Now we observe that the 3-slices .Si are of rank 1 and can hence be 
made to appear in the expansion of T (by [HK]). The question is only in 
what multiples of Si they will be subtracted for the other matrices. To 
determine these coefficients let us prove a lemma. 
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LEMMA 3. Zf the second row of any A& Ls nonzero then the rank of FLY at 
least 3n + 1. 

Proof. Suppose without loss of generality that the second row of M, is 
nonzero. After we have subtracted suitable multiples of Si from all other 
3-slices we have 3-slices 5, i = 1,. . . , n, and Hi (and some other matri- 
ces). We claim that the tensor, T’, given by these (n + 1) 3-slices already 
have rank at least 2n + 1 and this obviously implies the lemma. We know 
that in the first 2n columns the 5 look like the original y and, further- 
more, in position (2,2n + 1) they all have a 0. On the other hand, a, has 
a nonzero element in this position by the assumption that the second row 
of A?, was nonzero. Consider the first (2n + 1) 2-slices, Bj, j = 1, , . . , 
2n + 1, of ?’ (these are now matrices of size 2 X (n + 1)): 

B, has a 1 in positions (1,l) and (1, n + 1) and. is otherwise zero. 

B, has k: in position (1, n + l), 1 in position (2, l), k f in position 
(2, n + 1) and is zero otherwise. 

B2i-1T 2 I i I n has a 1 in position (1, i) and is zero otherwise. 

Bzi, 2 I i I n, has a 1 in position (2, i) and is zero otherwise. 

B 2n + i has unknown first row, while the second row is 0 except that in 
position n + 1 it has the entry kf which, by assumption, is nonzero. 

We claim that these matrices are linearly independent. It is clear that 
Bi, 1 I i I 2n, are linearly independent since they each have precisely 
one 1 in the first n columns and these ones are placed in different 
positions. Our only problem is that B,, + i might be a linear combination 
of the other Bj. But since the second row of B2n+l has zeros in the first n 
positions this would have to be a linear combination of the odd indexed 
matrices. But all these matrices have a zero position (2, n + l), where 
B zn+i has a nonzero element and hence the Bj are linearly independent. 
This implies that the rank of ? is at least 2n + 1, since if the rank is r we 
can only get r linearly independent 2-slices in the tensor. The proof of the 
lemma is complete. 0 

Since for T to have rank n + 2m, ? must have rank 3n, we can assume 
that kf = 0 for all i. Now if we subtract k: times Si from ai and leave 
the other 3-slices as they are we make all 2-slices for j > 2n identically 0. 
All other choices would not change the first 2n 2-slices and make some 
other 2-slice nonzero. Such a choice could clearly only increase the rank. 
Thus, we obtain 

r(T) = 2n + 2m + min r(T), 
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where T is a tensor of rank 2 x 2n x (2m + 2n) given by the following 
3-slices: 

V;: (the original matrices truncated); 

II?. The first row of i&ii is eZi-, + k,‘e,,. The second row is 0; 

Matrices Cl. The first row of C, is (1 + c: + cF)u, - c:u2 - CHUM and 
the second is (di + d:)u, - d:u, - d&; 

where the minimum is taken over the constants cp, d;, and ki. The entire 
question is reduced to the question whether the tensor T can have rank as 
low as 2n. 

Since the Mi have rank 1 and are linearly independent, they can all be 
made to appear in the expansion of T. Next we have 

LEMMA 4. For any k we can assume that V, - &?k as well as all the ai 
appear in the expansion of ?;. 

Proof. Observe first that the matrix V, - Mk has rank 1. Now assume 
that it does not appear in the expansion. Then V, is written as a linear 
combination of the occurring rank 1 matrices -vk = Cy,,ajNj.-We already 
know that &?k appears in the expansion of T. Thus V, - Mk is also a 
linear combination of the chosen Nj. FurthermoE, this linear combination 
does not only contain matrices mi, since V, - Mk is linearly independent 
of these matrices. Hence we can eliminate one of the Nj which is not 
equal to Mi for any i and introduce y - Mi. The lemma follows. 0 

We need a slight extension of Lemma 4. 

LEMMA 5. 
ai 

We can assume that all the matrices v1: - Hi as well as all the 
appear in the expansion of T. 

Proof. This follows by basically the same proof as that for Lemma 4. 
Only observe that, since the matrices are linearly independent, we can 
introduce them one by one in the expansion without eliminating previously 
inserted matrices. 0 

Thus the question whether T has rank 2n is equivalent to whether Cl 
can be written as a sum of the matrices @ and 4 - mi. We have the 
following claim 

Claim. If C, can be written as a linear combination of ai and-5 - @ 
then the second row of C, is 0 and the first row of one of the Mi is ui, 
where ui is one of the literals appearing in cl. 

To see the first part of the claim, observe that if the second row of a Cl 
is nonzero then it contains a nonzero element in an odd position. On the 
other hand, both ii?, and I( - ai have zeros in all odd positions on the 
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second row. This proves the first part of the claim. Observe that this 
implies in particular that only ~i’S appear in the sum giving C,. 

To establish the second part, let uj be a literal belonging to the variable 
xi which appears in the first row of C, with a nonzero coefficient. Since 
only Mi of all the R matrices has nonzero elements in either of the 
positions (1,2i - 1) or (1,2i), ai must be used to cancel these elements. 
Thus the first row of ai>ust be a multiple of ui and, since the element in 
position (1,2i - 1) of iVi is 1, this multiple must be 1. We have estab- 
lished the claim. 

Cl 
To complete the proof of Lemma 2 we just have to observe that if all the 

can be written as a sum of the @ and the 5 - @ then we get a 
satisfying assignment for the original formula by setting xi = 1 if i& has 
first row xi and xi = 0 otherwise. This completes the proof of Lemma 2 
and hence of Theorem 1. 0 

3. DIRECTIONS FOR FURTHER RESEARCH 

The fact that tensor rank is NP-complete should not deter us from 
trying to prove lower bounds for the number of multiplications needed to 
compute collections of bilinear forms. In particular it would be very 
interesting to obtain nonlinear lower bounds for any natural problem, in 
particular for a well studied problem like matrix multiplication. 

Maybe in the quest for lower bounds it would be helpful to study the 
concept of tensor rank as a mathematical subject rather than just pushing 
at the lower bound problem. Here a fundamental question is to determine 
the maximal rank of an IZ X )2 x n tensor. It is known to be between 
roughly n2/2 and n2/3. For further information see [S2] and the refer- 
ences therein. 
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