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SUMMARY

Today, compact and reduced data representations using low rank data approximation are common to repre-
sent high-dimensional data sets in many application areas as for example, genomics, multimedia, quantum
chemistry, social networks, or visualization. To produce such low rank data representations, the input data
is typically approximated by the so-called alternating least squares (ALS) algorithms. However, not all of
these ALS algorithms are guaranteed to converge. To address this issue, we suggest a new algorithm for the
computation of a best rank one approximation of tensors, called alternating singular value decomposition.
This method is based on the computation of maximal singular values and the corresponding singular
vectors of matrices. We also introduce a modification for this method and the ALS method, which ensures
that alternating iterations will always converge to a semi-maximal point (a critical point in several vector
variables is semi-maximal if it is maximal with respect to each vector variable, while other vector variables
are kept fixed). We present several numerical examples that illustrate the computational performance of the
new method in comparison to the ALS method. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we consider the best rank one approximation to real d-mode tensors T = [t;, ... ;,] €
R™1>-Xma e  d-dimensional arrays with real entries.

As usual, when studying tensors, it is necessary to introduce some notation. Setting [m] =
{1,...,m} for a positive integer m, for two d-mode tensors 7, S € R"1*--*™Md we denote by

(T,S) = Z til ..... igSit iy
ij€lm;ljeld]

the standard inner product of 7, S, viewed as vectors in R 1"2"d For an integer p < d, r € [p]
and for X, = [X1j,, .. Xm;, | ;-]T € R™ir, we use the standard mathematical notation

R, relplXj, ‘=Xj; ® ... QXj, =[t;,.;,] € R™1 Py tiy iy = Xig,j1 - Xipjp-

(See for example [1, Chapter 5]. In [2], x®y is denoted as xoy and is called vector outer product).
For a subset P = {ji,....,jp} C [d] of cardinality p = |P]|, consider a p-mode tensor

X = [xijl i ] € R™1™*™Mip where j; < ... < j,. Then we have that 7 x X :=

..........
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BEST RANK ONE APPROXIMATION 943

iji»....1j,. For example, if T = [t; ;%] € R™ <l apnd x = [X1,...,xm]T € R"z =
[Z1,...,27]"T € R, then T x (x ® ) := > iem)kel tij kXiZk, and it is viewed as a column
vector in R”. Note that for 7, S € R™1*-*™d we have (T,S) =T x S.

For x € R”, we denote by [|x|| the Euclidian norm and for A € R™*" by [|A| = maxjyj=1 || Ax]|
the associated operator norm. Then it is well-known, see for example, [3], that the best rank one
approximation of A is given by oju;v!, where o7 = | A| is the largest singular value of A4,
and uy,v; are the associated left and right singular vectors. Because the singular vectors have
Euclidian norm 1, we have that the spectral norm of the best rank one approximation is equal to
o = [l A4].

To extend this property to tensors, let us for simplicity of exposition restrict ourselves in this
introduction to the case of 3-mode tensors 7 € R”*"*/_ Denote by S”~! := {x e R™, |x|| = 1}
the unit sphere in R”, by S(m, n, 1) the set S~ xS"~1xS/~1, and introduce for (x,y, z) € S(m, n,1)
the function f(x,y,z) := (7T,X® y ® z). Then computing the best rank one approximation to 7 is
equivalent to finding

max (X, ¥,2) = f(Xe, ¥, Zs). (1.1
(x,y,z)€S(m,n,l)

The tensor version of the singular value relationship takes the form [4]
Tx(y®z)=Ax, T x(xQz) =1y, T X (XQYy) = Az, (1.2)

where ||x|| = |lyl| = ||z|]| = 1, and A is a singular value of 7.

Let us introduce for p € {1, 2} the concept of a p-semi-maximum of f restricted to S(m,n,[). For
p = 1, the p-semi-maximal points X.,y«,Z« of f are the global maxima for the three functions
F(X, Y%, 24), f(X5,¥,2+), and f(X«, ¥x,z) restricted to S”1, $*~1, and S/~!, respectively. For
p = 2, the p-semi maximal points are the pairs (Y, Z«), (X«,Z«), and (X, y«) that are global
maxima of the functions f(X«,y,z), f(X,¥x,2), and f(X,y,zs) on 8" ! x §l=1 gm=1 5 §l=1 and
Sm=1 x S"~1, respectively. We call (X«,¥x,Z«) a semi-maximum if it is a p-semi-maximum for
p = 1lor p =2, and it is clear how this concept of p-semi-maxima extends to arbitrary d-mode
tensors with p = 1,2,...,d — 1. In the Appendix, we discuss in detail 1 local semi-maximal points
of functions.

Many approaches for finding the maximum in (1.1) have been studied in the literature, see for
example, [2]. An important method, the standard alternating least square (ALS) method, is an
iterative procedure that starts with xo € S”~!,yo € S"71,z¢ € S'~!, where f(Xo,yo.Zo) # 0 and
then defines the iterates x;, y;, z; via

o = L X0i-1®2i-1) yi = TxEi®zi1) _ TxX®y)
T x i ®zi—)” T ITx i @zi—)T T T x (xi @yl

fori =1,2,...,.
Note that for all i € N, we have

(1.3)

JSXic,Yi—1,Z2i—1) < f(X,Yi—1,2i—1) < f(X,¥i,2i—1) < f(Xi,Y¥i, %),

thatis, f(X;,Yi,Z;) is monotonically increasing and thus converges to a limit, because f is bounded.
Typically, (x;,Yi,Z;) will converge to a semi-maximum (X, y, z) that satisfies (1.2), however, this is
not clear in general [2]. To overcome this deficiency of the ALS and related methods is one of the
results of this paper.

We first discuss an alternative to the ALS algorithm for finding the maximum (1.1), where, each
time, we fix only one variable and maximize on the other two. Such a maximization is equivalent
to finding the maximal singular value and the corresponding left and right singular vectors of a
suitable matrix, which is a well-established computational procedure [3]. We call this method the
alternating singular value decomposition (ASVD). Next, we introduce modifications of both ALS
and ASVD that are computationally more expensive, but for which it is guaranteed that they will
always converge to a semi-maximum of f.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:942-955
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944 S. FRIEDLAND ET AL.

Our numerical experimentation does not show clearly that ASVD is always better than ALS.
Because the standard algorithm for computing the maximal singular value of a matrix is a truncated
singular value decomposition (SVD) algorithm [3], and not ALS, we believe that ASVD is a very
valid option in finding best rank one approximations of tensors.

The content of the paper is as follows. In section 2, we recall some basic facts about tensors
and best rank one approximations. In section 3, we recall the ALS method and introduce the
ASVD procedure. The modification of these methods to guarantee convergence to a semi-maximum
is introduced in section 4, and the performance of the new methods is illustrated in section 5.
In section 6, we state the conclusions of the paper. In the Appendix, we discuss the notion of
local semi-maximality, give examples, and discuss conditions for which ALS converges to a local
semi-maximal point.

2. BASIC FACTS ON BEST RANK ONE APPROXIMATIONS OF d-MODE TENSORS

In this section, we present further notation and recall some known results about best rank one
approximations.

For a d-mode tensor 7 = [t;, .;,] € R™>>™Md denoted by |7 := /(7.T) the
Hilbert—-Schmidt norm. Denoted by S(m), the d-product of the sub-spheres 171 x ... x §Ma~1,
let (X1,...,Xg7) € S(m) and associate with (Xi,...,Xy) the d one-dimensional subspaces U; =

span(x; ), i € [d]. Note that
| @icarxill = [T Ixill = 1.
ield]

The projection Pg, ., u;(7) of T onto the one-dimensional subspace U = ®;ea1U; C

®ie[a)R™ is given by
SX1, . 0Xg0) Qiefa1 Xin [ (X1,...,Xq) = (T, ®ic[a1Xi)» (X1,...,Xg) € S(m). 2.1

Denoting by P(@ie[d]Ui)J‘ (T), the orthogonal projection of 7 onto the orthogonal complement of

®;e[a)Ui, the Pythagoras identity yields that

IT1? = 1 Poy g, (I + 1 P, cpyun (DI 22
With this notation, the best rank one approximation of 7 from S(m) is given by

min min |7 —a ®; x; .
(X1,.-x7)€S(m) a€R I it i |

Observing that
min | 7= Sietay Xl = 17 = Poy i, (DI = | Plgy gy (DIl
it follows that the best rank one approximation is obtained by the minimization of
I P(@; crgyun+ (T In view of (2.2), we deduce that best rank one approximation is obtained by
the maximization of | Pg, a1 (7)|l, and finally, using (2.1), it follows that the best rank one

approximation is given by

o(T) := max f(X1,...,Xq). 2.3)
(X1 yeees xd)ES(m)
Following the matrix case in [5], o1 (7) is called the spectral norm, and it is also shown that the
computation of o1 (7) in general is NP-hard for d > 2.
We will make use of the following result of [4], where we present the proof for completeness.

Lemma 1
For T e R™1>>Md the critical points of f|gm), defined in (2.1), satisfy the equations
T x (®jeanyX;) = Ax; foralli €[d], (x1,...,Xq) € S(m), (2.4)
for some real A.
Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:942-955
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BEST RANK ONE APPROXIMATION 945

Proof
We need to find the critical points of (7, ®e[q1X;) Where (X1,...,Xgz) € S(m). Using Lagrange
multipliers, we consider the auxiliary function

g1, .. Xg) == (T. ®je(a1X;) — Y A;X;x;.
Jj€ld]

The critical points of g then satisfy
T % (®jelaniyX;) = Aixi, i €[d],

and hence (7, ® je[a1X,) = Aix; 'x; = A; forall i € [d] which implies (2.4). |

Observe next that (xg,...,Xg) satisfies (2.4) iff the vectors (£xi,...,+txy) satisfy (2.4). In
particular, we could choose the signs in (%X, ..., +X;) such that each corresponding A is non-
negative, and then these A can be interpreted as the singular values of 7. The maximal singular
value of 7 is denoted by 01(7) and is given by (2.3). Note that to each nonnegative singular value,
there are at least 2¢~! singular vectors of the form (£x,. .., £xy). So it is more natural to view
the singular vectors as one-dimensional subspaces U; = span(x;), i € [d].

As observed in [6], for tensors, that is, for d > 2, there is a one-to-one correspondence between
the singular vectors corresponding to positive singular values of 7 and the fixed points of an induced
multilinear map of degree d — 1.

Lemma 2
Let d > 2 and assume that 7 € R™1X--*"d = Agsociate with 7 the map F from R(m) :=
R™1 x ... x R™d to itself, where

F:=(F1,....Fy), Fi(uy,...,ug) =T X (®jea\iyu;). i €[d].

Then there is a one-to-one correspondence between the critical points of f'|gm) corresponding to
the positive singular values A and the nonzero fixed points of

F(u) =u. 2.5

Namely, each (X1,...,Xg7) € S(m) satisfying (2.4) with A > 0 induces a fixed point of F of
the form

—1
(uy,...,ug) =A7-2(Xq,...,Xgq).

Conversely, any nonzero fixed point satisfying (2.5) induces a d-set of singular vectors
(X1,...,Xq) = m(ul, ...,ug) € S(m) corresponding to A = |u; || ~“~2),

In particular, the spectral norm o;(7) corresponds to a nonzero fixed point of F closest to
the origin.

Proof
Assume that (2.4) holds for A > 0. Dividing both sides of (2.4) by /\%, we obtain that
(ug,...,uy) = )&d__—lz(xl, ...,Xg4) is a nonzero fixed point of F.

For the converse, assume that (uj,...,uy) is a nonzero fixed point of F. Clearly, u,-Tu,- =
(T, jeraqu;) fori € [d]. Hence, [ui|| = ... = [lug|| > 0and (x4,...,Xg) = m(ul,...,ud) €
S(m) satisfies (2.4) with A = [Ju; || ~¢~2),

The largest positive singular value of 7 corresponds to the nonzero fixed point (uy,...,uy),
where Y, g1 [ui [I* = d|luy || is the smallest. O

We also have that the trivial fixed point is isolated.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:942-955
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Proposition 3
The origin 0 € R(m) is an isolated simple fixed point of F.

Proof
A fixed point of F satisfies

u—F(u) =0 (2.6)

and clearly, u = 0 satisfies this system. Observe that the Jacobian matrix D(u — F(u))(0) is the
identity matrix. Hence, the implicit function theorem yields that 0 is a simple isolated solution
of (2.5). |

In view of Lemma 2 and Proposition 2.6, to compute the best rank one tensor approximation, we
will introduce an iterative procedure that converges to the fixed point closest to the origin.

In [7], the following results are established. First, for a generic 7 € R™1**™Md  the best
rank one approximation of 7 is unique. Second, a complex generic 7 € C™1**™d hag a finite
number v(my,...,mg) of singular value tuples and the corresponding ‘singular complex values’
A. We now consider the ‘cube’ case where my = ... = myg = m. Then v(m,...,m) is different
from the number of complex eigenvalues computed in [8]. Finally, for a generic symmetric tensor
T e R™*>™ the best rank one approximation is unique and symmetric (the fact that the best rank
one approximation of a symmetric tensor can be chosen symmetric is proved in [6].)

3. THE ALS AND THE ASVD METHOD

In this section, we briefly recall the alternating least squares (ALS) method and suggest an analogous
ASVD method.

Consider 7 € R™1*->™a \ {0} and choose an initial point (Xj0,...,X70) € S(m) such
that f(X10,...,X70) 7# 0. This can be done in different ways. One possibility is to choose
(X1,0..-..X70) € S(m) at random. This will ensure that with probability one, we have
f(X1,0,....X4,0) # 0. Another more expensive way to obtain such an initial point (X g, ...,X4,0)
is to use the higher order singular value decomposition (HOSVD) [9]. To choose X; o, view T
lem” matrix A; by unfolding in direction i. Then x; is the left singular vector
corresponding to o1 (A4;) for i € [d]. The use of the HOSVD is expensive but may result in a better
choice of the initial point.

Given (X1 p,...,Xq,p) € S(m) for an integer p = 0, the points X; 41 € S™i~1 are then computed
recursively via

as an m; X

1
17" % (®5'_=11Xj,p+1 ® (®?=i+1xllp>> I

(TX ((®3~_=11Xj,p+1) ® (®?=i+1xj,p))) )

3.1)

Xip+1 =

fori € [d]. Each iterate of (3.1) is the solution of an optimization problem that is obtained by setting
the gradient of a simple Lagrangian to 0. Therefore, clearly, we have the inequality

f(Xl,p+1, <o Xi—1,p+1:Xips ... ,Xd,p) < f(Xl,p+1,---,Xi,p+1,Xi+1,p, ces ,Xd,p),

fori € [d] and p = 0, and the sequence f(X1,p,...,Xz, ), p =0, 1,...1is anondecreasing sequence
bounded by o1(7), and hence it converges.

Recall that a point (X; «,...,Xgz%) € S(m) is called a 1-semi maximum, if X; » iS a maximum
for the function f(Xqx,...,Xi—1 Xi,Xi+1%,--.,Xg.x) restricted to Smi—1 for each i € [d]. Thus,
clearly, any 1-semi maximal point of f is a critical point of f. In many cases, the sequence
(X1,p»---»Xg,p), p = 0,1,... does converge to a 1-semi maximal point of f, however, this is not
always guaranteed [2].

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:942-955
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An alternative to the ALS method is the ASVD. To introduce this method, denote for A € R™><¢
by u(4) € S 1, v(A) € S the left and the right singular vectors of A corresponding to the
maximal singular value o (A), that is,

w(A)TA=01(A)V(A)T, Av(A) = o1(A)u(A).

Because for d = 2, the singular value decomposition directly gives the best rank one approxima-
tion, we only consider the case d > 3. Let 7 = [t;,...;,] € R"™>>™d and X := (X1,...,Xg) €
S(m) be such that f(xy,...,Xg) # 0. Fix an index pair (i, j) with | <7 < j < d and denote by
X j the d — 2 tensor Qke[a)\(i,j1Xk- Then T x A; j is an m; x m; matrix.

The basic step in the ASVD method is the substitution

(xi,Xj) > (W(T x X ;),v(T x X j)). (3.2)

For example, if d = 3 then the ASVD method is given by repeating iteratively the substitution (3.2)
in the order

(2,3), (1,3), (1,2).

For d > 3, one goes consecutively through all pairs in an ‘evenly distributed way’. For

d

2

example, if d = 4 then one could choose the order
(1,2), (3.4), (1,3), 2.4, (L4, (23).

Observe that the substitution (3.2) gives o1 (7 x &; ). Note that the ALS method for the bilinear
form g(x,y) = x' (T x &;, 7)y could increase the value of g at most to its maximum, which is
01(T x &; j). Hence, we have the following proposition.

Proposition 4

Let 7 € R™1>>Ma \ {0} and assume that (X1,...,X;7) € S(m). Fix 1 <i < j < d and consider
the following three maximization problems. First, fix all variables except the variable x,, and denote
the maximum of f(X,...,Xg) overx, € S™»~! by a,. Then find a;, a ;. Next, fix all the variables
except X;,X; and find the maximum of f(xi,...,Xg) over (X;,X;) € Smi—Ll » §mi~1 which is
denoted by b; ;. Then b; ; = max(a;,a ;). In particular, one step in the ASVD increases the value
of f asleast as much as a corresponding step of ALS.

The procedure to compute the largest singular value of a large scale matrix is based on the Lanczos
algorithm [3] implemented in the partial SVD. Despite the fact that this procedure is very efficient
for matrices, each iteration of ALS is still much cheaper to perform than one iteration of (3.2).
However, it is not really necessary to iterate the partial SVD algorithm to full convergence of the
largest singular value. Because the Lanczos algorithm converges rapidly [3], a few steps (giving
only a rough approximation) may be enough to achieve an improvement in the outer iteration. In
this case, the ASVD method may even be faster than the ALS method; however, a complete analysis
of such an inner—outer iteration is an open problem. As in the ALS method, it may happen that a
step of the ASVD will not decrease the value of the function f, but in many cases, the algorithm
will converge to a semi-maximum of f. However, as in the case of the ALS method, we do not have
a complete understanding when this will happen. For this reason, in the next section, we suggest a
modification of both ALS and ASVD method that will guarantee convergence.

4. MODIFIED ALS AND ASVD

The aim of this section is to introduce modified ALS and ASVD methods, abbreviated here as MALS
and MASVD. These modified algorithms ensure that every accumulation point of these algorithms
is a semi-maximal point of f|gm). For simplicity of the exposition, we describe the concept for the
case d = 3, that is, we assume that we have a tensor 7~ € R™*"x/

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:942-955
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948 S. FRIEDLAND ET AL.

We first discuss the MALS. For given (x,y,z) € S(m,n,l) with f(x,y,z) # 0, the procedure
requires to compute the three values

L (Tx68
heyd=f (e )

L Tx(x®z)
fZ(XsysZ) _f (X, ”TX (X®Z)”,Z) s

ey TxG®Y
pisvn=1 (0 7 o)

and to choose the maximum value. This needs three evaluations of f.
The modified ALS procedure then is as follows. Let (Xq, Yo, Zo) € S(m,n,l) and f(Xo,¥o,Zo) #
0. Consider the maximum value of f;(Xo,Yyo,2o) for i = 1,2,3. Assume for example that this

value is achieved for i = 2 and lety; := %.

the new point (Xo,¥1,Zo) and consider the maximum value of f;(Xo,y1,Zo) for i = 1,2,3. This
needs only two f evaluations because f2(Xo,Yo,Zo) = f2(X0,¥1,Zo). Suppose that this maximum
is achieved for i = 1. We then replace the point in the triple (xo,y1,2o) With (X1,¥1,Zo) Where

= % and then as the last step, we optimize the missing mode, which is in this example,

i = 3. In case that the convergence criterion is not yet satisfied, we continue iteratively in the same
manner. The cost of this algorithm is about twice as much as that of ALS.
For the modified ASVD, we have a similar algorithm. For (x,y,z) € S(m,n,[), f(x,y,z) # 0, let

81 (X’ y. Z) :Zf(X,ll(TX X)’V(TX X))’
gz(X, Y, Z) I=f(u(TX y)’ Y, V(T X Y)),
g3(x,y,z) == (w(T x2),v(T x2),2),

which requires three evaluations of f. Let (Xo,Y0,Z0) € S(m,n,l) and f(Xo,y0,20) # 0 and
consider the maximal value of g;(Xo,Yo,Zo) for i = 1,2,3. Assume for example that this value is
achieved fori = 2. Letx; :=u(7 XYyo), 21 := V(7 XYo). Then we replace the point (Xg, Yo, Zo) With
the new point (X1, yo,Z;1) and determine the maximal value of g; (X1, ¥o,21) fori = 1,2, 3. Suppose
that this maximum is achieved for i = 1. We then replace the point in the triple (Xx1,yq,Z1) with
(X1,¥1,22) where y; =u(7 xX1),Z> = v(7T x Xx1) and if the convergence criterion is not met, then
we continue in the same manner. This algorithm is about twice as expensive as the ASVD method.
For d = 3, we then have the following theorem.

Then we replace the point (Xg, Yo, Zo) with

X1

Theorem 5
Let 7 € R™"*! be a given tensor and consider the sequence

(X;i,yi z;) € S(m,n,l) fori =0,1,..., 4.1

generated either by MALS or MASVD, where f(Xo,¥0,Zo) 7# 0. If (X«,¥x,2Z+) € S(m,n,l) is an
accumulation point of this sequence, then (X«,y«,Z«) € S(m,n,[l) is a 1-semi maximum if (4.1) is
given by MALS and a 2-semi maximum if (4.1) is given by MASVD.

Proof

Let (X«,Yx,Zx) € S(m,n,l) be an accumulation point of the sequence (4.1), that is, there exists a
subsequence 1 <ny <np <nz <...suchthat im;_oo(Xn;,¥n;,2n,;) = (X«,¥x, Z«). Because the
sequence f(X;,Y¥i,Z;) is nondecreasing, we deduce that lim; oo f(X;i,¥i,Zi) = f(X«, Y&, Zx) > 0.
By the definition of f; (X«, Y, Z+), it follows that

min{ f; (X«, Y4, Zx), J = 1,2,3} = f(Xs, ¥, Zs). (4.2)

Assume first that the sequence (4.1) is obtained by either ALS and MALS. We will point out
exactly, where we need the assumption that (4.1) is obtained by MALS to deduce that (X«, y«,Z«) €
S(m,n,l) is a 1-semi maximum.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:942-955
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Consider first the ALS sequence given as in (1.3). Then

SXi,yi-1,2i-1) = f1(Xi—1,¥i-1,Zi—1)
< f(xi,¥ir2i-1) = f2(Xi,Yi-1,2i—1) 4.3)
< f(x,yi,2i) = f3(X,Yi.Zi—1).

For any ¢ > 0, because fi(X,y,Zz) is a continuous function on S(m,n,[), it follows that for a
sufficiently large integer j that f1(Xn;,¥n;»Zn;) > f1(Xx,¥x,2+) — . Hence

S, ¥ao24) Z [ R j 41, Y041, Yn,41) Z J1(Xn 41,0, 2n;) Z [1(Xa, Yo 24) — 6. (44)

Because ¢ > 0 can be chosen arbitrarily small, we can combine inequality (4.4) with (4.2)
to deduce that f1(Xs«,¥x,2Zx) = f(X«, Yx,Z«). We can also derive the equality f3(X«,¥x,Zx) =
f(X«, ¥x, Z4) as follows. Clearly,

f(an»Ynj»an—l) < f3(an,Ynj,an—1) = f(an»Ynj»an) < f(an+laynj+laznj+1)

Using the same arguments as for f1, we deduce the equality f3(Xs,Ys,Zx) = f(Xu, Ysr Zx).
However, there is no way to deduce equality in the inequality f5(X«,Yx,Zx) = f(X«, Y« Z«) for the
ALS method because f>(x;,y,z;) = f(X;,u;,Z;), and u; is not equal to y; or y; 1.

We now consider the case of MALS. We always have the inequalities f;(x;,yi,z;) <
f(Xi+1,Yi+1,Zi+1) foreach j = 1,2,3 and i € N. Then the same arguments as before imply
in a straightforward way that we have equalities in (4.2). Hence, (X4, ¥«, Z«) is a 1-semi maximum.

Similar arguments show that if the sequence (4.1) is obtained by MASVD then gi (X«, Yx, Zx) =
f(X«, ¥x, Z4) for k € [3]. Hence, (X«, ¥x,Zx) is a 2-semi maximum. |

It is easy to accelerate the convergence of the MALS and MASVD algorithm in the neighborhood
of a semi-maximum via Newton’s method, see for example, [10].

Despite the fact that Theorem 5 shows convergence to 1 or 2-semi-maximal points, the monotone
convergence can not be employed to show convergence to a critical point and the following questions
remain open. Suppose that the assumptions of Theorem 5 hold. Assume further that one accumula-
tion point (X«, ¥«,Z«) of the sequence (4.1) is an isolated critical point of f|g(m.».1). Is it true that for
the MALS method and a generic starting value, the sequence (4.1) converges to (Xx«, Y«, Z«), Where
we identify —Xu, —¥«, —Zx With Xy, y«, Z« respectively? Is the same claim true for the MASVD
method assuming the additional condition

o1(T X X4) > 02(T X X4), 01(T X¥4) > 02(T X¥4), 01(T x24) > 02(T X 24)?

In the Appendix, we show that for specific initial values, convergence may not happen towards
the unique isolated critical point but towards other semi-maximal points. Our numerical results with
random starting values however, seem to confirm the convergence to the unique critical point.

5. NUMERICAL RESULTS

We have implemented a C++ library supporting the rank one tensor decomposition using
vmmlib [11], LAPACK and BLAS (Society for Industrial and Applied Mathematics, Philadelphia,
PA) to test the performance of the different best rank one approximation algorithms. The perfor-
mance was measured via the actual CPU-time (seconds) needed to compute the approximate best
rank one decomposition by the number of optimization calls needed and whether a stationary point
was found.

All performance tests have been carried out on a 2.8 GHz Quad-Core Intel Xeon Macintosh
computer with 16GB RAM.

The performance results are discussed for synthetic and real data sets of third-order tensors. In
particular, we worked with three different data sets: (i) a real computer tomography (CT) data set
(the so-called MELANIX data set of OsiriX), (ii) a symmetric random data set, where all indices
are symmetric, and (iii) a random data set. The CT data set has a 16 bit, the random data set an 8 bit
value range.
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All our third-order tensor data sets are initially of size 512x512x512, which we gradually reduced
by a factor of 2, with the smallest data sets being of size 4 x 4 x 4. The synthetic random data sets
were generated for every resolution and in every run; the real data set was averaged (subsampled)
for every coarser resolution.

Our simulation results are averaged over different decomposition runs of the various algorithms.
In each decomposition run, we changed the initial guess, that is, we generated new random start
vectors. We always initialized the algorithms by random start vectors, because this is cheaper than
the initialization via HOSVD. Additionally, we generated for each decomposition run new random
data sets. The presented timings are averages over 10 different runs of the algorithms.

All the best rank one approximation algorithms are alternating algorithms and based on the
same convergence criterion where convergence is achieved if one of the two following conditions:
iterations > 10; fitchange < 0.0001 is met. The number of optimization calls within one
iteration is fixed for the ALS and ASVD method. During one iteration, the ALS optimizes every
mode once, whereas the ASVD optimizes every mode twice. The number of optimization calls can
vary widely during each iteration of the modified algorithms. This results from the fact that multiple
optimizations are performed in parallel, whereas only the best one is kept and the others are rejected.

The partial SVD is implemented by applying a symmetric eigenvalue decomposition (LAPACK
DSYEVX) to the product AAT (BLAS DGEMM) as suggested by the ARPACK package.

With respect to the total decomposition times for different sized third-order tensors (tensor3s), we
observed that for tensor3s smaller than 643, the total decomposition time was below 1 second. That
represents a time range, where we do not need to optimize further. On the contrary, the larger the
tensor3s gets, the more critical the differences in the decomposition times are. As shown in Figure 1,
the modified versions of the algorithms took about twice as much CPU-time as the standard versions.
For the large data sets, the ALS and ASVD take generally less time than the MALS and MASVD.
The ASVD was fastest for large data sets but compared with (M)ALS slow for small data sets. For
larger data sets, the timings of the basic and modified algorithm versions came closer to each other.

Furthermore, we compared the number of optimization calls needed for the algorithms of ALS,
ASVD, MALS, and MASVD, recalling that for the ALS and the MALS, one mode is optimized per
optimization call, whereas for ASVD and MASVD, two modes are optimized per optimization call.
Figure 2 demonstrates the relationships of the four algorithms (color encoded) on three different data
sets (marker encoded) and the different data set sizes (hue encoded). As can be seen, the ASVD has
the smallest number of optimization calls followed by the ALS, the MASVD, and the MALS. One
notices as well that the number of optimization calls for the two random data sets are close to each
other for the respective algorithms. The real data set takes most optimization calls, even though it
probably profits from more potential correlations. However, the larger number of optimization calls
may also result from the different precision of one element of the third-order tensor (16 bit versus
8 bit values). Another explanation might be that it was difficult to find good rank one bases for a
real data set (the error is approximately 70% for the 5123 tensor). For random data, the error stays
around 63%, probably due to a good distribution of the random values. Otherwise, the number of
optimization calls followed the same relationships as already seen in the timings measured for the
rank one approximation algorithm. For data sets larger than 1283, the time per optimization call
stays roughly the same for any of the decomposition algorithms. However, the number of needed
optimization calls is largest for the MALS and lowest for the ASVD.

It is not only important to check how fast the different algorithms perform but also what quality
they achieve. This was measured by checking the Frobenius norm of the resulting decompositions,
which serves as a measure for the quality of the approximation. In general, we can say that the higher
the Frobenius norm, the more likely it is that we find a global maximum. Accordingly, we compared
the Frobenius norms to say whether the different algorithms converged to the same stationary point.
In Figure 3, we show the absolute differences of the average Frobenius norms achieved by the ALS,
ASVD, MALS, and MASVD. The differences are taken with respect to the ALS. As previously
seen, the results for the real CT data set and the two random data set differ. For the real data set, the
differences for the achieved qualities are much smaller. Moreover, we see that the achieved quality
for the ALS and the MALS are almost the same. A similar observation applies to the ASVD and
the MASVD, which achieve almost the same quality. We observed that all the algorithms reach
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Figure 1. Average CPU times for best rank one approximations per algorithm and per data set taken over
10 different initial random guesses.
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Figure 3. Differences of the achieved Frobenius norms by ALS, ASVD, MALS, and MASVD. The
Frobenius norm of the approximations per algorithm and per data set are averages taken over 10 different
initial random guesses.

the same stationary point for the smaller and medium data sets. However, for the larger data sets
(= 1283), the stationary points differ slightly. We suspect that either the same stationary point was
not achieved, or the precision requirement of the convergence criterion was too high. That means
that the algorithms stopped earlier, because the results are not changing that much anymore in the
case that the precision tolerance for convergence is 0.0001.

Finally, the results of best rank one approximation for symmetric tensors using ALS, MALS,
ASVD, and MASVD show that the best rank one approximation is also symmetric, that is, of the
form au ® v ® w, where u ~ v ~ w € S™~!. This confirms an observation made by Paul Van
Dooren (private communication), and the main result in [6], which claims that the best rank one
approximation of a symmetric tensor can be always chosen symmetric. The results of ASVD and
MASVD give a better symmetric rank one approximation, that is, u—v,u—w in ASVD and MASVD
are smaller than in ALS and MALS.

6. CONCLUSIONS

We have presented a new alternating algorithm for the computation of the best rank one approxi-
mation to a d-mode tensor. In contrast to the ALS method, this method uses an SVD in each step.
To achieve guaranteed convergence to a semi-maximal point, we have modified both algorithms.
We have run extensive numerical tests to show the performance and convergence behavior of the
new methods.

APPENDIX: REMARKS ON LOCAL SEMI-MAXIMALITY

In this appendix, we discuss the notion of an isolated critical point of a function f, which is semi-
maximal but not maximal. The main emphasize is to characterize semi-maximal points for which
the alternating maximization iteration, abbreviated as AMI, converges to the critical point at least
for some nontrivial choices of the starting points. We explain the convergence issues for ALS on
local semi-maximality by the help of the AMIL.

Consider a polynomial function p(t), t € RY and let M C R" be a smooth compact manifold of
dimension L. Denoted by g the restriction of p to M. For example, in the three-mode case, we let
N=m+n+0Lt=xy,2),pt) =T x(x®y®z),and M =" 1 x "1 x8!=1 [ =N -3.
Assume that a point t, € M is a non-degenerate critical point of g on M. We take local coordi-
nates around t, so that in these local coordinates, t, corresponds to the zero vector of dimension L,
denoted as 07,. So the open connected neighborhood of t, is identified with an open connected

neighborhood 07, € RZL. Assume that the local coordinates around 0z are x| = [X—lr, . ,X;] T,
x; eR™/,jel[d].
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The AMI method consists of maximizing g (or f) on x; for j = 1,...,d, and then repeating
the process. Let us discuss the details of the AMI for a function f given by a quadratic form in the
block vector x| = [x]—, . ,x;] e RL, given by

Hiy Hiz Hiq
f=—xThx H=| M0 Hha 7 Ha | 6.1
Hgy -+ Hga-1 Haa

Hp,qT = Hyp, p.q €ld].

Note that locally, we obtain this form for general f via Taylor expansion and leaving off terms of
order higher than two.

Consider the AMI iteration &;_q := [S;:k—l’ cee, Sc}—,k—l] Tog = [EIk, e, S;k] T e RL for

a function f of the form (6.1) starting from a point &y. Then this iteration is the block GauB-Seidel
iteration, see for example, [12], applied to the linear system —H & = &, with the block symmetric
matrix H, that is,

J d
- Hjdkex= Y, Hjsbrkr, j=1,....d, keN. (6.2)
(=1 {=j+1

This iterative method can be expressed as —Lg&, = Ugér—1, where H = Ly + Up is the
decomposition of H into the block lower triangular part Lz and the strict block upper triangular
part Ug. Assume that Ly is invertible, which is equivalent to the requirement that all diagonal
blocks H; ; are invertible. Then (6.2) is of the form & = K&_;, where

K :=—L4Uy. (6.3)

It is well known that an iteration & = K&, will converge to Oy, for all starting vectors & if and
only if the spectral radius of K, denoted as p(K), is less than 1. If p(K) = 1, then the iteration will
converge to Oz, if and only if & lies in the invariant subspace of K associated with the eigenvalues
of modulus less than 1.

Assume in the following that 07, := [0; L ,0, d] T is a semi-maximal point, that is, that all
diagonal blocks H; ;, j € [d] of H are positive definite. Then it follows from a classical result of
Ostrowski, see for example, [12, Thm 3.12], that the iteration (6.2) converges to 0y, if and only if
H is positive definite, which is equivalent to p(K) < 1. Clearly, in this case Oz, is non-maximal for
f (&) if and only if H is indefinite.

We summarize these observations to give a precise condition on &y so that the iteration (6.2)
converges to zero, which, in the particular case discussed here, can be proved easily. We give a
proof for completeness.

Theorem 6

Let 0y := [0;1, - .,Omd] T be a semi-maximal point of f(£) = —&T HE, that is, each H;; is
positive definite and let K be given by (6.3). Denoted by «, 8, y, the number of eigenvalues A of K,
counting with multiplicities, satisfying [A| < 1, |A| > 1, |A| = 1, respectively. Assume that H has

7, v, ¢ positive, negative, and zero eigenvalues, respectively. Then

7w =max{m;,j €[d]}, (6.4)

a=mn, B=v, y=C_ (6.5)

Furthermore, all y eigenvalues of K on the unit circle correspond to a unique eigenvalue 1
of geometric multiplicity y. The corresponding eigenvectors of K are the eigenvectors of H
corresponding to the zero eigenvalue.
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Proof

We first prove (6.4). Let H;; be the diagonal block of maximal size m;. Let H be a principal
submatrix of H of order m;+1 which has H; ; as its submatrix. The Cauchy interlacing theorem [13]
implies that the eigenvalues of H interlace with the eigenvalues of H; ;. Because all eigenvalues of
H; ; are positive, it follows that H has at least m; positive eigenvalues and hence, (6.4) holds.

To prove (6.5), assume first that { > 1. But if x is an eigenvector of H corresponding to the
eigenvalue 0 then Kx = x. Hence, y = ¢, and 1 is an eigenvalue of K of geometric multiplicity
at least .

Let Vg be the null space of H. Then K restricted to Vy is the identity operator. Consider the
quotient space Q := R%/V,. Clearly, K and H induce linear operators K, H; : Q — Q, where
H; is nonsingular with 7 positive eigenvalues and v negative eigenvalues. Observe also that if
y,z€e Rl andy —z € Vo theny' Hy = z" Hz. Thus, it is enough to study the eigenvalues of K
that corresponds to the case where H is nonsingular, which we assume from now on.

Observe that the AMI does not decrease the value of f(§). Moreover, f(&) = f(éx—1) if and
only if &_1 = 0. Let us, for simplicity of notation, consider the iteration § = K§&;_; in the
complex setting, that is, we consider F(§) = —£* HE ,where £ € CL. All the arguments can also
be carried out in the real setting by considering pairs of complex conjugate eigenvalues and the
corresponding real invariant subspace associated with the real and imaginary part of an eigenvector.

Let A be an eigenvalue of K and let £, be the eigenvector to A. Then F(£;) = A2 F (&) > F(£o),
which implies that |A| # 1 (this implies that the only eigenvalue of K of modulus 1 can be the
eigenvalue 1, which corresponds to the eigenvalue O of H).

Observe next, that if H is positive definite, then F(£p) < 0 and the inequality F(&1) > F (&)
yields that |A|? < 1, that is, p(K) < 1, which is Ostrowski’s theorem.

From now on, we therefore assume that H is indefinite and nonsingular. Assume that F(&p) = 0
and & # Or. Then F(&) is an increasing sequence that either diverges to +o0o or converges
to a positive number. Hence, we cannot have convergence & — 0r. More precisely, we have
convergence & — 0 if and only if F (&) <O forall k = 0.

Let Uy € U; C CF be the invariant subspaces of K corresponding to the eigenvalues 0 and the
eigenvalues A of modulus less than 1 of K, respectively. So KUy C Uy and K|Uj is nilpotent. Let
lo = dimUy. We have that F(£) <0 for all £ € U. Let V_, V. C CZ be the eigen-subspaces corre-
sponding to negative and positive eigenvalues of H, respectively. So # = dimV 4, v := dimV_ and
7 4+ v = L. Consider W = Range (K*). Then

UpNW=1{0.}, dimW =L —1,, KW=W, W+ U, =CFL.

With Wy := W N V., then we have that dimWy > 7 — o, and K; := K|W is invertible.
Setting W; = K,/ Wy, we have that §; € W, and F(Kkgj) <0fork =0,...,,and clearly,
dimW; = dimW_.. Because the space of dimW . subspaces in CL is compact, there exists a subse-
quence of W, , k € N, which converges to a dimW ;. dimensional subspace X C C L This subspace
corresponds to the invariant subspace of K associated with eigenvalues satisfying 0 < |A] < 1,
because F(K¥€) < 0forall k = 0and & € X. Thus, X N Uy = {0} and U; = X + U,. Note that
dimU; = dimX 4 dimUy = 7. Because F(§) < 0 for each & € Uy it follows that dimU; = 7,
thatis, o« = 7.

Asa+ f =L,itthenfollowsthat =L —a=L—m =v. |

As an example, if we apply the ALS method for finding the maximum of the trilinear form
T x (x®y ® z) restricted to (x,y,z) € M = ™1 x "1 x S/~ then this is just the AMI
for the local quadratic form g. It is well known that g may have several critical points, some of
whom are strict local maxima and local semi-maxima [14, Example 2, p. 1331]. The above analysis
shows that the ALS may converge to each of these points for certain appropriate starting points.
For a specific 7 € R™™*! one can expect that the ALS iteration exhibits a complicated dynamics.
Hence, it is quite possible that in some cases, the ALS method will not converge to a unique critical
point, see also [2, 14, 15].
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