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Abstract. For iterative solution of symmetric systems Ax = b, the conjugate gradient method
(CG) is commonly used when A is positive definite, while the minimum residual method (MINRES)
is typically reserved for indefinite systems. We investigate the sequence of approximate solutions xk
generated by each method and suggest that even if A is positive definite, MINRES may be preferable
to CG if iterations are to be terminated early. In particular, we show for MINRES that the solution
norms ‖xk‖ are monotonically increasing when A is positive definite (as was already known for CG),
and the solution errors ‖x∗ − xk‖ are monotonically decreasing. We also show that the backward
errors for the MINRES iterates xk are monotonically decreasing.
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1. Introduction. The conjugate gradient method (CG) [11] and the minimum
residual method (MINRES) [18] are both Krylov subspace methods for the iterative
solution of symmetric linear equations Ax = b. CG is commonly used when the matrix
A is positive definite, while MINRES is generally reserved for indefinite systems [27,
p85]. We reexamine this wisdom from the point of view of early termination on
positive-definite systems.

We assume that the system Ax = b is real with A symmetric positive definite
(spd) and of dimension n × n. The Lanczos process [13] with starting vector b may
be used to generate the n × k matrix Vk ≡

(
v1 v2 . . . vk

)
and the (k + 1) × k

Hessenberg tridiagonal matrix Tk such that AVk = Vk+1Tk for k = 1, 2, . . . , ` and
AV` = V`T` for some ` ≤ n, where the columns of Vk form a theoretically orthonormal
basis for the kth Krylov subspace Kk(A, b) ≡ span{b, Ab,A2b, . . . , Ak−1b}, and T` is
`× ` and tridiagonal. Approximate solutions within the kth Krylov subspace may be
formed as xk = Vkyk for some k-vector yk. As shown in [18], three iterative methods
CG, MINRES, and SYMMLQ may be derived by choosing yk appropriately at each
iteration. CG is well defined if A is spd, while MINRES and SYMMLQ are stable for
any symmetric nonsingular A.

As noted by Choi [2], SYMMLQ can form an approximation xk+1 = Vk+1yk+1 in
the (k+1)th Krylov subspace when CG and MINRES are forming their approximations
xk = Vkyk in the kth subspace. It would be of future interest to compare all three
methods on spd systems, but for the remainder of this paper we focus on CG and
MINRES.

With different methods using the same information Vk+1 and Tk to compute solu-
tion estimates xk = Vkyk within the same Krylov subspace (for each k), it is commonly
thought that the number of iterations required will be similar for each method, and
hence CG should be preferable on spd systems because it requires somewhat fewer
floating-point operations per iteration. This view is justified if an accurate solution
is required (stopping tolerance τ close to machine precision ε). We show that with
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looser stopping tolerances, MINRES is sure to terminate sooner than CG when the
stopping rule is based on the backward error for xk, and by numerical examples we
illustrate that the difference in iteration numbers can be substantial.

1.1. Notation. We study the application of CG and MINRES to real symmetric
positive-definite (spd) systems Ax = b. The unique solution is denoted by x∗. The
initial approximate solution is x0 ≡ 0, and rk ≡ b−Axk is the residual vector for an
approximation xk within the kth Krylov subspace. For a vector v and matrix A, ‖v‖
and ‖A‖ denote the 2-norm and the Frobenius norm respectively, and A � 0 indicates
that A is spd.

2. Minimization properties of Krylov subspace methods. With exact
arithmetic, the Lanczos process terminates with k = ` for some ` ≤ n. To ensure
that the approximations xk = Vkyk improve by some measure as k increases toward
`, the Krylov solvers minimize some convex function within the expanding Krylov
subspaces [9].

2.1. CG. When A is spd, the quadratic form φ(x) ≡ 1
2x

TAx − bTx is bounded
below, and its unique minimizer solves Ax = b. A characterization of the CG iterations
is that they minimize the quadratic form within each Krylov subspace [9], [17, §2.4],
[28, §§8.8–8.9]:

xCk = Vky
C
k , where yCk = arg min

y
φ(Vky).

With b = Ax∗ and 2φ(xk) = xTkAxk − 2xTkAx
∗, this is equivalent to minimizing the

function ‖x∗− xk‖A ≡ (x∗− xk)TA(x∗− xk), known as the energy norm of the error,
within each Krylov subspace. For some applications, this is a desirable property
[21, 24, 1, 17, 28].

2.2. MINRES. For nonsingular (and possibly indefinite) systems, the residual
norm was used in [18] to characterize the MINRES iterations:

xMk = Vky
M
k , where yMk = arg min

y
‖b−AVky‖. (2.1)

Thus, MINRES minimizes ‖rk‖ within the kth Krylov subspace. This was also an aim
of Stiefel’s Conjugate Residual method (CR) [23] for spd systems (and of Luenberger’s
extensions of CR to indefinite systems [15, 16]). Thus, CR and MINRES must generate
the same iterates on spd systems. We use this connection to prove that ‖xk‖ increases
monotonically when MINRES is applied to an spd system.

2.3. CG and CR. The two methods for solving spd systems Ax = b are sum-
marized in Table 2.1. The first two columns are pseudocodes for CG and CR with
iteration number k omitted for clarity; they match our Matlab implementations.
Note that q = Ap in both methods, but it is not computed as such in CR. Termina-
tion occurs when r = 0 (⇒ ρ = β = 0).

To prove our main result we need to introduce iteration indices; see column 3 of
Table 2.1. Termination occurs when rk = 0 for some index k = ` ≤ n (⇒ ρ` = β` = 0,
r` = s` = p` = q` = 0). Note: This ` is the same as the ` at which the Lanczos
process theoretically terminates for the given A and b.

Theorem 2.1. The following properties hold for Algorithm CR:
(a) qTi qj = 0 (i 6= j)
(b) rTi qj = 0 (i ≥ j + 1)
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Table 2.1
Pseudocode for algorithms CG and CR

CG
Initialize
x = 0, r = b
ρ = ‖r‖2, p = r
Repeat
q = Ap
α = ρ/pTq
x← x+ αp
r ← r − αq

ρ̄ = ρ, ρ = rTr
β = ρ/ρ̄
p← r + βp

CR
Initialize
x = 0, r = b, s = Ar,
ρ = rTs, p = r, q = s
Repeat

(q = Ap)
α = ρ/‖q‖2
x← x+ αp
r ← r − αq
s = Ar
ρ̄ = ρ, ρ = rTs
β = ρ/ρ̄
p← r + βp
q ← s+ βq

CR
Initialize
x0 = 0, r0 = b, s0 = Ar0,
ρ0 = rT0s0, p0 = r0, q0 = s0
For k = 1, 2, . . .

(qk−1 = Apk−1)
αk = ρk−1/‖qk−1‖2
xk = xk−1 + αkpk−1
rk = rk−1 − αkqk−1
sk = Ark
ρk = rTksk
βk = ρk/ρk−1
pk = rk + βkpk−1
qk = sk + βkqk−1

Proof. Given in [16, Theorem 1].

Theorem 2.2. The following properties hold for Algorithm CR:

(a) αi ≥ 0
(b) βi ≥ 0
(c) pTi qj ≥ 0
(d) pTi pj ≥ 0
(e) xTi pj ≥ 0
(f) rTi pj ≥ 0

Proof.

(a) Here we use the fact that A is spd. The inequalities are strict until i = ` (and
r` = 0).

ρi = rTi si = rTiAri ≥ 0 (A � 0) (2.2)

αi = ρi−1/‖qi−1‖2 ≥ 0

(b) And again:

βi = ρi/ρi−1 ≥ 0 (by (2.2))

(c) Case I: i = j

pTi qi = pTi Api ≥ 0 (A � 0)

Case II: i− j = k > 0

pTi qj = pTi qi−k = rTi qi−k + βip
T
i−1qi−k

= βip
T
i−1qi−k (by Thm 2.1 (b))

≥ 0,

where βi ≥ 0 by (b) and pTi−1qi−k ≥ 0 by induction as (i−1)−(i−k) = k−1 < k.
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Case III: j − i = k > 0

pTi qj = pTi qi+k = pTi Api+k

= pTi A(ri+k + βi+kpi+k−1)

= qTi ri+k + βi+kp
T
i qi+k−1

= βi+kp
T
i qi+k−1 (by Thm 2.1 (b))

≥ 0,

where βi+k ≥ 0 by (b) and pTi qi+k−1 ≥ 0 by induction as (i+k−1)−i = k−1 < k.
(d) At termination, define P ≡ span{p0, p1, . . . , p`−1} and Q ≡ span{q0, . . . , q`−1}.

By construction, P = span{b, Ab, . . . , A`−1b} and Q = span{Ab, . . . , A`b} (since
qi = Api). Again by construction, x` ∈ P, and since r` = 0 we have b =
Ax` ⇒ b ∈ Q. We see that P ⊆ Q. By Theorem 2.1(a), {qi/‖qi‖}`−1i=0 forms an
orthonormal basis for Q. If we project pi ∈ P ⊆ Q onto this basis, we have

pi =

`−1∑
k=0

pTi qk
qTk qk

qk,

where all coordinates are non-negative from (c). Similarly for any other pj , j < `.
Therefore pTi pj ≥ 0 for any i, j < `.

(e) By construction,

xi = xi−1 + αipi−1 = · · · =
i∑

k=1

αkpk−1 (x0 = 0)

Therefore xTi pi ≥ 0 by (d) and (a).
(f) Note that any ri can be expressed as a sum of qi:

ri = ri+1 + αi+1qi

= · · ·
= rl + αlql−1 + · · ·+ αi+1qi

= αlql−1 + · · ·+ αi+1qi.

Thus we have

rTi pj = (αlql−1 + · · ·+ αi+1qi)
T pj ≥ 0,

where the inequality follows from (a) and (c).

We are now able to prove our main theorem about the monotonic increase of ‖xk‖
for CR and MINRES. A similar result was proved for CG by Steihaug [21].

Theorem 2.3. For CR (and hence MINRES) on an spd system Ax = b, ‖xk‖
increases monotonically.

Proof. ‖xi‖2 − ‖xi−1‖2 = 2αix
T
i−1pi−1 + pTi−1pi−1 ≥ 0, where the last inequality

follows from Theorem 2.2 (a), (d) and (e). Therefore ‖xi‖ ≥ ‖xi−1‖.
‖x∗−xk‖ is known to be monotonic for CG [11]. The corresponding result for CR

is a direct consequence of [11, Thm 7:5]. However, the second half of that theorem,
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‖x∗ − xCk−1‖ > ‖x∗ − xMk ‖, rarely holds in machine arithmetic. We give here an
alternative proof that does not depend on CG.

Theorem 2.4. For CR (and hence MINRES) on an spd system Ax = b, the error
‖x∗ − xk‖ decreases monotonically.

Proof. From the update rule for xk, we can express the final solution xl = x∗ as

xl = xl−1 + αl−1pl−1

= · · ·
= xk + αk+1pk + · · ·+ αl−1pl−1 (2.3)

= xk−1 + αkpk−1 + αk+1pk + · · ·+ αl−1pl−1. (2.4)

Using the last two equalities above, we can write

‖xl − xk−1‖2 − ‖xl − xk‖2 = (xl − xk−1)T (xl − xk−1)− (xl − xk)T (xl − xk)

= 2αkp
T
k−1(αk+1pk + · · ·+ αl−1pl−1) + α2

kp
T
k−1pk−1

≥ 0,

where the last inequality follows from Theorem 2.2 (a), (d).
The energy norm error ‖x∗ − xk‖A is monotonic for CG by design. The corre-

sponding result for CR is given in [11, Thm 7:4]. We give an alternative proof here.
Theorem 2.5. For CR (and hence MINRES) on an spd system Ax = b, the error

in energy norm ‖x∗ − xk‖A is strictly decreasing.
Proof. From (2.3) and (2.4), we can write

‖xl − xk−1‖2A − ‖xl − xk‖2A
= (xl − xk−1)TA(xl − xk−1)− (xl − xk)TA(xl − xk)

= 2αkp
T
k−1A(αk+1pk + · · ·+ αl−1pl−1) + α2

kp
T
k−1Apk−1

= 2αkq
T
k−1(αk+1pk + · · ·+ αl−1pl−1) + α2

kq
T
k−1pk−1

> 0,

where the last inequality follows from Theorem 2.2 (a), (c).

3. Backward error analysis. For many physical problems requiring numerical
solution, we are given inexact or uncertain input data (in this case A and/or b). It
is not justifiable to seek a solution beyond the accuracy of the data [6]. Instead, it is
more reasonable to stop an iterative solver once we know that the current approximate
solution solves a nearby problem. The measure of “nearby” should match the error
in the input data. The design of such stopping rules is an important application of
backward error analysis.

For a consistent linear system Ax = b, we think of xk coming from the kth
iteration of one of the iterative solvers. Following Titley-Péloquin [25] we say that xk
is an acceptable solution if and only if there exist perturbations E and f satisfying

(A+ E)xk = b+ f,
‖E‖
‖A‖

≤ α, ‖f‖
‖b‖
≤ β (3.1)

for some tolerances α ≥ 0, β ≥ 0 that reflect the (preferably known) accuracy of the
data. We are naturally interested in minimizing the size of E and f . If we define the
optimization problem

min
ξ,E,f

ξ s.t. (A+ E)xk = b+ f,
‖E‖
‖A‖

≤ αξ, ‖f‖
‖b‖
≤ βξ
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to have optimal solution ξk, Ek, fk (all functions of xk, α, and β), we see that xk is an
acceptable solution if and only if ξk ≤ 1. We call ξk the normwise relative backward
error (NRBE) for xk.

With rk = b−Axk, the optimal solution ξk, Ek, fk is shown in [25] to be

φk =
β‖b‖

α‖A‖‖xk‖+ β‖b‖
, Ek =

(1− φk)

‖xk‖2
rkx

T
k , (3.2)

ξk =
‖rk‖

α‖A‖‖xk‖+ β‖b‖
, fk = −φkrk. (3.3)

(See [12, p12] for the case β = 0 and [12, §7.1 and p336] for the case α = β.)

3.1. Stopping rule. For general tolerances α and β, the condition ξk ≤ 1 for
xk to be an acceptable solution becomes

‖rk‖ ≤ α‖A‖‖xk‖+ β‖b‖, (3.4)

the stopping rule used in LSQR for consistent systems [19, p54, rule S1].

3.2. Monotonic backward errors. Of interest is the size of the perturbations
to A and b for which xk is an exact solution of Ax = b. From (3.2)–(3.3), the
perturbations have the following norms:

‖Ek‖ = (1− φk)
‖rk‖
‖xk‖

=
α‖A‖‖rk‖

α‖A‖‖xk‖+ β‖b‖
, (3.5)

‖fk‖ = φk‖rk‖ =
β‖b‖‖rk‖

α‖A‖‖xk‖+ β‖b‖
. (3.6)

Since ‖xk‖ is monotonically increasing for CG and MINRES, we see from (3.2) that φk
is monotonically decreasing for both solvers. Since ‖rk‖ is monotonically decreasing
for MINRES (but not for CG), we have the following result.

Theorem 3.1. Suppose α > 0 and β > 0 in (3.1). For CR and MINRES (but not
CG), the relative backward errors ‖Ek‖/‖A‖ and ‖fk‖/‖b‖ decrease monotonically.

Proof. This follows from (3.5)–(3.6) with ‖xk‖ increasing for both solvers and
‖rk‖ decreasing for CR and MINRES but not for CG.

4. Numerical results. Here we compare the convergence of CG and MINRES

on various spd systems Ax = b and some associated indefinite systems (A− δI)x = b.
The test examples are drawn from the University of Florida Sparse Matrix Collec-
tion (Davis [5]). We experimented with all 26 cases for which A is real spd and b is
supplied. In Matlab we computed the condition number for each test matrix by find-
ing the largest and smallest eigenvalue using eigs(A,1,’LM’) and eigs(A,1,’SM’)

respectively. For this test set, the condition numbers range from 1.7E+03 to 3.1E+13.
Since A is spd, we apply diagonal preconditioning by redefining A and b as follows:

d = diag(A), D = diag(1./sqrt(d)), A ← DAD, b ← Db, b ← b/‖b‖. Thus in the
figures below we have diag(A) = I and ‖b‖ = 1. With this preconditioning, the
condition numbers range from 1.2E+01 to 2.2E+11. The distribution of condition
number of the test set matrices before and after preconditioning is shown in Figure
4.1.

The stopping rule used for CG and MINRES was (3.4) with α = 0 and β = 10−8.
That is, ‖rk‖ ≤ 10−8‖b‖ = 10−8 (but with a maximum of 5n iterations for spd systems
and n iterations for indefinite systems).
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Fig. 4.1. Distribution of condition number for matrices used for CG vs MINRES comparison,
before and after diagonal preconditioning

4.1. Positive-definite systems. In plotting backward errors, we assume for
simplicity that α > 0 and β = 0 in (3.1)–(3.3), even though it doesn’t match the
choice of α and β in the stopping rule (3.4). This gives φk = 0 and ‖Ek‖ = ‖rk‖/‖xk‖
in (3.5). Thus, as in Theorem 3.1, we expect ‖Ek‖ to decrease monotonically for CR

and MINRES but not for CG.

In Figures 4.2 and 4.3, we plot ‖rk‖/‖xk‖, ‖x∗−xk‖A, and ‖x∗−xk‖ for CG and
MINRES for four different problems. For CG, the plots confirm that ‖x∗ − xk‖A and
‖x∗− xk‖ are monotonic. For MINRES, the plots confirm the prediction of Theorems
3.1, 2.5, and 2.4 that ‖rk‖/‖xk‖, ‖x∗ − xk‖A, and ‖x∗ − xk‖ are monotonic.

Figure 4.2 (left) shows problem Schenk AFE af shell8 with A of size 504855 ×
504855 and cond(A) = 2.7E+05. From the plot of backward errors ‖rk‖/‖xk‖, we
see that both CG and MINRES converge quickly at the early iterations. Then the
backward error of MINRES plateaus at about iteration 80, and the backward error of
CG stays about 1 order of magnitude behind MINRES. A similar phenomenon of fast
convergence at early iterations followed by slow convergence is observed in the energy
norm error and 2-norm error plots.

Figure 4.2 (right) shows problem Cannizzo sts4098 with A of size 4098 × 4098
and cond(A) = 6.7E+03. MINRES converges slightly faster in terms of backward
error, while CG converges slightly faster in terms of both error norms.
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Fig. 4.2. Comparison of backward and forward errors for CG and MINRES solving two spd
systems Ax = b.

Left: Problem Schenk AFE af shell8 with n = 504855 and cond(A) = 2.7E+05. Note that
MINRES stops significantly sooner than CG with α = 0 and β = 10−8 in (3.4).

Right: Cannizzo sts4098 with n = 4098 and cond(A) = 6.7E+03. MINRES stops slightly
sooner than CG.

Top: The values of log10(‖rk‖/‖xk‖) are plotted against iteration number k. These values
define log10(‖Ek‖) when the stopping tolerances in (3.4) are α > 0 and β = 0.

Middle: The values of log10 ‖x∗ − xk‖A are plotted against iteration number k. This is the
quantity that CG minimizes at each iteration.

Bottom: The values of log10 ‖x∗ − xk‖.



CG VERSUS MINRES 9

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

iteration count

lo
g(

||r
||/

||x
||)

Name:Simon_raefsky4, Dim:19779x19779, nnz:1316789, id=7

 

 
CG
MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

iteration count
lo

g(
||r

||/
||x

||)

Name:BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

 

 
CG
MINRES

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

0

1

2

3

4

5

iteration count

lo
g|

|x
k −

 x
* || A

Simon_raefsky4, Dim:19779x19779, nnz:1316789, id=7

 

 

CG
MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g|

|x
k −

 x
* || A

BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

 

 

CG
MINRES

0 1 2 3 4 5 6 7 8 9 10

x 10
4

4

5

6

7

8

9

10

iteration count

lo
g|

|x
k −

 x
* ||

Simon_raefsky4, Dim:19779x19779, nnz:1316789, id=7

 

 

CG
MINRES

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

−5

−4

−3

−2

−1

0

1

2

iteration count

lo
g|

|x
k −

 x
* ||

BenElechi_BenElechi1, Dim:245874x245874, nnz:13150496, id=22

 

 

CG
MINRES

Fig. 4.3. Comparison of backward and forward errors for CG and MINRES solving two more
spd systems Ax = b.

Left: Problem Simon raefsky4, with n = 19779 and cond(A) = 2.2E+11.
Right: BenElechi BenElechi1, with n = 245874 and cond(A) = 1.8E+09.
Top: The values of log10(‖rk‖/‖xk‖) are plotted against iteration number k. These values

define log10(‖Ek‖) when the stopping tolerances in (3.4) are α > 0 and β = 0.
Middle: The values of log10 ‖x∗ − xk‖A are plotted against iteration number k. This is the

quantity that CG minimizes at each iteration.
Bottom: The values of log10 ‖x∗ − xk‖.
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Figure 4.3 (left) shows problem Simon raefsky4 with A of size 19779×19779 and
cond(A) = 2.2E+11. Because of the high condition number, both algorithms hit the
5n iteration limit. We see that the backward error for MINRES converges faster than
for CG as expected. For the energy norm error, CG is able to decrease over 5 orders of
magnitude while MINRES plateaus after a 2 orders of magnitude decrease. For both
the energy norm error and 2-norm error, MINRES reaches a lower point than CG for
some iterations. This must be due to numerical error in CG and MINRES (a result of
loss of orthogonality in Vk).

Figure 4.3 (right) shows problem BenElechi BenElechi1 with A of size 245874×
245874 and cond(A) = 1.8E+09. The backward error of MINRES stays ahead of CG

by 2 orders of magnitude for most iterations. Around iteration 32000, the backward
error of both algorithms goes down rapidly and CG catches up with MINRES. Both
algorithms exhibit a plateau on energy norm error for the first 20000 iterations. The
error norms for CG start decreasing around iteration 20000 and decrease even faster
after iteration 30000.

Figure 4.4 shows ‖rk‖ and ‖xk‖ for CG and MINRES on two typical spd examples.
We see that ‖xk‖ is monotonically increasing for both solvers, and the ‖xk‖ values
rise fairly rapidly to their limiting value ‖x∗‖, with a moderate delay for MINRES.

Figure 4.5 shows ‖rk‖ and ‖xk‖ for CG and MINRES on two spd examples in
which the residual decrease and the solution norm increase are somewhat slower than
typical. The rise of ‖xk‖ for MINRES is rather more delayed. In the second case, if
the stopping tolerance were β = 10−6 rather than β = 10−8, the final MINRES ‖xk‖
(k ≈ 10000) would be less than half the exact value ‖x∗‖. It will be of future interest
to evaluate this effect within the context of trust-region methods for optimization.

4.1.1. Why does ‖rk‖ for CG lag behind MINRES?. It is commonly thought
that even though MINRES is known to minimize ‖rk‖ at each iteration, the cumulative
minimum of ‖rk‖ for CG should approximately match that of MINRES. That is,

min
0≤i≤k

‖rCi ‖ ≈ ‖rMk ‖.

However, in Figures 4.2 and 4.3 we see that ‖rk‖ for MINRES is often smaller than
for CG by 1 or 2 orders of magnitude. This phenomenon can be explained by the
following relations between ‖rCk ‖ and ‖rMk ‖ [10, Lemma 5.4.1] and [26]:

‖rCk ‖ =
‖rMk ‖√

1− ‖rMk ‖2/‖rMk−1‖2
. (4.1)

From (4.1), one can infer that if ‖rMk ‖ decreases a lot between iterations k − 1
and k, then ‖rCk ‖ would be roughly the same as ‖rMk ‖. The converse also holds, in
that ‖rCk ‖ will be much larger than ‖rMk ‖ if MINRES is almost stalling at iteration
k (i.e., ‖rMk ‖ did not decrease much relative to the previous iteration). The above
analysis was pointed out by Titley-Peloquin [26] in comparing LSQR and LSMR [8].
We repeat the analysis here for CG vs MINRES and extend it to demonstrate why
there is a lag in general for large problems.

With α = 0 in stopping rule (3.4), CG and MINRES stop when ‖rk‖ ≤ β‖b‖. If
this occurs at iteration l, we have

l∏
k=1

‖rk‖
‖rk−1‖

=
‖rl‖
‖b‖
≈ β.
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Fig. 4.4. Comparison of residual and solution norms for CG and MINRES solving two spd
systems Ax = b. These are typical examples.

Left: Problem Simon olafu with n = 16146 and cond(A) = 4.3E+08.
Right: Problem Cannizzo sts4098 with n = 4098 and cond(A) = 6.7E+03.
Top: The values of log10 ‖rk‖ are plotted against iteration number k.
Bottom: The values of ‖xk‖ are plotted against k. The solution norms grow somewhat faster

for CG than for MINRES. Both reach the limiting value ‖x∗‖ significantly before xk is close to x∗.

Thus on average, ‖rMk ‖/‖rMk−1‖ will be closer to 1 if l is large. This means that the
larger l is (in absolute terms), the more CG will lag behind MINRES (a bigger gap
between ‖rCk ‖ and ‖rMk ‖).

4.2. Indefinite systems. A key part of Steihaug’s trust-region method for
large-scale unconstrained optimization [21] (see also [4]) is his proof that when CG

is applied to a symmetric (possibly indefinite) system Ax = b, the solution norms
‖x1‖, . . . , ‖xk‖ are strictly increasing as long as pTjApj > 0 for all iterations 1 ≤ j ≤ k.
(We are using the notation in Table 2.1.)
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Fig. 4.5. Comparison of residual and solution norms for CG and MINRES solving two more
spd systems Ax = b. Sometimes the solution norms take longer to reach the limiting value ‖x∗‖.

Left: Problem Schmid thermal1 with n = 82654 and cond(A) = 3.0E+05.
Right: Problem BenElechi BenElechi1 with n = 245874 and cond(A) = 1.8E+09.
Top: The values of log10 ‖rk‖ are plotted against iteration number k.
Bottom: The values of ‖xk‖ are plotted against k. Again the solution norms grow faster for

CG.

From our proof of Theorem 2.2, we see that the same property holds for CR and
MINRES as long as both pTjApj > 0 and rTjArj > 0 for all iterations 1 ≤ j ≤ k. In
case future research finds that MINRES is a useful solver in the trust-region context,
it is of interest now to offer some empirical results about the behavior of ‖xk‖ when
MINRES is applied to indefinite systems.
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Fig. 4.6. For MINRES on the indefinite problem (4.2), ‖xk‖ and the backward error ‖rk‖/‖xk‖
are both slightly non-monotonic.

First, on the nonsingular indefinite system2 1 1
1 0 1
1 1 2

x =

0
1
1

 , (4.2)

MINRES gives non-monotonic solution norms, as shown in the left plot of Figure 4.6.
The decrease in ‖xk‖ implies that the backward errors ‖rk‖/‖xk‖ may not be mono-
tonic, as illustrated in the right plot.

More generally, we can gain an impression of the behavior of ‖xk‖ by recalling
from Choi et al. [3] the connection between MINRES and MINRES-QLP. Both methods
compute the iterates xMk = Vky

M
k in (2.1) from the subproblems

yMk = arg min
y∈Rk

‖Tky − β1e1‖ and possibly T`y
M
` = β1e1.

When A is nonsingular or Ax = b is consistent (which we now assume), yMk is uniquely
defined for each k ≤ ` and the methods compute the same iterates xMk (but by different
numerical methods). In fact they both compute the expanding QR factorizations

Qk
[
Tk β1e1

]
=

[
Rk tk
0 φk

]
,

(with Rk upper tridiagonal) and MINRES-QLP also computes the orthogonal factor-
izations RkPk = Lk (with Lk lower tridiagonal), from which the kth solution estimate
is defined by Wk = VkPk, Lkuk = tk, and xMk = Wkuk. As shown in [3, §5.3], the
construction of these quantities is such that the first k − 3 columns of Wk are the
same as in Wk−1, and the first k − 3 elements of uk are the same as in uk−1. Since
Wk has orthonormal columns, ‖xMk ‖ = ‖uk‖, where the first k − 2 elements of uk are
unaltered by later iterations. As shown in [3, §6.5], it means that certain quantities
can be cheaply updated to give norm estimates in the form

χ2 ← χ2 + µ̂2
k−2, ‖xMk ‖2 = χ2 + µ̃2

k−1 + µ̄2
k,

where it is clear that χ2 increases monotonically. Although the last two terms are of
unpredictable size, ‖xMk ‖2 tends to be dominated by the monotonic term χ2 and we
can expect that ‖xMk ‖ will be approximately monotonic as k increases from 1 to `.
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Fig. 4.7. Residual norms and solution norms when MINRES is applied to two indefinite
systems (A− δI)x = b, where A is the spd matrices used in Figure 4.4 and δ = 0.5 is large enough
to make the systems indefinite.

Left: Problem Simon olafu with n = 16146.
Right: Problem Cannizzo sts4098 with n = 4098.
Top: The values of log10 ‖rk‖ are plotted against iteration number k for the first n iterations.
Bottom left: The values of ‖xk‖ are plotted against k. During the n = 16146 iterations, ‖xk‖

increased 83% of the time and the backward errors ‖rk‖/‖xk‖ (not shown) decreased 96% of the
time.

Bottom right: During the n = 4098 iterations, ‖xk‖ increased 90% of the time and the back-
ward errors ‖rk‖/‖xk‖ (not shown) decreased 98% of the time.

Experimentally we find that for most MINRES iterations on an indefinite problem,
‖xk‖ does increase. To obtain indefinite examples that were sensibly scaled, we used
the four spd (A, b) cases in Figures 4.4–4.5, applied diagonal scaling as before, and
solved (A − δI)x = b with δ = 0.5 and where A and b are now scaled (so that
diag(A) = I). The number of iterations increased significantly but was limited to n.

Figure 4.7 shows log10 ‖rk‖ and ‖xk‖ for the first two cases (where A is the spd
matrices in Figure 4.4). The values of ‖xk‖ are essentially monotonic. The backward
errors ‖rk‖/‖xk‖ (not shown) were even closer to being monotonic (at least for the
first n iterations).
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Fig. 4.8. Residual norms and solution norms when MINRES is applied to two indefinite
systems (A− δI)x = b, where A is the spd matrices used in Figure 4.5 and δ = 0.5 is large enough
to make the systems indefinite.

Left: Problem Schmid thermal1 with n = 82654.
Right: Problem BenElechi BenElechi1 with n = 245874.
Top: The values of log10 ‖rk‖ are plotted against iteration number k for the first n iterations.
Bottom left: The values of ‖xk‖ are plotted against k. There is a mild but clear decrease in

‖xk‖ over an interval of about 10000 iterations. During the n = 82654 iterations, ‖xk‖ increased
83% of the time and the backward errors ‖rk‖/‖xk‖ (not shown) decreased 91% of the time.

Bottom right: The solution norms and backward errors are essentially monotonic. During
the n = 245874 iterations, ‖xk‖ increased 88% of the time and the backward errors ‖rk‖/‖xk‖ (not
shown) decreased 95% of the time.

Figure 4.8 shows ‖xk‖ and log10 ‖rk‖ for the second two cases (where A is the spd
matrices in Figure 4.5). The left example reveals a definite period of decrease in ‖xk‖.
Nevertheless, during the n = 82654 iterations, ‖xk‖ increased 83% of the time and the
backward errors ‖rk‖/‖xk‖ decreased 91% of the time. The right example is more like
those in Figure 4.7. During n = 245874 iterations, ‖xk‖ increased 83% of the time,
the backward errors ‖rk‖/‖xk‖ decreased 91% of the time, and any nonmonotonicity
was very slight.
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Table 5.1
Comparison of CG and MINRES properties on an spd system Ax = b.

CG MINRES

‖xk‖ ↗ [21, Thm 2.1] ↗ (Thm 2.3)
‖x∗ − xk‖ ↘ [11, Thm 4:3] ↘ (Thm 2.4) [11, Thm 7:5]
‖x∗ − xk‖A ↘ [11, Thm 6:3] ↘ (Thm 2.5) [11, Thm 7:4]
‖rk‖ not-monotonic ↘ [18] [11, Thm 7:2]
‖rk‖/‖xk‖ not-monotonic ↘ (Thm 3.1)

↗ monotonically increasing
↘ monotonically decreasing

Table 5.2
Comparison of LSQR and LSMR properties on min ‖Ax− b‖.

LSQR LSMR

‖xk‖ ↗ [7, Thm 3.3.1] ↗ [7, Thm 3.3.6]
‖x∗ − xk‖ ↘ [7, Thm 3.3.2] ↘ [7, Thm 3.3.7]
‖r∗ − rk‖ ↘ [7, Thm 3.3.3] ↘ [7, Thm 3.3.8]
‖ATrk‖ not-monotonic ↘ [8, §3.2]
‖rk‖ ↘ [19, §5.1] ↘ [7, Thm 3.3.11]

(‖ATrk‖/‖rk‖)LSQR ≥ (‖ATrk‖/‖rk‖)LSMR

xk converges to minimum-norm x∗ for singular systems

5. Conclusions. For full-rank least-squares problems min ‖Ax− b‖, the solvers
LSQR [19, 20] and LSMR [8, 14] are equivalent to CG and MINRES on the (spd) normal
equation ATAx = ATb. Comparisons in [8] indicated that LSMR can often stop much
sooner than LSQR when the stopping rule is based on Stewart’s backward error norm
‖ATrk‖/‖rk‖ for least-squares problems [22].

Our theoretical and experimental results here provide analogous evidence that
MINRES can often stop much sooner than CG on spd systems when the stopping rule
is based on the backward error ‖rk‖/‖xk‖ for Ax = b (or the more general backward
errors in Theorem 3.1). In some cases, MINRES can converge faster than CG by
as much as 2 orders of magnitude (Figure 4.3). On the other hand, CG converges
somewhat faster than MINRES in terms of both ‖x∗ − xk‖A and ‖x∗ − xk‖ (same
figure). For spd systems, Table 5.1 summarizes properties that were already known
by Hestenes and Stiefel [11] and Steihaug [21], along with the two additional properties
of MINRES that we proved here (Theorems 2.3 and 3.1).

These theorems and experiments on CG and MINRES are part of the first author’s
PhD thesis [7], which also discusses LSQR and LSMR and derives some new results
for both solvers. Table 5.2 summarizes the known results for LSQR and LSMR (in [19]
and [8] respectively) and the newly derived properties for both solvers (in [7]).
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