
Numerical Linear Algebra in the Streaming

Model

Kenneth L. Clarkson* David P. Woodruff ∗

April 9, 2009

Abstract

We give near-optimal space bounds in the streaming model for lin-
ear algebra problems that include estimation of matrix products, linear
regression, low-rank approximation, and approximation of matrix rank.
In the streaming model, sketches of input matrices are maintained under
updates of matrix entries; we prove results for turnstile updates, given in
an arbitrary order. We give the first lower bounds known for the space
needed by the sketches, for a given estimation error ε. We sharpen prior
upper bounds, with respect to combinations of space, failure probability,
and number of passes. The sketch we use for matrix A is simply STA,
where S is a sign matrix.

Our results include the following upper and lower bounds on the bits
of space needed for 1-pass algorithms. Here A is an n × d matrix, B
is an n × d′ matrix, and c := d + d′. These results are given for fixed
failure probability; for failure probability δ > 0, the upper bounds require
a factor of log(1/δ) more space. We assume the inputs have integer entries
specified by O(log(nc)) bits, or O(log(nd)) bits.

1. (Matrix Product) Output matrix C with

‖ATB − C‖ ≤ ε‖A‖‖B‖.

We show that Θ(cε−2 log(nc)) space is needed.

2. (Linear Regression) For d′ = 1, so that B is a vector b, find x so that

‖Ax− b‖ ≤ (1 + ε) min
x′∈IRd

‖Ax′ − b‖.

We show that Θ(d2ε−1 log(nd)) space is needed.

3. (Rank-k Approximation) Find matrix Ãk of rank no more than k,
so that

‖A− Ãk‖ ≤ (1 + ε)‖A−Ak‖,
where Ak is the best rank-k approximation to A. Our lower bound
is Ω(kε−1(n + d) log(nd)) space, and we give a one-pass algorithm

∗IBM Almaden Research Center, San Jose, CA.

matching this when A is given row-wise or column-wise. For general
updates, we give a one-pass algorithm needing

O(kε−2(n+ d/ε2) log(nd))

space. We also give upper and lower bounds for algorithms using
multiple passes, and a bicriteria low-rank approximation.

1 Introduction

In recent years, starting with [FKV04], many algorithms for numerical linear
algebra have been proposed, with substantial gains in performance over older
algorithms, at the cost of producing results satisfying Monte Carlo performance
guarantees: with high probability, the error is small. These algorithms pick
random samples of the rows, columns, or individual entries of the matrices,
or else compute a small number of random linear combinations of the rows or
columns of the matrices. These compressed versions of the matrices are then
used for further computation. The two general approaches are sampling or
sketching, respectively.

Algorithms of this kind are generally also pass-efficient, requiring only a
constant number of passes over the matrix data for creating samples or sketches,
and other work. Most such algorithms require at least two passes for their
sharpest performance guarantees, with respect to error or failure probability.
However, in general the question has remained of what was attainable in one
pass. Such a one-pass algorithm is close to the streaming model of computation,
where there is one pass over the data, and resource bounds are sublinear in the
data size.

Muthukrishnan [Mut05] posed the question of determining the complexity
in the streaming model of computing or approximating various linear algebraic
functions, such as the best rank-k approximation, matrix product, eigenvalues,
determinants, and inverses. This problem was posed again by Sarlós [Sar06],
who asked what space and time lower bounds can be proven for any pass-efficient
approximate matrix product, `2 regression, or SVD algorithm.

In this paper, we answer some of these questions. We also study a few
related problems, such as rank computation. In many cases we give algorithms
together with matching lower bounds. Our algorithms are generally sketching-
based, building on and sometimes simplifying prior work on such problems.
Our lower bounds are the first for these problems. Sarlós [Sar06] also gives
upper bounds for these problems, and our upper bounds are inspired by his
and are similar, though a major difference here is our one-pass algorithm for
low-rank approximation, improving on his algorithm needing two passes, and
our space-optimal one-pass algorithms for matrix product and linear regression,
that improve slightly on the space needed for his one-pass algorithms.

We generally consider algorithms and lower bounds in the most general turn-
stile model of computation [Mut05]. In this model an algorithm receives arbi-
trary updates to entries of a matrix in the form “add x to entry (i, j)”. An

1

entry (i, j) may be updated multiple times and the updates to the different
(i, j) can appear in an arbitrary order. Here x is an arbitrary real number of
some bounded precision.

The relevant properties of algorithms in this setting are the space required
for the sketches; the update time, for changing a sketch as updates are received;
the number of passes; and the time needed to process the sketches to produce
the final output. Our sketches are matrices, and the final processing is done
with standard matrix algorithms. Although sometimes we give upper or lower
bounds involving more than one pass, we reserve the descriptor “streaming” for
algorithms that need only one pass.

1.1 Results and Related Work

The matrix norm used here will be the Frobenius norm ‖A‖, where ‖A‖ :=[∑
i,j a

2
ij

]1/2
, and the vector norm will be Euclidean. unless otherwise indicated.

The spectral norm ‖A‖2 := supx‖Ax‖/‖x‖.
We consider first the Matrix Product problem:

Problem 1.1. Matrix Product. Matrices A and B are given, with n rows and
a total of c columns. The entries of A and B are specified by O(log nc)-bit
numbers. Output a matrix C so that

‖ATB − C‖ ≤ ε‖A‖‖B‖.

Theorem 2.4 on page 10 states that there is a streaming algorithm that solves
an instance of this problem with correctness probability at least 1 − δ, for any
δ > 0, and using

O(cε−2 log(nc) log(1/δ))

bits of space. The update time is O(ε−2 log(1/δ)). This sharpens the previ-
ous bounds [Sar06] with respect to the space and update time (for one prior
algorithm) and update, final processing time, number of passes (which pre-
viously was two), and an O(log(1/δ)) factor in the space (for another prior
algorithm) [Sar06]. We note that it is also seems possible to obtain a one-pass
O(cε−2 log(nc) log(c/δ))-space algorithm via techniques in [AGMS02, CCFC02,
CM05], but the space is suboptimal.

Moreover, Theorem 2.8 on page 13 implies that this algorithm is optimal with
respect to space, including for randomized algorithms. The theorem is shown
using a careful reduction from an augmented version of the indexing problem,
which has communication complexity restated in Theorem 1.6 on page 7.

The sketches in the given algorithms for matrix product, and for other algo-
rithms in this paper, are generally of the form STA, where A is an input matrix
and S is a sign matrix, also called a Rademacher matrix. Such a sketch satis-
fies the properties of the Johnson-Lindenstrauss Lemma for random projections,
and the upper bounds given here follow readily using that lemma, except that
the stronger conditions implied by the JL Lemma require resource bounds that
are larger by a log n factor.

2

One of the algorithms mentioned above relies on a bound for the higher
moments of the error of the product estimate, which is Lemma 2.3 on page 9.
The techniques used for that lemma also yield a more general bound for some
other matrix norms, given in §A.3 on page 47. The techniques of these bounds
are not far from the trace method [Vu07], which has been applied to analyzing
the eigenvalues of a sign matrix. However, we analyze the use of sign matrices
for matrix products, and in a setting of bounded independence, so that trace
method analyses don’t seem to immediately apply.

The time needed for computing the product ATSSTB can be reduced from
the immediate O(dd′m), where m = O(ε−2 log(1/δ)), as discussed in §2.3 on
page 12, to close to O(dd′). When the update regime is somewhat more restric-
tive than the general turnstile model, the lower bound is reduced by a log(nc)
factor, in Theorem 2.9 on page 14, but the upper bound can be lowered by
nearly the same factor, as shown in Theorem 2.5 on page 11, for column-wise
updates, which are a special case of this more restrictive model.

Second, we consider the following linear regression problem.

Problem 1.2. Linear Regression. Given an n×d matrix A and an n×1 column
vector b, each with entries specified by O(log nd)-bit numbers, output a vector x
so that

‖Ax− b‖ ≤ (1 + ε) min
x′∈IRd

‖Ax′ − b‖.

Theorem 3.7 on page 17 gives a lower bound of Ω(d2ε−1 log(nd)) space for
randomized algorithms for the regression problem (This is under a mild assump-
tion regarding the number of bits per entry, and the relation of n to d.) Our
upper bound algorithm requires a sketch with O(d2ε−1 log(1/δ))) entries, with
success probability 1−δ, each entry of size O(log(nd)), thus matching the lower
bound, and improving on prior upper bounds by a factor of log d [Sar06].

In Section 4 on page 24, we give upper and lower bounds for low rank
approximation:

Problem 1.3. Rank-k Approximation. Given integer k, value ε > 0, and n×d
matrix A, find a matrix Ãk of rank at most k so that

‖A− Ãk‖ ≤ (1 + ε)‖A−Ak‖,

where Ak is the best rank-k approximation to A.

There have been several proposed algorithms for this problem, but all so far
have needed more than 1 pass. A 1-pass algorithm was proposed by Achlioptas
and McSherry [AM07], whose error estimate includes an additive term of ‖A‖;
that is, their results are not low relative error. Other work on this problem in
the streaming model includes work by Desphande and Vempala [DV06], and by
Har-Peled [HP06], but these algorithms require a logarithmic number of passes.
Recent work on coresets [FMSW09] solves this problem for measures other than
the Frobenius norm, but requires two passes.

3

We give a one-pass algorithm needing

O(kε−2(n+ d/ε2) log(nd) log(1/δ))

space. While this does not match the lower bound (given below), it is the
first one-pass rank-k approximation with low relative error; only the trivial
O(nd log(nd))-space algorithm was known before in this setting, even for k = 1.
In particular, this algorithm solves Problem 28 of [Mut05].

The update time is O(kε−4); the total work for updates is thus O(Nkε−4),
where N is the number of nonzero entries in A.

We also give a related construction, which may be useful in its own right: a
low-relative-error bicriteria low-rank approximation. We show that for appro-
priate sign matrices S and Ŝ, the matrix Ã := AŜ(STAŜ)−STA (where X−

denotes the pseudo-inverse of matrix X) satisfies ‖A − Ã‖ ≤ (1 + ε)‖A − Ak‖,
with probability 1− δ. The space needed by these three matrices is O(kε−1(n+
d/ε) log(nd) log(1/δ)). The rank of this approximation is at most kε−1 log(1/δ).
The ideas for this construction are in the spirit of those for the “CUR” decom-
position of Drineas et al. [DMM08].

When the entries of A are given a column or a row at a time, a streaming
algorithm for low-rank approximation with the space bound

O(kε−1(n+ d) log(nd) log(1/δ))

is achievable, as shown in Theorem 4.5 on page 28. (It should be remarked that
under such conditions, it may be possible to adapt earlier algorithms to use one
pass.) Our lower bound Theorem 4.10 on page 33 shows that at least Ω(kε−1n)
bits are needed, for row-wise updates, thus when n ≥ d, this matches our upper
bound up to a factor of log(nd) for constant δ.

Our lower bound Theorem 4.13 on page 37, for general turnstile updates,
is Ω(kε−1(n + d) log(nd)), matching the row-wise upper bound. We give an
algorithm for turnstile updates, also with space bounds matching this lower
bound, but requiring two passes. (An assumption regarding the computation
of intermediate matrices is needed for the multi-pass algorithms given here, as
discussed in §1.4 on page 7.)

Our lower bound Theorem 4.14 on page 39 shows that even with multiple
passes and randomization, Ω((n+ d)k log(nd)) bits are needed for low-rank ap-
proximation, and we give an algorithm needing three passes, and O(nk log(nd))
space, for n larger than a constant times max{d/ε, k/ε2} log(1/δ).

In Section 5 on page 39, we give bounds for the following.

Problem 1.4. Rank Decision Problem. Given an integer k, and a matrix A,
output 1 iff the rank of A is at least k.

The lower bound Theorem 5.4 on page 40 states that Ω(k2) bits of space are
needed by a streaming algorithm to solve this problem with constant probability;
the upper bound Theorem 5.1 on page 39 states that O(k2 log(n/δ)) bits are
needed for failure probability at most δ by a streaming algorithm. The lower

4

Space Model Theorem

Product

Θ(cε−2 log(nc)) turnstile 2.1, 2.4, 2.8
Ω(cε−2) A before B 2.9
O(cε−2)(lg lg(nc) + lg(1/ε)) col-wise 2.5

Regression

Θ(d2ε−1 log(nd)) turnstile 3.2, 3.7
Ω(d2(ε−1 + log(nd))) insert-once 3.14

Rank-k Approximation

O(kε−2(n+ dε−2) log(nd)) turnstile 4.9
Ω(kε−1(n+ d) log(nd)) turnstile 4.13
O(kε−1(n+ d) log(nd)) row-wise 4.5
Ω(kε−1n) row-wise 4.10
O(kε−1(n+ d) log(nd)) 2, turnstile 4.4
O(k(n+ dε−1 + kε−2) log(nd)) 3, row-wise 4.6
Ω(k(n+ d) log(nd)) O(1), turnstile 4.14

Rank Decision

O(k2 logn) turnstile 5.1
Ω(k2) turnstile 5.4

Figure 1: Algorithmic upper and lower bounds given here; results are for one
pass, unless indicated otherwise under “Model.”. All space upper bounds are
multiplied by log(1/δ) for failure probability δ.

bound is extended to the problem of checking the invertibility of A, and to
eigenvalue or determinant estimation with small relative error, by reduction
from Rank Decision.

Lower bounds for related problems have been studied in the two-party com-
munication model [CS91, CS95], but the results there only yield bounds for
deterministic algorithms in the streaming model. Bar-Yossef [BY03] gives lower
bounds for the sampling complexity of low rank matrix approximation and ma-
trix reconstruction. We note that it is much more difficult to lower bound the
space complexity. Indeed, for estimating the Euclidean norm of a length-n data
stream, the sampling complexity is Ω(

√
n) [BY02], while there is a sketching

algorithm achieving O((log n)/ε2) bits of space [AMS99].

1.2 Techniques for the Lower Bounds

Our lower bounds come from reductions from the two-party communication
complexity of augmented indexing. Alice is given x ∈ {0, 1}n, and Bob is given
i ∈ [n] together with xi+1, . . . , xn. Alice sends a single message to Bob, who
must output xi with probability at least 2/3. Alice and Bob create matrices
Mx and My, respectively, and use a streaming algorithm to solve augmented
indexing.

For regression even obtaining an Ω(d2 log(nd)) bound is non-trivial. It is
tempting for Alice to interpret x as a d × d matrix Mx with entries drawn

5

randomly from [nd]. She sets A = M−1
x , which she gives the streaming algo-

rithm. Bob sets b to a standard unit vector, so that the solution is a column of
A−1 = Mx, which can solve augmented indexing.

This argument is flawed because the entries of A may be exponentially small,
so A is not a valid input. We instead design b in conjunction with A. We reduce
from augmented indexing, rather than indexing (as is often done in streaming),
since Bob must use his knowledge of certain entries of A to guarantee that A
and b are valid inputs.

To achieve an extra factor of 1/ε, we copy this construction 1/ε times. Bob
can set b to force a large error on 1/ε − 1 of the copies, forcing the regression
coefficients to “approximately solve” the remaining copy. This approach loses a
log(nd) factor, and to gain it back we let Bob delete entries that Alice places in
A. The log(nd) factor comes from creating log(nd) groups, each group contain-
ing the 1/ε copies described above. The entries across the log(nd) groups grow
geometrically in size. This idea is inspired by a lower bound for Lp-estimation
in [KNW09], though there the authors studied the Gap-Hamming Problem. Of
the groups that are not deleted, only one contributes to the error, since the
entries in other groups are too small.

1.3 Notation and Terminology

For integer n, let [n] denote {1, 2, . . . , n}.
A Rademacher variable is a random variable that is +1 or −1 with prob-

ability 1/2. A sign (or Rademacher) matrix has entries that are independent
Rademacher variables. A p-wise independent sign matrix has entries that are
Rademacher variables, every subset of p or more entries being independent.

For a matrix A, let a:j denote the jth column of A, and aij denote the entry
at row i and column j. More generally, use an upper case letter for a matrix,
and the corresponding lower case for its columns and entries. We may write a2

:j

for ‖a:j‖2.
We say that matrices C and D are conforming for multiplication, or just

conforming, if the number of columns of C equals the number of rows of D. If
the appropriate number of rows and columns of a matrix can be inferred from
context, we may omit it.

For a matrix A, let A− denote the Moore-Penrose pseudo-inverse of A, so
that A− = V Σ−UT , where A = UΣV T is the singular value decomposition of
A.

The following is a simple generalization of the Pythagorean Theorem, and
we will cite it that way.

Theorem 1.5. (Pythagorean Theorem) If C and D matrices with the same
number of rows and columns, then CTD = 0 implies ‖C+D‖2 = ‖C‖2 + ‖D‖2.

Proof. By the vector version, we have ‖C +D‖2 =
∑
i‖c:i + d:i‖2 =

∑
i‖c:i‖2 +

‖d:i‖2 = ‖C‖2 + ‖D‖2.

For background on communication complexity, see Section 1.5.

6

1.4 Bit Complexity

We will assume that the entries of an n × d input matrix are O(log(nd))-bit
integers. The sign matrices used for sketches can be assumed to have dimensions
bounded by the maximum of n and d. Thus all matrices we maintain have entries
of bit size bounded by O(log(nd)). For low-rank approximation, some of the
matrices we use in our two and three pass algorithms are rounded versions of
matrices that are assumed to be computed exactly in between passes (though
not while processing the stream). This “exact intermediate” assumption is not
unreasonable in practice, and still allows our upper bounds to imply that the
lower bounds cannot be improved.

1.5 Communication Complexity

For lower bounds, we will use a variety of definitions and basic results from
two-party communication complexity, as discussed in [KN97]. We will call the
two parties Alice and Bob.

For a function f : X ×Y → {0, 1}, we use R1−way
δ (f) to denote the random-

ized communication complexity with two-sided error at most δ in which only a
single message is sent from Alice to Bob. We also use R1−way

µ,δ (f) to denote the
minimum communication of a protocol, in which a single message from Alice to
Bob is sent, for solving f with probability at least 1− δ, where the probability
is taken over both the coin tosses of the protocol and an input distribution µ.

In the augmented indexing problem, which we call AIND, Alice is given
x ∈ {0, 1}n, while Bob is given both an i ∈ [n] together with xi+1, xi+2, . . . , xn.
Bob should output xi.

Theorem 1.6. ([MNSW98]) R1−way
1/3 (AIND) = Ω(n) and also R1−way

µ,1/3 (AIND) =
Ω(n), where µ is uniform on {0, 1}n × [n].

Corollary 1.7. Let A be a randomized algorithm, which given a random x ∈
{0, 1}n, outputs a string A(x) of length m. Let B be an algorithm which given
a random i ∈ [n], outputs a bit B(A(x)) so that with probability at least 2/3,
over the choice of x, i, and the coin tosses of A and B, we have B(A(x))i = xi.
Then m = Ω(n).

Proof. Given an instance of AIND under distribution µ, Alice sends A(x) to
Bob, who computes B(A(x))i, which equals xi with probability at least 2/3.
Hence, m = Ω(n).

Suppose x, y are Alice and Bob’s input, respectively. We derive lower bounds
for computing f(x, y) on data stream x ◦ y as follows. Any r-pass streaming
algorithm A yields a (2r−1)-round communication protocol for f in the following
way. Alice computes A(x) and sends the state of A to Bob, who computes
A(x ◦ y). Bob sends the state of A back to Alice, who continues the execution
of A (the second pass) on x ◦ y. In the last pass, Bob outputs the answer. The
communication is 2r − 1 times the space of the algorithm.

7

2 Matrix Products

2.1 Upper Bounds

Given matrices A and B with the same number of rows, suppose S is a sign
matrix also with the same number of rows, and with m columns. It is known
that

E[ATSSTB]/m = AT E[SST]B/m = AT [mI]B/m = ATB

and
E[‖ATSSTB/m−ATB‖2] ≤ 2‖A‖2‖B‖2/m. (1)

Indeed, the variance bound (1) holds even when the entries of S are not fully
independent, but only 4-wise independent [Sar06]. Such limited independence
implies that the storage needed for S is only a constant number of random entries
(a logarithmic number of bits), not the nm bits needed for explicit representation
of the entries. The variance bound implies, via the Chebyshev inequality, that
for given ε > 0, there is an m = O(1/ε2) such that ‖ATSSTB/m − ATB‖ ≤
ε‖A‖‖B‖, with probability at least 3/4. For given δ > 0, we will give two
streaming algorithms that have probability of failure at most δ, and whose
dependence on δ, in their space and update times is O(log(1/δ)).

One algorithm relies only on the variance bound; another is slightly simpler,
but relies on bounds on higher moments of the error norm that need some
additional proof.

The first algorithm is as follows: for a value p = O(log(1/δ)), but to be
determined, maintain p pairs of sketches STA and STB, and use standard
streaming algorithms [AMS99] to maintain information sufficient to estimate
‖A‖ and ‖B‖ accurately. Compute all product estimates P1, P2, . . . , Pp of
(STA)TSTB = ATSSTB/m for each pair of sketches, and consider the Frobe-
nius norm of the difference between P1 and the remaining estimates. If that
Frobenius distance is less than (the estimate of) ε‖A‖‖B‖/2, for more than
half the remaining product estimates, then return P1 as the estimate of ATB.
Otherwise, do the same test for Pi, for i = 2 . . . p, until some Pi is found that
satisfies the test.

Theorem 2.1. Given δ > 0 and ε ∈ (0, 1/3), for suitable m = O(1/ε2) and
p = O(log(1/δ)), the above algorithm returns a product estimate whose error
is no more ε‖A‖‖B‖, with probability at least 1 − δ. Using 4-wise independent
entries for S, the space required is O(cmp) = O(cε−2 log(1/δ)).

Proof. Choose m so that the probability of the event Ei, that ‖Pi − ATB‖ ≤
X/4, is at least 3/4, where X := ε‖A‖‖B‖. Pick p so that the probability that
at least 5/8 of the Ei events occur is at least 1−δ. The existence of m = O(1/ε2)
with this property follows from (1), and the existence of p = O(log(1/δ)) with
this property follows from the Chernoff bound. Now assume that at least 5/8
of the Ei events have indeed occurred. Then for more than half the Pi’s, the
condition Fi must hold, that for more than half the remaining product estimates
Pj ,

‖Pi − Pj‖ ≤ ‖Pi −ATB‖+ ‖ATB − Pj‖ ≤ X/2.

8

Suppose Pi satisfies this condition, or since only an estimate of ‖A‖‖B‖ is
available, satisfies ‖Pi − Pj‖ ≤ (1 + ε)X/2 for more than half the remaining
product estimates Pj . Then there must be some Pj′ with both ‖Pi − Pj′‖ ≤
(1 + ε)X/2, and ‖ATB − Pj′‖ ≤ X/4, since the number of Pj not satisfying
one or both of the conditions is less than the total. Therefore ‖Pi − ATB‖ ≤
3(1 + ε)X/4 < X, for ε < 1/3, as desired. Testing for Fi for i = 1, 2 . . . n thus
succeeds in 2 expected steps, with probability at least 1 − δ, as desired. The
space required for storing the random data needed to generate S is O(p), by
standard methods, so the space needed is that for storing p sketches STA and
STB, each with m rows and a total of c columns.

While this algorithm is not terribly complicated or expensive, it will also
be useful to have an even simpler algorithm, that simply uses a sign matrix S
with m = O(log(1/δ)/ε2) columns. As shown below, for such m the estimate
ATSSTB satisfies the same Frobenius error bound proven above.

This claim is formalized as follows.

Theorem 2.2. For A and B matrices with n rows, and given δ, ε > 0, there is
m = Θ(log(1/δ)/ε2), as ε→ 0, so that for an n×m sign matrix S,

P{‖ATSSTB/m−ATB‖ < ε‖A‖‖B‖} ≥ 1− δ.

This bound holds also when S is a 4dlog(
√

2/δ)e-wise independent sign matrix.

This result can be extended to certain other matrix norms, as discussed in
§A.3 on page 47.

Theorem 2.2 is proven using Markov’s inequality and the following lemma,
which generalizes (1), up to a constant. Here for a random variable X, Ep[X]
denotes [E[|X|p]]1/p.

Lemma 2.3. Given matrices A and B, suppose S is a sign matrix with m > 15
columns, and A, B, and S have the same number of rows. Then there is an
absolute constant C so that for integer p > 1 with m > Cp,

Ep
[
‖ATSSTB/m−ATB‖2

]
≤ 4((2p− 1)!!)1/p‖A‖2‖B‖2/m.

This bound holds also when S is 4p-wise independent.

The proof is given in §A.1 on page 43.
For integer p ≥ 1, the double factorial (2p−1)!! denotes (2p−1)(2p−3) · · · 5 ·

3 · 1, or (2p)!/2pp!. This is the number of ways to partition [2p] into blocks all
of size two. From Stirling’s approximation,

(2p− 1)!! = (2p)!/2pp! ≤
√

2π2p(2p/e)2pe1/24p

2p
√

2πp(p/e)pe1/(12p+1)
≤
√

2(2p/e)p. (2)

Thus, the bound of Lemma 2.3 is O(p) as p→∞, implying that

Ep
[
‖ATSSTB/m−ATB‖

]
= O(

√
p)

9

as p → ∞. It is well known that a random variable X with Ep[X] = O(
√
p) is

subgaussian, that is, its tail probabilities are dominated by those of a normal
distribution.

When B = A has one column, so that both are a column vector a, and
m = 1, so that S is a single vector s, then this bound becomes Ep[(1 − (a ·
s)2)2] ≤ 4[(2p − 1)!!]1/p‖a‖4. The Khintchine inequalities give a related bound
Ep[(a · s)4] ≤ [(4p − 1)!!]1/p‖a‖4, and an argument similar that the proof of
Lemma 2.3 on the previous page can be applied.

The proof of Theorem 2.2 is standard, but included for completeness.

Proof. Let
p := dlog(

√
2/δ)e

and
m := d8p/ε2e = Θ(log(1/δ)/ε2).

(Also p ≤ m/2 for ε not too large.)
Applying Markov’s inequality and (2) on the preceding page,

P{‖ATSSTB/m−ATB‖ > ε‖A‖‖B‖}
= P{‖ATSSTB/m−ATB‖2p > (ε‖A‖‖B‖)2p}

(Markov) ≤ (ε‖A‖‖B‖)−2pE
[
‖ATSSTB/m−ATB‖2p

]
(Lemma 2.3) ≤ ε−2p(4/m)p(2p− 1)!!

≤
√

2(8p/eε2m)p

(choice of m) ≤ e−p
√

2

(choice of p) ≤ elog(δ/
√

2)
√

2
= δ.

The following algorithmic result is an immediate consequence of Theorem 2.2
on the previous page, maintaining sketches STA and STB, and (roughly) stan-
dard methods to generate the entries of S with the independence specified by
that theorem.

Theorem 2.4. Given δ, ε > 0, suppose A and B are matrices with n rows and
a total of c columns. The matrices A and B are presented as turnstile updates,
using at most O(log nc) bits per entry. There is a data structure that requires
m = O(log(1/δ)/ε2) time per update, and O(cm log(nc)) bits of space, so that
at a given time, ATB may be estimated such that with probability at least 1− δ,
the Frobenius norm of the error is at most ε‖A‖‖B‖.

10

2.2 Column-wise Updates

When the entries to A and B are received in column-wise order, a procedure
using less space is possible. The sketches are not STA and STB, but instead
rounded versions of those matrices. If we receive entries of A (or B) one-by-one
in a given column, we can maintain the inner product with each of the rows of
ST exactly using m log(cn) space. After all the entries of a column of A are
known, the corresponding column of STA is known, and its m entries can be
rounded to the nearest power of 1 + ε. After all updates have been received,
we have Â and B̂, where Â is STA where each entry has been rounded, and
similarly for B̂. We return ÂT B̂ as our output.

The following theorem is an analysis of this algorithm. By Theorem 2.9 on
page 14 below, the space bound given here is within a factor of lg lg(nc)+lg(1/ε)
of best possible.

Theorem 2.5. Given δ, ε > 0, suppose A and B are matrices with n rows and
a total of c columns. Suppose A and B are presented in column-wise updates,
with integer entries having O(log(nc)) bits. There is a data structure so that, at
a given time, ATB may be estimated, so that with probability at least 1− δ the
Frobenius norm of the error at most ε‖A‖‖B‖. There is m = O(1/ε2) so that
for c large enough, the data structure needs O(cm log 1/δ)(lg lg(nc) + lg(1/ε))
bits of space.

Proof. The space required by the above algorithm, including that needed for
the exact inner products for a given column, is

lg(cn))/ε2 + c(lg lg(cn) + lg(1/ε))/ε2 = c(lg lg(cn) + lg(1/ε))/ε2

for c > lg(cn).
By Theorem 2.2 on page 9, with probability at least 1− δ,

‖ATSSTB/m−ATB‖ ≤ ε‖A‖‖B‖.

By expanding terms, one can show

‖ÂT B̂/m−ATSSTB/m‖ ≤ 3(ε/m)‖ATS‖‖STB‖.

By the triangle inequality,

‖ÂT B̂/m−ATB‖ ≤ ε‖A‖‖B‖+ 3(ε/m)‖STA‖‖STB‖.

By Lemma 2.6 on the following page, with probability at least 1−δ, ‖STA‖/
√
m ≤

(1 + ε)‖A‖, and similarly for STB. Thus with probability at least 1 − 3δ,
‖ÂT B̂/m−ATB‖ ≤ ε(4 + 3ε)‖A‖‖B‖, and the result follows by adjusting con-
stant factors.

The proof depends on the following, where the log n penalty of JL is avoided,
since only a weaker condition is needed.

11

Lemma 2.6. For matrix A with n rows, and given δ, ε > 0, there is m =
Θ(ε−2 log(1/δ)), as ε→ 0, such that for an n×m sign matrix S,

P{|‖STA‖/
√
m− ‖A‖| ≤ ε‖A‖} ≥ 1− δ.

The bound holds when the entries of S are p-wise independent, for large enough
p in O(log(1/δ)).

This tail estimate follows from the moment bound below, which is proven in
§A.2 on page 46.

Lemma 2.7. Given matrix A and sign matrix S with the same number of rows,
there is an absolute constant C so that for integer p > 1 with m > Cp,

Ep
[
[‖STA‖2/m− ‖A‖2]2

]
≤ 4((2p− 1)!!)1/p‖A‖4/m.

This bound holds also when S is 4p-wise independent.

2.3 Faster Products of Sketches

The last step of finding our product estimator is computing the productATSSTB
of the sketches. We can use fast rectangular matrix multiplication for this pur-
pose. It is known [Cop97, HP98] that for a constant γ > 0, multiplying an r×rγ
matrix by an rγ × r matrix can be done in r2polylog r time. An explicit value
of γ = .294 is given in [Cop97]. Thus, if m ≤ min(d, d′).294, then ATSSTB can
be computed in O(dd′polylog min(d, d′)) time using block multiplication.

When m is very small, smaller than polylog(min(d, d′)), we can take the
above rounding approach even further: that under some conditions it is possible
to estimate the sketch product ATSSTB more quickly than O(dd′m), even as
fast as O(dd′), where the constant in the O(·) notation is absolute. As dd′ →∞,
if δ and ε are fixed (as so m is fixed), the necessary computation is to estimate
the dot products of a large number of fixed-dimensional vectors (the columns of
STA with those of STB).

Suppose we build an ε-cover E for the unit sphere in IRm, and map each
column â:i of STA to x ∈ E nearest to â:i/‖â:i‖, and similarly map each b̂:j to
some y ∈ E. Then the error in estimating âT:i b̂:j by xT y‖â:i‖‖b̂:j‖ is at most
3ε‖â:i‖‖b̂:j‖, for ε small enough, and the sum of squares of all such errors is
at most 9ε2‖STA‖2‖STB‖2. By Lemma 2.6, this results in an overall additive
error that is within a constant factor of ε‖A‖‖B‖, and so is acceptable.

Moreover, if the word size is large enough that a table of dot products xT y
for x, y ∈ E can be accessed in constant time, then the time needed to estimate
ATSSTB is dominated by the time needed for at most dd′ table lookups, yielding
O(dd′) work overall.

Thus, under these word-size conditions, our algorithm is optimal with respect
to number of passes, space, and the computation of the output from the sketches,
perhaps leaving only the update time for possible improvement.

12

2.4 Lower Bounds for Matrix Product

Theorem 2.8. Suppose n ≥ β(log10 cn)/ε2 for an absolute constant β > 0, and
that the entries of A and B are represented by O(log(nc))-bit numbers. Then
any randomized 1-pass algorithm which solves Problem 1.1, Matrix Product, with
probability at least 4/5 uses Ω(cε−2 log(nc)) bits of space.

Proof. Throughout we shall assume that 1/ε is an integer, and that c is an even
integer. These conditions can be removed with minor modifications. Let Alg be
a 1-pass algorithm which solves Matrix Product with probability at least 4/5.
Let r = log10(cn)/(8ε2). We use Alg to solve instances of AIND on strings of
size cr/2. It will follow by Theorem 1.6 that the space complexity of Alg must
be Ω(cr) = Ω(c log(cn))/ε2.

Suppose Alice has x ∈ {0, 1}cr/2. She creates a c/2 × n matrix U as fol-
lows. We will have that U = (U0, U1, . . . , U log10(cn)−1, Z), where for each
k ∈ {0, 1, . . . , log10(cn) − 1}, Uk is a c/2 × r/(log10(cn)) matrix with entries
in the set {−10k, 10k}. Also, Z is a c/2× (n− r) matrix consisting of all zeros.

Each entry of x is associated with a unique entry in a unique Uk. If the
entry in x is 1, the associated entry in Uk is 10k, otherwise it is −10k. Recall
that n ≥ β(log10(cn))/ε2, so we can assume that n ≥ r provided that β > 0 is
a sufficiently large constant.

Bob is given an index in [cr/2], and suppose this index of x is associated
with the (i∗, j∗)-th entry of Uk

∗
. By the definition of the AIND problem, we

can assume that Bob is given all entries of Uk for all k > k∗. Bob creates a
c/2×n matrix V as follows. In V , all entries in the first k∗r/(log10(cn)) columns
are set to 0. The entries in the remaining columns are set to the negation of
their corresponding entry in U . This is possible because Bob has Uk for all
k > k∗. This is why we chose to reduce from the AIND problem rather than
the IND problem. The remaining n − r columns of V are set to 0. We define
AT = U + V . Bob also creates the n × c/2 matrix B which is 0 in all but the
((k∗ − 1)r/(log10(cn)) + j∗, 1)-st entry, which is 1. Then,

‖A‖2 = ‖AT ‖2 =
(c

2

)(r

log10(cn)

) k∗∑
k=1

100k ≤
(c

16ε2
) 100k

∗+1

99
.

Using that ‖B‖2 = 1,

ε2‖A‖2‖B‖2 ≤ ε2
(c

16ε2
) 100k

∗+1

99
=
c

2
· 100k

∗
· 25

198
.

ATB has first column equal to the j∗-th column of Uk
∗
, and remaining columns

equal to zero. Let C be the c/2×c/2 approximation to the matrix ATB. We say
an entry C`,1 is bad if its sign disagrees with the sign of (ATB)`,1. If an entry
C`,1 is bad, then ((ATB)`,1−C`,1)2 ≥ 100k

∗
. Thus, the fraction of bad entries is

at most 25
198 . Since we may assume that i∗, j∗, and k∗ are chosen independently

of x, with probability at least 173/198, sign(Ci∗,1) = sign(Uk
∗

i∗,j∗).

13

Alice runs Alg on U in an arbitrary order, transmitting the state to Bob, who
continues the computation on V and then on B, again feeding the entries into
Alg in an arbitrary order. Then with probability at least 4/5, over Alg’s internal
coin tosses, Alg outputs a matrix C for which ‖ATB − C‖2 ≤ ε2‖A‖2‖B‖2.

It follows that the parties can solve the AIND problem with probability at
least 4/5− 25/198 > 2/3. The theorem now follows by Theorem 1.6.

For a less demanding computational model, we have:

Theorem 2.9. Suppose n ≥ β/ε2 for an absolute constant β > 0, and that the
entries of A and B are represented by O(log(nc))-bit numbers. Then even if
each entry of A and B appears exactly once in the stream, for every ordering of
the entries of A and B for which every entry of A appears before every entry of
B, any randomized 1-pass algorithm which solves Problem 1.1, Matrix Product,
with probability at least 4/5 uses Ω(cε−2) bits of space.

Proof. The proof is very similar to the proof of Theorem 2.8, so we only highlight
the differences. Now we set r = 1/(8ε2). Instead of reducing from the AIND
problem, we reduce from IND on instances of size cr/2, which is the same
problem as AIND, except Bob does not receive xi+1, . . . , xcr/2. It is well-known
that R1−way

µ,1/3 (IND) = Ω(cr), where µ is the uniform distribution on {0, 1}cr/2×
[cr/2]. We use Alg to solve IND.

This time Alice simply sets U to equal (U0, Z). Bob is given an (i∗, j∗) and
his task is to recover U0

i∗,j∗ . This time AT = U and B contains a single non-zero
entry in position (j∗, 1), which contains a 1. It follows that the first column of
ATB equals the j∗-th column of U0, and the remaining columns are zero. We
now have ‖A‖2 = c

16ε2 , ‖B‖2 = 1, and so ε2‖A‖2‖B‖2 = c
16 . Defining a bad

entry as before, we see that the fraction of bad entries is at most 1/8, and so the
parties can solve the IND problem with probability at least 4/5−1/8 > 2/3.

3 Regression

3.1 Upper Bounds

Our algorithm for regression is a consequence of the following theorem. For con-
venience of application of this result to algorithms for low-rank approximation,
it is stated with multiple right-hand sides: that is, the usual vector b is replaced
by a matrix B. Moreover, while the theorem applies to a matrix A of rank at
most k, we will apply it to regression with the assumption that A has d ≤ n
columns implying an immediate upper bound of d on the rank. This also is for
convenience of application to low-rank approximation.

Theorem 3.1. Given δ, ε > 0, suppose A and B are matrices with n rows, and
A has rank at most k. There is an m = O(k log(1/δ)/ε) such that, if S is an
n×m sign matrix, then with probability at least 1− δ, if X̃ is the solution to

min
X
‖ST (AX −B)‖2, (3)

14

and X∗ is the solution to
min
X
‖AX −B‖2, (4)

then
‖AX̃ −B‖ ≤ (1 + ε)‖AX∗ −B‖.

The entries of S need be at most η(k+log(1/δ))-wise independent, for a constant
η.

This theorem has the following immediate algorithmic implication.

Theorem 3.2. Given δ, ε > 0, and n× d matrix A, and n-vector b, sketches of
A and b of total size

O(d2ε−1 log(1/δ) log(nd))

can be maintained under turnstile updates, so that a vector x̃ can be found using
the sketches, so that with probability at least 1− δ,

‖Ax̃− b‖ ≤ (1 + ε)‖Ax∗ − b‖,

where x∗ minimizes ‖Ax− b‖. The update time is

O(dε−2 log(1/δ)).

The proof of Theorem 3.1 on the previous page is not far that of from
Theorem 12 of [Sar06], or that in [DMMS07]. The following lemma is crucial.

Lemma 3.3. For A, B, X∗, and X̃ as in Theorem 3.1 on the preceding page,

‖A(X̃ −X∗)‖ ≤ 2
√
ε‖B −AX∗‖

Proof. Before giving a proof of Theorem 3.1 on the previous page, we state a
lemma limiting the independence needed for S to satisfy a particular spectral
bound, also some standard lemmas, and the proof of Lemma 3.3.

Lemma 3.4. Given integer k and ε, δ > 0, there is m = O(k log(1/δ)/ε) and an
absolute constant η such that if S is an n×m sign matrix with η(k+ log(1/δ))-
wise independent entries, then for n × k matrix U with orthonormal columns,
with probability at least 1− δ, the spectral norm ‖UTSSTU − I‖2 ≤ ε.

Proof. As in the proof of Corollary 11 of [Sar06], by Lemma 10 of that reference,
it is enough to show that with failure probability η−kδ, for given k-vectors x, y
with no more than unit norm, |xTUTSSTUy/m − xT y| ≤ αε, for absolute
constant α > 0 and η > 1. This bound follows from Theorem 2.2 on page 9, for
the given m and η(k + log(1/δ))-wise independence.

Lemma 3.5. If matrix U has columns that are unit vectors and orthogonal to
each other, then UUTU = U . If C then ‖UTUC‖ = ‖UC‖.

15

Proof. The proof of the first fact is omitted. For the second,

‖UTUC‖2 = traceCTUTUUTUC = traceCTUTUC = ‖UC‖2.

Lemma 3.6. Given n× d matrix C, and n× d′ matrix D consider the problem

min
X∈IRd×d′

‖CX −D‖2.

The solution to this problem is X∗ = C−D, where C− is the Moore-Penrose
inverse of C. Moreover, CT (CX∗ − D) = 0, and so if c is any vector in the
column space of C, then cT (CX∗ −D) = 0.

Proof. Omitted.

The system CTCX = CTD is called the normal equations for the regression
problem. While the regression problem is commonly stated with d′ = 1, the
generalization to d′ > 1 is immediate.

Proof. (of Lemma 3.3 on the preceding page) Let A = UΣV T denote the sin-
gular value decomposition of A. Since A has rank at most k, we can consider
U and V to have at most k columns.

By Lemma 3.5 on the previous page, it is enough to bound ‖β‖, where
β := UTA(X̃ −X∗).

We use the normal equations for (3) on page 14,

UTSST (AX̃ −B) = ATSST (AX̃ −B) = 0. (5)

To bound ‖β‖, we bound ‖UTSSTUβ‖, and then show that this implies that
‖β‖ is small. Using Lemma 3.5 and (5) we have

UTSSTUβ = UTSSTUUTA(X̃ −X∗)
= UTSSTA(X̃ −X∗) + UTSST (B −AX̃)

= UTSST (B −AX∗).

Using the normal equations (6) and Theorem 2.2, and appropriatem = O(k log(1/δ)/ε),
with probability at least 1− δ,

‖UTSSTUβ/m‖ = ‖UTSST (B −AX∗)/m‖

≤
√
ε/k‖U‖‖B −AX∗‖

≤
√
ε‖B −AX∗‖.

To show that this bound implies that ‖β‖ is small, we use the property of
any conforming matrices C and D, that ‖CD‖ ≤ ‖C‖2‖D‖, obtaining

‖β‖ ≤ ‖UTSSTUβ/m‖+ ‖UTSSTUβ/m− β‖
≤
√
ε‖B −AX∗‖+ ‖UTSSTU/m− I‖2‖β‖.

16

By Lemma 3.4 on page 15, with probability at least 1−δ, ‖UTSSTU/m−I‖2 ≤
ε0, for m ≥ kC log(1/δ)/ε20 and an absolute constant C. Thus ‖β‖ ≤

√
ε‖B −

AX∗‖+ ε0‖β‖, or

‖β‖ ≤
√
ε‖B −AX∗‖/(1− ε0) ≤ 2

√
ε‖B −AX∗‖,

for ε0 ≤ 1/2. This bounds ‖β‖, and so proves the claim.

Now for the proof of Theorem 3.1. Again we let UΣV T denote the SVD of
A.

From the normal equations for (4) on page 15, and since U and A have the
same columnspace,

UT (AX∗ −B) = AT (AX∗ −B) = 0. (6)

This and Theorem 1.5, the Pythagorean Theorem, imply

‖AX̃ −B‖2 = ‖AX∗ −B‖2 + ‖A(X̃ −X∗)‖2, (7)

which with Lemma 3.3 on page 15, implies that with probability at least 1−2δ,

‖AX̃ −B‖ ≤ (1 + 4ε)‖AX∗ −B‖.

Adjusting and renaming δ and ε, and folding the changes into m, the result
follows.

3.2 Lower Bounds for Regression

Theorem 3.7. Suppose n ≥ d(log10(nd))/(36ε) and d is sufficiently large. Then
any randomized 1-pass algorithm which solves the Linear Regression problem
with probability at least 7/9 needs Ω(d2ε−1 log(nd)) bits of space.

Proof. Throughout we shall assume that ε < 1/72 and that u := 1/(36ε) is an
integer. Put L := nd.

We reduce from the AIND problem on strings of length d(d−1)(log10 L)/(72ε).
Alice interprets her input string as a d(log10 L)u × d matrix A, which is con-
structed as follows.

For each z ∈ {0, . . . , log10 L − 1} and each k ∈ [u], we define an upper-
triangular d × d matrix Az,k. We say that Az,k is in level z and band k. The
matrix Az,k consists of random {−10z,+10z} entries inserted above the diagonal
from Alice’s input string. The diagonal entries of the matrices will be set by
Bob. A is then the d(log10 L)u × d matrix obtained by stacking the matrices
A0,1, A0,2, . . . , A0,u, A1,1, . . . , A1,u, . . . , Alog10 L−1,u on top of each other.

Bob has an index in the AIND problem, which corresponds to an entry
Az
∗,k∗

i∗,j∗ for a z∗ ∈ {0, 1, . . . , log10 L − 1}, a k∗ ∈ [u] and an i∗ < j∗. Put
Q := 100z

∗
(j∗ − 1). Bob’s input index is random and independent of Alice’s

input, and therefore, conditioned on the value of j∗, the value of i∗ is random
subject to the constraint i∗ < j∗. Notice, in particular, that j∗ > 1.

17

By definition of the AIND problem, we can assume Bob is given the entries
in Az,k for all z > z∗ and each k ∈ [u].

Let P be a large positive integer to be determined. Bob sets the diagonal
entries of A as follows. Only matrices in level z∗ have non-zero diagonal entries.
Matrix Az

∗,k∗ has all of its diagonal entries equal to P . The remaining matrices
Az
∗,k in level z∗ in bands k 6= k∗ have Az

∗,k
j,j = P whenever j ≥ j∗, and Az

∗,k
j,j = 0

whenever j < j∗.
Alice feeds her entries of A into an algorithm Alg which solves the linear

regression problem with probability at least 7/9, and transmits the state to Bob.
Bob then feeds his entries of A into Alg. Next, using the entries that Bob is
given in the AIND problem, Bob sets all entries of matrices Az,k in levels z > z∗

to 0, for every band k.
Bob creates the d(log10 L)u × 1 column vector b as follows. We think of b

as being composed of (log10 L)u vectors bz,k, z ∈ {0, . . . , log10 L − 1}, k ∈ [u],
so that b is the vector obtained by stacking b0,1, b0,2, . . . , b0,u, . . . , blog10 L−1,u on
top of each other. We say bz,k is in level z and band k.

For any x ∈ IRd, the squared error of the linear regression problem is ‖Ax−
b‖2 =

∑log10 L−1
z=0

∑u
k=1‖Az,kx−bz,k‖2. For all vectors bz

∗,k in level z∗, Bob sets
bz
∗,k
j∗ = P . He sets all other entries of b to 0, and feeds the entries of b to Alg.

We will show in Lemma 3.8 below that there exists a vector x ∈ IRd for
which ‖Ax − b‖2 ≤ Q

(
u− 97

99

)
. It will follow by Lemma 3.12 that the vector

x∗ output by Alg satisfies various properties useful for recovering individual
entries of Az

∗,k∗ . By Lemma 3.13, it will follow that for most (j, j∗) pairs that
Bob could have, the entry Az

∗,k∗

j,j∗ can be recovered from x∗j , and so this is also
likely to hold of the actual input pair (i∗, j∗). Hence, Alice and Bob can solve
the AIND problem with reasonable probability, thereby giving the space lower
bound.

Consider the vector x ∈ IRd defined as follows. Let xj = 0 for all j > j∗.
Let xj∗ = 1. Finally, for all j < j∗, let xj = −Az

∗,k∗

j,j∗ /P .

Lemma 3.8. ‖Ax− b‖2 ≤ Q
(
u− 97

99

)
.

Proof. We start with three claims.

Claim 3.9. (Az,kx− bz,k)j = 0 whenever z > z∗.

Proof. For z > z∗ and any k, Az,k is the zero matrix and bz,k is the zero
vector.

Claim 3.10. For all j ≥ j∗, (Az,kx− bz,k)j = 0.

Proof. By Claim 3.9, if z > z∗, for all k, for all j, (Az,kx−bz,k)j = 0. So suppose
z ≤ z∗. For j > j∗, bz,kj = 0. Since j > j∗, (Az,kx)j =

∑d
j′=1A

z,k
j,j′xj′ = 0 since

Az,kj,1 = · · · = Az,kj,j∗ = 0, while xj∗+1 = · · · = xd = 0.
For j = j∗, bz,kj∗ = P if z = z∗, and is otherwise equal to 0. We also have

(Az,kx)j∗ = Az,kj∗,j∗xj∗ . If z 6= z∗, this is 0 since Az,kj∗,j∗ = 0, and so in this case

18

(Az,kx − bz,k)j = 0. If z = z∗, this quantity is P , but then bz
∗,k
j∗ = P , and so

again (Az,kx− bz,k)j = 0.

Set P = d2L4. The number of bits needed to describe P is O(logL).

Claim 3.11. For all j < j∗,

• For (z, k) = (z∗, k∗), (Az
∗,k∗x− bz∗,k∗)2j ≤ 1

d2L4 .

• For (z, k) 6= (z∗, k∗), (Az,kx− bz,k)2j ≤ 100z + 3
dL .

Proof. Notice that for j < j∗, (Az,k
∗
x− bz,k∗)j equals

(Az,kx)j

=
d∑

j′=0

Az,kj,j′xj′ .

=
j−1∑
j′=0

Az,kj,j′xj′ +Az,kj,j xj +
j∗−1∑
j′=j+1

Az,kj,j′xj′ +Az,kj,j∗xj∗ +
∑
j′>j∗

Az,kj,j′xj′

= 0 +Az,kj,j

(
−Az

∗,k∗

j,j∗

P

)
− 1
P
·
j∗−1∑
j′=j+1

Az
∗,k∗

j,j′ Az
∗,k∗

j′,j∗ +Az
∗,k∗

j,j∗ + 0,

which by our choice of P , lies in the interval[
Az,kj,j

(
−Az

∗,k∗

j,j∗

P

)
+Az,kj,j∗ −

1
dL2

, Az,kj,j

(
−Az

∗,k∗

j,j∗

P

)
+ Az,kj,j∗ +

1
dL2

]
.

Now, if (z, k) = (z∗, k∗), Az,kj,j = P , in which case the interval becomes
[
− 1
dL2 , + 1

dL2

]
.

Hence, (Az
∗,k∗x− bz∗,k∗)2j ≤ 1

d2L4 . On the other hand, if (z, k) 6= (z∗, k∗), then

since j < j∗, Az,kj,j = 0, in which case the interval becomes
[
Az,kj,j∗ − 1

dL2 , Az,kj,j∗ + 1
dL2

]
.

Since, Az,kj,j∗ ∈ {−10z, 0,+10z}, |(Az,kx − bz,k)j | ≤ 10z + 1
dL2 . Using that

z ≤ log10 L− 1, we have, (Az,kx− bz,k)2j ≤ 100z + 2
dL + 1

d2L4 ≤ 100z + 3
dL .

From Claim 3.9, Claim 3.10, and Claim 3.11, we deduce:

• For any z > z∗ and any k, ‖Az,kx− bz,k‖2 = 0.

• ‖Az∗,k∗x− bz∗,k∗‖2 =
∑
j(A

z∗,k∗x− bz∗,k∗)2j ≤ 1
dL4 .

• For any z ≤ z∗ and any k 6= k∗, ‖Az,kx− bz,k‖2 =
∑
j<j∗(A

z,kx− bz,k)2j ≤
100z(j∗ − 1) + 3

L , where the inequality follows from the fact that we sum
over at most d indices.

19

For z = z∗, using that u− 1 = 1/(36ε)− 1 ≥ 2,

u∑
k=1

‖Az
∗,kx− bz

∗,k‖2 ≤ (u− 1)
[
Q+

3
L

]
+

1
dL4

≤ (u− 1)
[
Q+

4
L

]
,

for sufficiently large d. Moreover,

∑
z<z∗

u∑
k=1

‖Az,kx− bz,k‖2 ≤
∑
z<z∗

u

[
100z(j∗ − 1) +

4
L

]
≤

[
Qu

99

]
+

log10 L

9εL
.

We can bound the total error of x by adding these quantities,

log10 L−1∑
z=0

u∑
k=1

‖Az,kx− bz,k‖2 ≤ Q

(
u− 98

99

)
+ Err

where Err = 1
9εL + log10 L

9εL . Now, using the bound in the theorem statement,
1
9ε ≤

4n
d log10 L

, where the latter is upper-bounded by n
2d for sufficiently large d.

Hence, 1
9εL ≤

1
2d2 . Moreover, log10 L

9εL is at most 4n log10 L
nd2 log10 L

≤ 4
d2 . It follows that

Err < 5
d2 . For sufficiently large d, 5

d2 ≤
Q
99 , and so

log10 L−1∑
z=0

u∑
k=1

‖Az,kx− bz,k‖2 ≤ Q
(
u− 97

99

)
,

and the lemma follows.

Let x∗ be the output of Alg. Then, using Lemma 3.8, and the fact that
u = 1/(36ε), with probability at least 7/9

‖Ax∗ − b‖2 ≤ (1 + ε)2‖Ax− b‖2 ≤ (1 + 3ε)
(
u− 97

99

)
Q

≤
(
u− 97

99
+

1
12

)
Q ≤

(
u− 43

48

)
Q. (8)

Call this event E . We condition on E occurring in the remainder of the proof.

Lemma 3.12. The following conditions hold simultaneously:

1. For all j > j∗, x∗j ∈ [−L2/P, L2/P].

2. For j = j∗, x∗j ∈ [1− L2/P, 1 + L2/P].

3. For j < j∗, x∗j ∈ [−L2/P, L2/P].

20

Proof. Notice that the occurrence of event E in (8) implies that

u∑
k=1

‖Az
∗,kx∗ − bz

∗,k‖2 ≤ ‖Ax∗ − b‖2 ≤ udL2,

since we have both 100z
∗ ≤ L2 and j∗− 1 ≤ d. Notice, also, that u ≤ n

d , and so
we have that

u∑
k=1

‖Az
∗,kx∗ − bz

∗,k‖2 ≤ nL2. (9)

To prove condition 1, suppose for some j > j∗ the condition were false. Let j
be the largest index greater than j∗ for which the condition is false. Then for
each k ∈ [u],

(Az
∗,kx∗ − bz

∗,k)2j = (Px∗j +
d∑

j′=j+1

Az
∗,k
j,j′ x

∗
j′)

2,

using that Az
∗,k
j,j′ = 0 for j′ < j. To lower bound the RHS, we can assume that

the sign of x∗j differs from the sign of each of Az
∗,k
j,j′ x

∗
j′ . Moreover, since j is the

largest index for which the condition is false, the RHS is lower bounded by

(PL2/P − d · 10z
∗
L2/P)2 ≥ (L2 − dL3/P)2

= (L2 − 1/(dL))2

≥ L4/4,

where the first inequality follows from the fact that |Az
∗,k
j,j′ | = 10z

∗
and 10z

∗ ≤ L,
while the final inequality follows for sufficiently large d. Thus, ‖Ax∗ − b‖2 ≥
L4/4. But by inequality (9), ‖Ax∗ − b‖2 ≤ nL2, which is a contradiction.

We now prove condition 2. Suppose that x∗j∗ did not lie in the interval
[1− L2/P, 1 + L2/P]. Now, bz

∗,k∗

j∗ = P . Hence,

‖Ax∗ − b‖2 ≥ (Az
∗,k∗x∗ − bz

∗,k∗)2j∗

=

Px∗j∗ +
d∑

j′=j∗+1

Az
∗,k∗

j∗,j′ x
∗
j′ − P

2

≥
(
L2 − d · 10z

∗
L2/P

)2

≥
(
L2 − dL3/P

)2
≥ L4/4,

where the second inequality uses condition 1, the third inequality uses that
10z

∗ ≤ L, while the final inequality holds for sufficiently large d. This contra-
dicts inequality (9).

21

To prove condition 3, let j < j∗ be the largest value of j for which x∗j /∈
[−L2/P, L2/P]. Then using conditions 1 and 2,

‖Ax∗ − b‖2 ≥

Px∗j +
j∗−1∑
j′=j+1

Az
∗,k∗

j,j′ x∗j′ +Az
∗,k∗

j,j∗ x∗j∗ +
d∑

j′=j∗+1

Az
∗,k∗

j,j′ x∗j′

2

≥ (L2 − d10z
∗
L2/P − 1)2

≥ (L2 − dL3/P − 1)2

≥ L4/4,

where the last inequality holds for sufficiently large d. This again contradicts
inequality (9).

Lemma 3.13. With probability at least 1− 49/d, for at least a 41/46 fraction
of the indices j < j∗, we have

sign(x∗j) = − sign(Az
∗,k∗

j,j∗).

Notice that Az
∗,k∗

j,j∗ ∈ {−10z
∗
, 10z

∗}, so its sign is well-defined.

Proof. To prove this, we first bound
∑
k 6=k∗‖Az

∗,kx∗− bz∗,k‖2. Fix an arbitrary
k 6= k∗. We may lower bound ‖Az∗,kx∗ − bz∗,k‖2 by

∑
j<j∗(A

z∗,kx∗ − bz∗,k)2j .
For any j < j∗, we have

(Az
∗,kx∗−bz

∗,k)2j = (Az
∗,kx∗)2j =

j∗−1∑
j′=j

Az
∗,k
j,j′ x

∗
j′ +Az

∗,k
j,j∗ x

∗
j∗ +

d∑
j′=j∗+1

Az
∗,k
j,j′ x

∗
j′

2

.

By Conditions 1, 2, and 3 of Lemma 3.12, this is at least

100z
∗
(

1− dL2

P

)2

≥ 100z
∗
(

1− 2dL2

P

)
.

It follows that

‖Az
∗,kx∗ − bz

∗,k‖2 ≥ Q
(

1− 2dL2

P

)
,

and hence∑
k 6=k∗
‖Az

∗,kx∗ − bz
∗,k‖2 ≥ (u− 1)Q

(
1− 2dL2

P

)

≥ (u− 1) 100z
∗
[
j∗ − 1− 2d2L2

P

]
.

On the other hand, since event E occurs,∑
k

‖Az
∗,kx∗ − bz

∗,k‖2 ≤ ‖Ax∗ − b‖2 ≤
(
u− 43

48

)
Q,

22

and so

‖Az
∗,k∗x∗ − bz

∗,k∗‖2 ≤ 5 ·Q
48

+ (u− 1)
100z

∗ · 2d2L2

P

≤ 5 ·Q
48

+
100z

∗
2d2L2u

d2L4
,

and using that u = 1
36ε ≤

n
d log10 L

≤ n
2d (for d sufficiently large), we have

‖Az
∗,k∗x∗ − bz

∗,k∗‖2 ≤ 5
48
·Q+

100z
∗
n

d(nd)2
≤ 5

48
· 100z

∗
j∗.

Now suppose that the sign of x∗j agrees with the sign of Az
∗,k∗

j,j∗ for some

j < j∗. Then consider (Az
∗,k∗x∗−bz∗,k∗)2j = (Az

∗,k∗x∗)2j =
(∑d

j′=1A
z∗,k∗

j,j′ x∗j′
)2

,

which, since Az
∗,k∗

j,j′ = 0 for j′ < j and Az
∗,k∗

j,j = P , in turn equalsPx∗j +
j∗−1∑
j′=j+1

Az
∗,k∗

j,j′ x∗j′ +Az
∗,k∗

j,j∗ x∗j∗ +
d∑

j′=j∗+1

Az
∗,k∗

j,j′ x∗j′

2

.

Using conditions 1, 2, and 3 of Lemma 3.12, this is at least(
P |x∗j |+ 10z

∗
(

1− dL2

P

))2

≥ 100z
∗
(

1− 2dL2

P

)
.

It follows that if for more than a 5/46 fraction of the indices j < j∗ we had that
the sign of x∗j agreed with the sign of Az

∗,k∗

j,j∗ , then for large enough d,

‖Az
∗,k∗x∗ − bz

∗,k∗‖2 ≥ 5Q
46

(
1− 2dL2

P

)
≥ 5Q

47
.

Now, with probability at least 1− 49/d, we have j∗ > 48, and in this case

‖Az
∗,k∗x∗ − bz

∗,k∗‖2 ≥ 5Q
47

> 100z
∗ 5j∗

48
,

which is a contradiction. The lemma now follows.

Bob lets x∗ be the output of Alg and outputs − sign(x∗i∗). Since i∗ is random
subject to i∗ < j∗, the previous lemma ensures that for sufficiently large d, Bob’s
correctness probability is at least 41

46−
49
d ≥

8
9 , given E . By a union bound, Alice

and Bob solve the AIND problem with probability at least 8
9 −

2
9 ≥

2
3 , and so

the space complexity of Alg must be Ω(d2(log(nd))/ε).

Theorem 3.14. Suppose n ≥ d/(36ε). Consider the Linear Regression problem
in which the entries of A and b are inserted exactly once in the data stream.
Then any randomized 1-pass algorithm which solves this problem with probability
at least 7/9 needs Ω(d2(1/ε+ log(nd))) bits of space.

23

Proof. We first show that any randomized 1-pass algorithm which solves this
problem with probability at least 7/9 needs Ω(d2/ε) bits of space.

The proof is implicit in the proof of Theorem 3.7, which now just requires a
reduction from IND, i.e., in the proof there we only consider matrices Az,k for
which z = 0, so Bob does not need to delete any entries of A. The squared error
of the linear regression problem is now simply

∑u
k=1‖A0,kx−b0,k‖2. Lemma 3.8

continues to provide an upper bound on ‖Ax − b‖2 (here, z∗ = 0). We define
E the same as before, and observe that Lemma 3.12 continues to hold, since
the proof only considers properties of Az

∗,k, k ∈ [u]. Moreover, Lemma 3.13
continues to hold, since only properties of Az

∗,k, k ∈ [u], were used in the proof.
Thus, Bob simply outputs − sign(x∗i∗) as before, and the proof follows. We omit
further details for this part.

We now show that any randomized 1-pass algorithm which solves this prob-
lem with probability at least 2/3 needs Ω(d2 log(nd)) bits of space.

We reduce from AIND on strings of length d(d−1)(log(nd))/2. Alice inter-
prets her input string as a d× d upper-triangular matrix A with integer entries
above the diagonal in the set [nd]. She sets the diagonal entries of A to be 1.
Notice that A has full rank, and so for any d×1 vector b, minx∈IRd‖Ax−b‖ = 0,
since x = A−1b.

Bob is given an index in the AIND problem, which corresponds to a bit in
an entry Ai,j with i < j. By the definition of the AIND problem, we can assume
that he is also given Ai′,j for all i′ > i and all j. Bob creates the d× 1 column
vector b as follows. Bob sets bj′ = 0 for all j′ > j. He sets bj = 1. For each
index i′ ∈ {i + 1, . . . , j − 1}, he sets bi′ = Ai′,j . Finally he sets bi′′ = 0 for all
i′′ ∈ {1, . . . , i}.

Consider x = A−1b. The constraint bj′ = 0 for j′ > j ensures that xj′ = 0
for j′ > j. Since Aj,j = 1, the constraint bj = 1 ensures that xj = 1. Finally,
a simple induction shows that the constraint bi′ = Ai′,j forces xi′ = 0 for all
i′ ∈ {i + 1, . . . , j − 1}. It follows that (Ax)i = xi + Ai,j , and since bi = 0, we
have that xi = −Ai,j .

Alice feeds the matrix A into an algorithm Alg which solves the linear re-
gression problem with probability at least 2/3, and transmits the state to Bob.
Bob feeds b in to Alg. Then x = A−1b is output with probability at least 2/3,
and Bob lets −xi be his guess for Ai,j . By the arguments above, Bob correctly
guesses Ai,j with probability at least 2/3. He then outputs the appropriate bit
of −xi, thereby solving the AIND problem with probability at least 2/3. It
follows that the space complexity of Alg is Ω(d2 log(nd)).

4 Low-Rank Approximation

4.1 Upper Bounds

We give several algorithms, trading specificity and passes for space. As men-
tioned in §1.4 on page 7, we will assume that we can compute some matrices
exactly, and then round them for use. We will show that all matrices (up to

24

those exact computations) can be used in rounded form during the streaming
phase.

Throughout this section, A is an n× d input matrix of rank ρ, with entries
of size γ = O(log(nd)) as nd → ∞. The value k is a given integer, Ak is the
best rank-k approximation to A, ∆k := ‖A − Ak‖ is the error of Ak, δ > 0 is
the probability of failure, and ε > 0 is the given error parameter.

Bit Complexity To prove space and error bounds for these algorithms, we
will show that the numerical error is small enough, using O(log(nd))-bit entries,
assuming the input matrix also has entries of O(log(nd)) bits. We will assume
that, between passes, we may do exact computations, and then round the results
to use during and after the next pass. A key property here is that the singular
values of an integer matrix with bounded entries cannot be too small or too
large. We note that this lemma is also proven and used in [FMSW09], though
there it is used for measures other than the Frobenius norm.

Lemma 4.1. If n × d matrix A has integer entries bounded in magnitude by
γ, and has rank ρ ≥ 2k, then the k’th singular value σk of A has | log σk| =
O(log(ndγ)) as nd→∞. This implies that ‖A‖/∆k ≤ (ndγ)O(1) as nd→∞.

Proof. The characteristic polynomial of ATA is p(λ) := det(λI − ATA), and
since p(λ) = λd−ρ

∏
1≤i≤ρ(λ− λi), the coefficient of λd−ρ in p(λ) is

∏
1≤i≤ρ λi.

Since ATA has integer entries, the coefficients of p(λ) are also integers, and since
the eigenvalues of ATA are nonnegative,

∏
1≤i≤ρ λi ≥ 1. Since the eigenvalues

λk of ATA have λk = σ2
k, we have

∏
1≤i≤ρ σi ≥ 1.

We have also ∑
1≤i≤ρ

λi =
∑

1≤i≤ρ

σ2
i = ‖A‖2 ≤ ndγ2,

and so σi ≤ ndγ2 for all i. Thus

λρ−kk ≥
∏

k<i≤ρ

λi ≥
∏

1≤i≤ρ

λi/(ndγ2)k ≥ (ndγ2)−k,

and so
λk ≥ (ndγ2)−k/(ρ−k) ≥ (ndγ2)−1. (10)

The main statement of the lemma follows upon taking logarithms of the upper
and lower bounds for the λi, which imply the same asymptotic bounds for σi.
The last statement follows using the bound for ‖A‖, and (10), which implies a
lower bound for ∆k.

The analysis of the low-rank approximation algorithms is based on the ap-
plication of Theorem 3.1 on page 14, as in the following theorem; again, the
proof technique is similar to that of [Sar06, DMMS07].

25

Theorem 4.2. There is an m = O(k log(1/δ)/ε) such that, if S is an n ×m
sign matrix, then with probability at least 1− δ, there is an n×m matrix Y of
rank at most k, so that

‖Y STA−A‖ ≤ (1 + ε)∆k.

Similarly, for a d×m sign matrix R, with probability at least 1− δ there is an
m× d matrix Z so that

‖ARZ −A‖ ≤ (1 + ε)∆k.

The entries of S and R need be at most η(k+ log(1/δ))-wise independent, for a
constant η.

The theorem says that the rowspace of STA contains a very good rank-k
approximation to A, and similarly for the columnspace of AR.

Proof. For the claims about Y , apply Theorem 3.1 on page 14, with A and B
equal to the Ak and A of Theorem 4.2. Then AkX̃ = Ak(STAk)−STA satisfies
‖AkX̃−A‖ ≤ (1+ε)‖AkX∗−A‖, and since Ak is the best rank-k approximation
to A, ‖AkX∗−A‖ = ‖Ak−A‖ = ∆k. Thus if Y := Ak(STAk)−, Y STA = AkX
satisfies the claimed inequality. Since Ak has rank at most k, this is true for Y
also, and so the claims for Y follow.

The claims involving R follow by applying the result to AT .

The following lemma will be helpful.

Lemma 4.3. Given a matrix A and matrix U with orthonormal columns, both
with the same number of rows, the best rank-k approximation to A in the
columnspace of U is given by U [UTA]k, where [UTA]k is the best rank-k ap-
proximation to UTA. A similar claim applies for G a matrix with orthonormal
rows, and the best rank-k approximation to A in the rowspace of G.

Proof. The matrix UUTA is the projection of A onto the columnspace of U ,
and since, for any conforming Y ,

(A− UUTA)T (UUTA− UY) = AT (I − UUT)U(UTA− Y) = 0,

by the Pythagorean Theorem, we have

‖A− UY ‖2 = ‖A− UUTA‖2 + ‖UUTA− UY ‖2.

If Z has rank no more than k, then using ‖Ux‖ = ‖x‖ for any conforming x,

‖UUTA− U [UTA]k‖ = ‖UTA− [UTA]k‖ ≤ ‖UTA− Z‖ = ‖UUTA− UZ‖.

Hence

‖A− U [UTA]k‖2 = ‖A− UUTA‖2 + ‖UUTA− U [UTA]k‖2

≤ ‖A− UUTA‖2 + ‖UUTA− UZ‖2

= ‖A− UZ‖2.

The main claim of the lemma follows upon taking square roots. For the last
claim, apply the columnspace result to AT and UT .

26

4.1.1 Two passes

The most direct application of the above theorem and lemma yields a two pass
algorithm, as follows. In the first pass, accumulate STA. Before the second pass,
compute a matrix G whose rows are an orthonormal basis for the rowspace of
STA. In the second pass, accumulate the coefficients AGT of the projection
AGTG = A(STA)−STA of A onto the row space of STA. Finally, compute
the best rank-k approximation [AGT]k to AGT , and return Ãk = [AGT]kG. As
proven below, this approximation is close to A.

Although this discussion assumes that G is computed exactly, we will show
that an approximation Ĝ can be used: for an appropriate κ in O(log(nd)), Ĝ is
2−κb2κGc, stored implicitly as a scaling factor and an integer matrix. (Here b c
denotes the floor function applied entrywise.)

Theorem 4.4. If the rank ρ ≥ 2(k + 1), then there is an m = O(k log(1/δ)/ε)
such that, if S is an n×m sign matrix, then with probability at least 1− δ, the
rank-k matrix Ãk, as returned by the above two-pass algorithm, satisfies

‖A− Ãk‖ ≤ (1 + ε)∆k.

An approximation Ĝ to G with O(log(nd))-bit entries may be used, with the
same asymptotic bounds. The space used is

O(m(n+ d)) log(nd) = O(kε−1(n+ d)) log(1/δ) log(nd).

By Theorem 4.14 on page 39, the space used is optimal for fixed ε (and δ).

Proof. Let G be a matrix whose rows are an orthonormal basis for the rowspace
of STA. From Lemma 4.3 on the preceding page, Ãk = [AGT]kG is the best
rank-k approximation to A in the rowspace of G. Since Ak(STA)−STA has
rank k, and is in the rowspace of G, its Frobenius distance to A must be larger
than that of Ãk. By the theorem just above, that distance is no more than
(1 + ε)∆k, and the theorem follows, up to the numerical approximation of G by
Ĝ.

For bounded precision, use Ĝ as defined above, in place of G, returning
Âk = [AĜT]kĜ, where [AĜT]k is the best rank-k approximation to AĜT . First
we note that

‖Âk − [AĜT]kG‖ = ‖[AĜT]kE‖, (11)

where E := G− Ĝ. Moreover,√
‖A− [AĜT]kG‖2 − ‖A−AGTG‖2

(Pyth. Thm.) = ‖AGTG− [AĜT]kG‖
(triangle ineq.) ≤ ‖AGTG−AĜTG‖+ ‖AĜTG− [AĜT]kG‖

(Lemma 4.3) ≤ ‖AETG‖+ ‖AĜTG− Ãk‖
(triangle ineq.) ≤ ‖AETG‖+ ‖AĜTG−AGTG‖+ ‖AGTG− Ãk‖

= 2‖AETG‖+ ‖AGTG− Ãk‖.

27

By the Pythagorean Theorem,

‖A− Ãk‖2 = ‖A−AGTG‖2 + ‖AGTG− Ãk‖2, (12)

and rearranging as a bound on ‖A− [AĜT]kG‖2, we have

‖A− [AĜT]kG‖2

≤ ‖A−AGTG‖2 + (2‖AETG‖+ ‖AGTG− Ãk‖)2

= ‖A− Ãk‖2 + +4‖AETG‖‖AGTG− Ãk‖+ 4‖AETG‖2.

We’ve already shown that ‖A− Ãk‖2 ≤ (1 + ε)2∆2
k, and this implies with (12)

that ‖AGTG− Ãk‖ ≤ (1 + ε)∆k. Thus

‖A− [AĜT]kG‖2

≤ (1 + ε)2∆2
k + 4‖AETG‖(1 + ε)∆k + 4‖AETG‖2.

We have
‖AETG‖ = ‖AET ‖ ≤ ‖A‖‖E‖ ≤ 2−κ

√
md‖A‖,

and with the assumption that the rank ρ of A has ρ ≥ 2(k+ 1), and Lemma 4.1
on page 25, for κ in O(log(nd)), ‖AETG‖ ≤ ε∆k. We have

‖A− [AĜT]kG‖ ≤ ∆k

√
1 + 6ε+ 9ε2 = ∆k(1 + 3ε),

and with (11) on the previous page,

‖A− Âk‖ ≤ ‖A− [AĜT]kG‖+ ‖Âk − [AĜT]kG‖
≤ (1 + 3ε)∆k + ‖[AĜT]kE‖
≤ (1 + 4ε)∆k,

using a similar bound for ‖[AĜT]kE‖ as for ‖AETG‖. The results follows after
adjusting constants.

4.1.2 One pass for Column-wise Updates

If A is given a column at a time, or a row at a time, then an efficient streaming
algorithm is possible. By Theorem 4.10 on page 33, for n within a constant
factor of d, the space used by this algorithm is within a factor of log(nd) of
optimal.

Theorem 4.5. Suppose input A is given as a sequence of columns or rows.
There is an m = O(k log(1/δ)/ε), such that with probability at least 1 − δ, a
matrix Ãk can be obtained that satisfies

‖Ãk −A‖ ≤ (1 + ε)∆k.

The space needed is

O((n+ d)m) = O(kε−1(n+ d) log(1/δ) log(nd)).

The update time is amortized O(m) per entry.

28

Proof. We can assume that A is given column-wise, since the bounds are sym-
metric in n and d. The algorithm maintains the sketch STA, where S is an
n ×m sign matrix, and m = O(k log(1/δ)/ε). It also maintains STAAT ; since
AAT =

∑
j a:ja

T
:j , when a column a:j arrives, the matrix STa:ja

T
:j can be com-

puted in O(mn) time and added to the current version of STAAT . Since the
pseudo-inverse of STA can be expressed as ATS(STAATS)−, the projection of
A onto the rowspace of STA is

A(STA)−STA = AATS(STAATS)−STA

= (STAAT)T (STA(STA)T)−STA.

That is, the matrices STA and STAAT are enough to compute the projection
of A onto the rowspace of STA. Using Theorem 4.2 and Lemma 4.3, the best
rank-k approximation Ãk to A(STA)−STA in the rowspace of STA satisfies the
conditions of the theorem.

4.1.3 Three passes for Row-wise Updates, With Small Space

We show the following.

Theorem 4.6. Suppose A is given row-wise. There is m = O(k log(1/δ)/ε)
such that, a matrix Ãk can be found in three passes so that with probability at
least 1− δ,

‖Ãk −A‖ ≤ (1 + ε)∆k.

The algorithm uses space

O(k(n+ d log(1/δ)/ε+ k log(1/δ)2/ε2) log(nd)).

A comparable approach, without sketching, would use Θ((nk + d2) log(nd))
space over two passes, so this result becomes interesting when k < εd. As men-
tioned in the introduction, for n larger than a constant times max{d/ε, k/ε2} log(1/δ),
the space bound is O(nk log(nd)), which is comparable to our lower bound The-
orem 4.14 on page 39, showing that Ω((n + d)k log(nd)) bits are needed even
with multiple passes and randomization.

Proof. The algorithm is described assuming that exact arithmetic can be used;
the analysis discusses the changes needed to allow finite precision entries.

1. In the first pass, accumulate STA, where S is an n×m sign matrix, with
m a large enough value in O(kε−1 log(1/δ));

• Before the second pass, compute an orthonormal matrix G whose
rows are a basis for the rowspace of STA;

2. In the second pass, for each update row a, compute c := aGT , and accu-
mulate CTC += cT c;

29

• That is, C is the matrix AGT . Before the third pass, compute the
SVD of CTC, which is V Σ2V T when the SVD of C is UΣV T . Let
Vk denote the leftmost k columns of V , and Σk denote the k × k
diagonal matrix of the largest singular values of C.

3. In the third pass, compute c := aGT for the current row a of A, then
compute and store cVkΣ−k , building the matrix CVkΣ−k . The latter is in
fact Uk, the matrix of the top k left singular vectors of C, so that UkΣkVk
is the best rank-k approximation to C = AGT . Return Ãk := UkΣkVkG.

We first discuss the algorithm under the assumption that G and Vk can be
used exactly, and then consider the effects of rounding.

The algorithm constructs the projection of A onto the rowspace of STA,
and computes the best rank-k approximation to that projection. As in the
previous algorithms, the quality bound follows from Theorem 4.2 on page 25 and
Lemma 4.3 on page 26. Note that the entries of S need only be O(k+log(1/δ))-
wise independent, so the space needed for S is negligible.

The space required is O(dm) entries for storing STA and G, and then O(m2)
entries for storing CTC, and finally O(nk) entries for storing CVkΣ−k . Thus the
total space is

O(nk + dm+m2) = kO(n+ d log(1/δ)/ε+ k log(1/δ)/ε2).

To use matrix entries with O(log(nd)) bits, as in the two pass algorithm we
use a matrix Ĝ := 2−κb2κGc, for large enough κ in O(log(nd)), and also use
V̂k := 2−κb2κVkc, where Vk is from the exact SVD of ĈT Ĉ, where Ĉ = AĜT .

We also change the algorithm so that in the third pass, it is ĈV̂ T that is
maintained. Then, after the third pass, the exact SVD of ĈT Ĉ is computed
again, obtaining Σk and yielding ĈV̂kΣ−k as an estimate of Uk. We have

ĈV̂kΣ−k = Ĉ(Vk + E)Σ−k = UkΣkVk +AĜTEΣ−k ,

where E := V̂k−Vk. For sufficiently large κ in O(log(nd)), and using the bounds
of Lemma 4.1 on page 25 on Σ, we have ‖AĜTEΣ−k ‖ ≤ ε∆k. Together with the
above analysis for the unrounded versions, the error bound follows, using the
triangle inequality and adjusting constant factors.

4.1.4 One pass, and a Bicriteria Approximation

To obtain a low-rank approximation even for turnstile updates, we will need
more space. First, we can apply Theorem 3.1 on page 14 twice to obtain a
bicriteria low-rank approximation. As mentioned in the introduction, the con-
struction is somewhat akin to the CUR decomposition [DMM08, DKM06].

Theorem 4.7. There is an m = O(k log(1/δ)/ε) such that, if S is an n×(m/ε)
sign matrix, and R is a d×m sign matrix, then with probability at least 1− δ,

‖A− Ã‖ ≤ (1 + ε)∆k,

30

where Ã := AR(STAR)−STA. The entries of S need be at most η(k/ε +
log(1/δ))-wise independent, for a constant η.

Proof. We apply Theorem 3.1 with k, A, B, and m of the theorem mapping to
k/ε, AR, A, and m/ε, respectively. The result is that for X̃ the solution to

min
X
‖STARX − STA‖,

we have

‖ARX̃ −A‖ ≤ (1 + ε)‖ARX∗ −A‖ = (1 + ε) min
X
‖ARX −A‖,

and applying Theorem 3.1 again, with k, A, B, and m of the theorem mapping
to m, Ak, A, and m, we have, with probability at least 1− δ,

‖ARX∗ −A‖ ≤ (1 + ε)‖A−Ak‖ = (1 + ε)∆k. (13)

Since X̃ = (STAR)−STA, we have

‖AR(STAR)−STA−A‖ = ‖ARX̃ −A‖
≤ (1 + ε)‖ARX∗ −A‖
≤ (1 + ε)2∆k,

and the theorem follows, after adjusting δ and ε by constant factors.

Note that by computing the SVD Ũ Σ̃Ṽ T of (STAR)−, we obtain a low-rank
approximation to A of the form

ARŨ Σ̃Ṽ TSTA,

which is of the same form as an SVD. While this decomposition has rank
O(kε−1 log(1/δ)), and is guaranteed to approximate A only nearly as well as
the best rank-k approximation, it would be much quicker to compute, and po-
tentially could be substituted for the SVD in many applications.

A rank-k approximation is similarly obtainable, as follows.

Theorem 4.8. Under the conditions of the previous theorem, let U be an or-
thonormal basis for the columnspace of AR. Then the best rank-k approximation
U [UT Ã]k to Ã in the columnspace of U satisfies

‖A− U [UT Ã]k‖ ≤ (1 +
√
ε)∆k.

For convenience of reference, we state a result giving a quality bound of the
usual form, simply using a different ε.

Theorem 4.9. There is an m = O(k log(1/δ)/ε2) such that, if S is an n ×
(m/ε2) sign matrix, and R is a d ×m sign matrix, the following succeeds with
probability 1 − δ. Let U be an orthonormal basis for the columnspace of AR.

31

Then the best rank-k approximation U [UT Ã]k to Ã := AR(STAR)−STA in the
columnspace of U satisfies

‖A− U [UT Ã]k‖ ≤ (1 + ε)∆k.

The entries of S need be at most η(k/ε + log(1/δ))-wise independent, for a
constant η.

Proof. (of Theorem 4.8.) For any such U , there is a matrix Y so that UY = AR;
in particular, we will take U to be the matrix of left singular vectors of AR, so
that the corresponding Y is ΣV T .

Consider the projections UUTA and UUTAk of A and Ak to the columnspace
of AR, as well as Ã, which is already in the columnspace of AR. We first obtain
distance bounds involving these projections, by applying Lemma 3.3 on page 15
used in the proof of Theorem 3.1 on page 14; this bound is used twice, first in
the setting of the first application of Theorem 3.1, and then in the setting of
the second application.

The projection UUTA can also be expressed as ARX∗, with X∗ as in the
first application of Theorem 3.1, and Ã then equal to the corresponding ARX̃.
From Lemma 3.3 on page 15 and (13) on the previous page,

‖UUTA− Ã‖ = ‖AR(X∗ − X̃)‖
≤ 2
√
ε‖A−ARX∗‖

≤ 2
√
ε(1 + ε)∆k. (14)

Since the projection UUTAk is the closest matrix in the columnspace of AR
to Ak, and again from Lemma 3.3, as in the second application above, we have

‖UUTAk −Ak‖ ≤ ‖AR(AkR)−Ak −Ak‖ ≤ 2
√
ε∆k. (15)

Also, since [UT Ã]k is the closest rank-k matrix to UT Ã = Y (STAR)−STA,
UTAk must be no closer to UT Ã, and so

‖Ã− U [UT Ã]k‖ ≤ ‖Ã− UUTAk‖
(triangle ineq.) ≤ ‖Ã− UUTA‖+ ‖UUTA− UUTAk‖

(By (14)) ≤ 2
√
ε(1 + ε)∆k + ‖UUT (A−Ak)‖. (16)

Since ‖UUTZ‖ ≤ ‖Z‖ for any Z, we have

‖UUTA− UUTAk‖ ≤ ∆k. (17)

Since (A− UUTA)TU = 0, we have

‖A− U [UT Ã]k‖2 − ‖A− UUTA‖2

(Pyth. Thm.) = ‖UUTA− U [UT Ã]k‖2

(triangle ineq.) ≤ (‖UUTA− Ã‖+ ‖Ã− U [UT Ã]k‖)2

(By (14),(16)) ≤ (2
√
ε(1 + ε)∆k + [2

√
ε(1 + ε)∆k

+ ‖UUT (A−Ak)‖])2

= (4
√
ε(1 + ε)∆k + ‖UUT (A−Ak)‖])2.

32

Expanding the square and rearranging,

‖A− U [UT Ã]k‖2 − ‖A− UUTA‖2 − ‖UUTA− UUTAk‖2

≤ 8
√
ε(1 + ε)∆k‖UUTA− UUTAk‖

+ 16ε(1 + ε)2∆2
k

(By (17)) ≤ 8
√
ε(1 + ε)∆k + 16ε(1 + ε)2∆2

k

= 8∆2
k(1 + ε)(

√
ε+ 2ε(1 + ε)).

Rearranging this bound,

‖A− U [UT Ã]k‖2 − 8∆2
k(1 + ε)(

√
ε+ 2ε(1 + ε))

≤ ‖A− UUTA‖2 + ‖UUTA− UUTAk‖2

(Pyth. Thm.) = ‖A− UUTAk‖2

(triangle ineq.) ≤ (‖A−Ak‖+ ‖Ak − UUTAk‖)2

(By (15)) ≤ (∆k + 2
√
ε∆k)2,

which implies

‖A− U [UT Ã]k‖2 ≤ 8∆2
k(1 + ε)(

√
ε+ 2ε(1 + ε))

+ (∆k + 2
√
ε∆k)2

≤ ∆2
k(1 + 12

√
ε+O(ε)),

and the theorem follows upon taking square roots, and adjusting ε by a constant
factor.

4.2 Lower Bounds for Low-Rank Approximation

The next theorem shows that our 1-pass algorithm receiving entries in row or
column order uses close to the best possible space of any streaming algorithm.

Theorem 4.10. Let ε > 0 and k ≥ 1 be arbitrary.

• Suppose d > βk/ε for an absolute constant β > 0. Then any randomized
1-pass algorithm which solves the Rank-k Approximation Problem with
probability at least 5/6, and which receives the entries of A in row-order,
must use Ω(nk/ε) bits of space.

• Suppose n > βk/ε for an absolute constant β > 0. Then any randomized
1-pass algorithm which solves the Rank-k Approximation Problem with
probability at least 5/6, and which receives the entries of A in column-
order must use Ω(dk/ε) bits of space.

Proof. We will prove the theorem when the algorithm receives entries in row-
order. The proof for the case when the algorithm receives entries in column-
order is analogous.

33

Choosing the inputs for the hard instance:

Let a = k/(21ε), which, for large enough β > 0, can be assumed to be at
most d/2. We reduce from IND on strings x of length (n − a)a. We use the
distributional version of IND, for which x and Bob’s inputs i ∈ [(n− a)a] and
are independent and generated uniformly at random. Alice interprets her input
x as a string in {−1, 1}(n−a)a. Let Z1 be the a×a zeros matrix, Z2 the a×(d−a)
zeros matrix, Z3 the (n−a)× (d−a) zeros matrix, and M an (n−a)×a matrix
to be constructed. Define the n× d block matrix:

A′ =
(
Z1 Z2

M Z3

)
Alice constructs the (n− a)× a matrix M as follows simply by associating each
entry of x with a unique entry of M .

Alice runs a randomized 1-pass streaming algorithm for Rank-k Approxima-
tion on the last n − a rows of A′, and transmits the state of the algorithm to
Bob. Bob partitions the first a columns of A′ into a/k contiguous groups of size
k. Given i ∈ [(n − a)a], suppose it is associated with an entry in the group G
containing columns s, s + 1, . . . , s + k − 1. Bob then feeds the (s + j)-th rows
P · es+j to the stream, where P is a large positive integer to be determined,
es+j is the standard unit vector in direction s+ j, and where j ranges from 0 to
k − 1. Bob also feeds the remaining rows of A′ as zero rows to the algorithm.

Note that each entry occurs once, and the streaming algorithm can be as-
sumed to see entire rows at a time. Moreover, the entries can each be described
with O(log(nd)) bits, assuming that P can (P will turn out to be 2n4). Let
A denote the resulting underlying matrix in the stream. We partition the first
a columns of A into contiguous submatrices A1, . . . , Aa/k each containing k
columns of A. Suppose G is associated with the submatrix Ar.

The plan is to show that the columns in Ãk corresponding to the columns in
Ar must be linearly independent if the error of the streaming algorithm is small.
This is done in Lemma 4.11. This enables us to express the error ‖A − Ãk‖2
solely in terms of linear combinations of these k columns. We bound the coeffi-
cients of these combinations in Lemma 4.12. This allows us to show that most
of the error of the streaming algorithm is actually on columns other than the
k columns in Ar. Hence, most of the signs of entries in Ãk in these k columns
must agree with the signs of the corresponding entries in Ar, as otherwise the
error on these k columns would be too large. It follows that Bob can recover the
sign of his entry with reasonable probability, and hence solve the IND problem.

Properties of a near-optimal solution:

Notice that columns of Ar have length
(
P 2 + n− a

)1/2
, whereas the remain-

ing columns among the first a columns have length (n − a)1/2. The last n − a
columns of A have length 0. It follows that ‖A−Ak‖2 ≤ (a− k)(n− a). Hence,

34

to solve the Rank-k Approximation Problem, a matrix Ãk must be output with

‖Ãk−A‖2 ≤ (1+ε)2‖Ak−A‖2 ≤ (1+3ε)(a−k)(n−a) ≤ (a−k)(n−a)+
k(n− a)

7
,

where we have used the definition of a. Let E be the event that the algorithm
succeeds in outputting such an Ãk, so Pr[E] ≥ 5/6. We let Ã1

k, . . . , Ã
a/k
k denote

the contiguous submatrices of Ãk, each containing k columns of Ãk. Suppose
G is associated with the submatrix Ãrk.

Lemma 4.11. For P ≥ 3n2, the columns of Ãrk are linearly independent.

Proof. We will show that if the columns of Ãrk were not linearly independent,
then the event E could not occur. In fact, we shall show that the restrictions of
these k columns to rows r(a/k) + 1, . . . , (r + 1)(a/k), are linearly independent.
Let the restrictions of these k columns to these k rows be denoted w1, . . . , wk,
and suppose these vectors were not linearly independent. Then there is an
index i0 ∈ [k] and real numbers αi for each i ∈ T := [k] \ {i0} for which
wi0 =

∑
i∈T αiw

i. Now,

k∑
i=1

(wii − P)2 ≤ ‖Ãk −A‖2 ≤ (a− k)(n− a) +
k(n− a)

7
≤ 2n2.

By choosing P ≥ 3n2, for all i, wii ≥ n2. Moreover,

k∑
i=1

∑
j 6=i

(wij)
2 ≤ ‖Ãk −A‖2 ≤ (a− k)(n− a) +

k(n− a)
7

≤ 2n2,

and so we can assume |wij | ≤
√

2n for all i 6= j. Now we have the relation

wi0i0 =
∑
i∈T

αiw
i
i0 .

For this relation to hold, there must be some i ∈ T for which

|αi| ≥ n2/(k
√

2n) = n/(
√

2k).

Let i∗ be the index in T for which |αi∗ | is largest. We also have the relation

wi0i∗ =
∑
i∈T

αiw
i
i∗ .

Now, |αi∗wi
∗

i∗ | ≥ |αi∗ |n2 and |αiwii∗ | ≤ |αi∗ |
√

2n for all i ∈ T . It follows that∣∣∣∣∣∑
i∈T

αiw
i
i∗

∣∣∣∣∣ ≥ |αi∗ |(n2 − k
√

2n) ≥ n√
2k
·
(
n2

2

)
>
√

2n,

where the last inequality holds if k < n/(2
√

2), which holds for large enough
β > 0. This contradicts |

∑
i∈T αiw

i
i∗ | = |w

i0
i∗ | ≤

√
2n.

35

The previous lemma implies that all columns of Ãk are in the span of the
columns of Ãrk. Denote these columns v1, . . . , vk, and let the restriction of these
columns to rows a+ 1, . . . , d be denoted ṽ1, . . . , ṽk. We may assume the vectors
vi have entries 1 through r(a/k)− 1 set to 0, as well as entries (r+ 1)(a/k) + 1
through a set to 0. We may also assume the last d − a columns of Ãk are 0.
The i-th column of Ãk, for any 1 ≤ i ≤ a, can thus be written as

∑k
j=1 βi,jv

j .
We may assume the vectors vi have entries 1 through r(a/k) − 1 set to 0, as
well as entries (r+ 1)(a/k) + 1 through a set to 0. We may also assume the last
d− a columns of Ãk are 0. The i-th column of Ãk, for any 1 ≤ i ≤ a, can thus
be written as

∑k
j=1 βi,jv

j .
Let m1, . . . ,ma denote the columns of M . Let S = {r(a/k) + 1, . . . , (r +

1)(a/k)}. Then,

‖Ãk −A‖2 ≥
k∑
i=1

(P − vir(a/k)+i)
2 +

k∑
i=1

∑
j 6=i

(vjr(a/k)+i)
2 +

k∑
i=1

‖mr(a/k)+i − ṽi‖2

+
∑
i/∈S

k∑
j=1

βi,jvjr(a/k)+j +
∑
j′ 6=j

βi,j′v
j′

r(a/k)+j

2

+
∑
i/∈S

‖mi −
k∑
j=1

βi,j ṽ
j‖2,

which needs to be at most (a− k)(n− a) + k(n−a)
7 ≤ 2n2.

Lemma 4.12. For P ≥ 2n4, for all i /∈ S and all j, |βi,j | ≤ 2/n3.

Proof. For each i 6= j with i, j ∈ [k], we have |vjr(a/k)+i| ≤
√

2n , as otherwise
the expression above would be larger than 2n2. If P ≥ 2n4, then each of the
vir(a/k)+i values is at least n4, as otherwise the expression above would be at
least n8. For an i /∈ S, let j(i) be the index for which |βi,j(i)| is largest. Then the
expression above is at least |βi,j(i)|2(n4−k

√
2n)2, which is at least |βi,j(i)|2n8/2

for large enough n. But the expression is at most 2n2, and so |βi,j(i)| ≤ 2/n3.
The lemma now follows from the definition of j(i).

Notice that each entry in ṽi for each i ∈ [k] has absolute value at most√
2n+ 1, as otherwise

∑k
i=1‖mr(a/k)+i − ṽi‖2 would be larger than 2n2 (recall

that the columns of M are sign vectors), which is a contradiction. From the
previous lemma, for P = 2n4 we have |βi,j | ≤ 2/n3 for all i /∈ S and all j,
and so each entry of βi,j ṽj has absolute value at most (

√
2n + 1)2/n3 ≤ 4/n2.

So each entry of
∑k
j=1 βi,j ṽ

j has absolute value at most 4k/n2 ≤ 1/n. Hence,∑
i/∈S‖mi−

∑k
j=1 βi,j ṽ

j‖2 ≥
∑
i/∈S‖mi‖2(1−1/n)2 since the mi are sign vectors.

This is (a−k)(n−a)−O(a). Notice that P only needs O(log n) bits to describe,

36

so the entries of A are O(log n)-bit integers. Now,

k∑
i=1

‖mr(a/k)+i − ṽi‖2 =
k∑
i=1

n−a∑
j=1

(mr(a/k)+i
j − ṽij)2 ≤

k(n− a)
7

+O(a).

Completing the proof:

Say an entry (j, i) is useful, 1 ≤ j ≤ n − a and 1 ≤ i ≤ k, if sign(mr(a/k)+i
j =

sign(ṽij). An entry that is not useful causes (mr(a/k)+i
j − ṽij)2 to be at least 1.

As there are k(n− a) total entries (j, i), at least a 6/7− o(1) > 5/6 fraction are
useful.

Bob’s index is in one of the columns mr(a/k)+1, . . . ,mr(a/k)+k of M . Since
Bob’s entry is a random entry in these columns, it follows that by outputting
the sign of the corresponding entry in Ãk, Bob succeeds in solving the IND
problem on strings of length (n − a)a ≥ na/2 = Ω(nk/ε), with probability at
least 5/6 − 1/6 ≥ 2/3. It follows that any 1-pass randomized algorithm for
the Rank-k Approximation Problem receiving entries in row-order with error
probability at most 1/6 uses Ω(nk/ε) bits of space.

The proof for the case when the algorithm receives entries in column-order
works by reducing from the IND problem on strings of length (d − a)a, and
associating the entries of Alice’s input string with the entries of a a × (d − a)
submatrix M . The proof is very similar to this proof. We omit the details.

We can improve the bound of Theorem 4.10 if we assume the algorithm must
work in the general turnstile model.

Theorem 4.13. Let ε > 0 and k ≥ 1 be arbitrary. Suppose min(n, d) >
βk log10(nd)/ε for an absolute constant β > 0. Then any randomized 1-pass
algorithm which solves the Rank-k Approximation Problem with probability at
least 5/6 in the general turnstile model uses Ω((n+ d)k log(dn))/ε bits of space.

Proof. We only sketch the differences of the proof of this theorem and the proof
of Theorem 4.10. Suppose, first, that n ≥ d. We now let a = k(log10(dn))/(21ε),
which for large enough β can be assumed to be at most d/2. This time we reduce
from the AIND problem on strings x of length (n − a)a. As before we define
the matrix A′ to be:

A′ =
(
Z1 Z2

M Z3

)
where now we have

M =
(
M0 M1 · · · M log10(nd)−1

)
where each M j is an (n − a) × a/(log10(dn)) matrix with entries in the set
{−10j , 10j}. Each entry of x is associated with exactly one entry in exactly one
M j . If xi is associated with M j

a,b, then M j
a,b = 10j if xi = 1, and M j

a,b = −10j

if xi = 0. Bob is given an index i ∈ [(n− a)a]. Suppose i is associated with an

37

entry in M j . By the definition of the AIND problem, we can assume that Bob
is also given all entries in M j′ for all j′ > j. Alice runs a randomized 1-pass
streaming algorithm for Rank-k Approximation on A′, and transmits the state
of the algorithm to Bob. Bob then sets all entries in M j′ for all j′ > j to 0. Let
A denote the resulting matrix.

The rest of the proof is very similar to the proof of Theorem 4.10. Bob
breaks the columns containing the entries of M j into a/(k log10(dn)) groups,
each of size k. He proceeds by inserting P times a k×k identity submatrix into
A, as in the proof of Theorem 4.10. Again we can show that the k columns in
Ãk corresponding to the columns for which Bob inserts the value P must be
linearly independent. The crucial point is that

‖A−Ak‖2 ≤ (a− k)(n− a)102j

log10(dn)
+
∑
j′<j

a(n− a)102j′

log10(dn)
.

≤ (a− k)(n− a)100j

log10(dn)
+

a(n− a)
log10(dn)

· 100j

99
.

So to solve the Rank-k Approximation Problem, using the definition of a, we
have that a matrix Ãk must be output with

‖Ãk −A‖2 ≤ (1 + 3ε)
[

(a− k)(n− a)100j

log10(dn)
+

a(n− a)
log10(dn)

· 100j

99

]
≤

[
(a− k)(n− a)100j

log10(dn)
+

a(n− a)
log10(dn)

· 100j

99

]
+

100jk(n− a)
7

+
100jk(n− a)

99

≤
[

(a− k)(n− a)100j

log10(dn)
+

a(n− a)
log10(dn)

· 100j

99

]
+ 100jk(n− a) ·

(
1
7

+
1
99

)
.

By making P sufficiently large, as in the proof of Theorem 4.10, one can show
that on all but the k columns of Ãk corresponding to columns for which Bob
inserts the value P , the error of Ãk must be

[
(a−k)(n−a)100j

log10(dn) + a(n−a)
log10(dn) ·

100j

99

]
,

up to low-order terms. In the remaining k columns, if the sign of an entry in Ãk
corresponding to an entry in M j disagrees with the sign of the corresponding
entry in M j , then an error of at least 100j is incurred. It follows that for at
least a 1− 1/7− 1/99 fraction of the entries in these k columns, the signs of the
entries in Ãk agree with the corresponding entries in M j . Thus, Bob can solve
the AIND problem by outputting the sign of the appropriate entry in Ãk.

This gives a lower bound of Ω((n − a)a) = Ω(nk log(dn))/ε. If instead we
had d ≥ n, a similar argument would have given an Ω(dk log(dn))/ε bound.
Thus, there is an Ω((n+ d)k log(dn))/ε lower bound for the problem.

Our O(1)-pass upper bounds match the following trivial lower bound, which
is immediate from Corollary 1.7 on page 7.

38

Theorem 4.14. For any 1 ≤ k ≤ min(n, d) and any ε > 0, any multi-pass
algorithm for the Rank-k Approximation Problem with probability of error at
most 1/3 must use Ω((n + d)k log(nd)) bits of space. Moreover, this holds for
any ordering of the entries of A.

5 Rank Decision

Theorem 5.1. Suppose A is an n×n matrix. The Rank Decision Problem can
be solved in 1-pass with O(k2 log n/δ) bits of space with error probability at most
δ.

Proof. We need the following standard fact.

Fact 5.2. Let F be a finite field containing at least v + n distinct items. Let
a1, ..., av be a subset of v distinct items of F. Consider the v × n Vandermonde
matrix V defined over F as follows. The entry Vi,j is given by aj−1

i . Then any
subset of at most n rows of V has full rank.

We need the following extension to Fact 5.2. Let B be an upper bound on
the absolute value of an integer appearing in the stream, and in the underlying
matrix represented by the stream. We assume that logB = O(log n). According
to Fact 5.2, if q ∈ [B + n, 2B + 2n] is prime, then a Vandermonde matrix V
defined on items 1, 2, . . . , B+n over GF (q) has the property that any subset of
at most n rows of V has full rank over GF (q). Now treat the matrix V as an
integer matrix. The claim is that any subset of at most n rows of V has full rank
over IR. Indeed, otherwise there is a non-trivial linear combination among such a
subset of rows. The coefficients of this linear combination can be assumed to be
rational, since irrational numbers must cancel out. By scaling, the coefficients
can be assumed to be integers. Finally, by dividing out common factors, one
can assume the greatest common divisor of the coefficients is 1. It follows that
by taking the coefficients modulo q, one obtains a non-trivial linear combination
over GF (q), a contradiction. We call the integer matrix thus-obtained a real
scalable Vandermonde matrix.

Let H be a 3nk/δ × n real scalable Vandermonde matrix. The algorithm
chooses 2k random rows hi1 , . . . , hi2k

from H. Consider the k × n matrix H ′

containing the first k of these rows, and the n × k matrix H ′′ whose columns
are the last k of these rows. The algorithm maintains M = H ′ · A · H ′′, and
outputs 1 iff the rank of M equals k.

By definition of H, its entries are integers expressible in O(log(n/δ)) bits.
Since the entries of A are integers expressible with O(log n) bits, the matrix M
can be maintained with O(k2 log(n/δ)) bits. Choosing the 2k random rows of
H can be done with O(k log(n/δ)) bits of space, and entries of H ′ and H ′′ can
be generated on the fly. So the overall space complexity is O(k2 log(n/δ)) bits.

Notice that if the rank of A is less than k, then the algorithm will never err.
Thus, suppose it is at least k, and we will show that H ′AH ′′ has rank k with
probability at least 1− δ.

We will use the following lemma.

39

Lemma 5.3. If L ⊂ IRn is a j-dimensional linear subspace, and A has rank k,
then the dimension of LA := {w ∈ IRn | wTA ∈ L} is at most n− k + j.

Proof. Let v1, . . . , vr be a basis for L ∩ image(A), where r ≤ j. For 1 ≤ i ≤ r,
let wi satisfy wTi A = vi. Let {b1, . . . , bn−k} be a basis for the kernel of A.

If w ∈ LA, then wTA =
∑
i αivi for scalars αi, but also (

∑
i αiwi)

TA =∑
i αivi, so w −

∑
i αiwi is in the kernel of A, so w =

∑
i αiwi +

∑
j βjbj

for scalars βj . So LA is a subspace of span({w1, . . . , wr, b1, . . . , bn−k}), so its
dimension is at most r + n− k ≤ j + n− k.

For j < k, consider the linear subspace Lj spanned by the first j rows of
HA. By the above lemma, the dimension of the subspace L′j := {w ∈ IRn |
wTA ∈ Lj} is at most n− k + j. Since the rows of H are linearly independent,
at most n− k + j of them can be in L′j . Therefore the probability that h′j+1:A
is not in Lj is at least 1− (n− k + j)/(3nk/δ − j), and the probability that all
such events hold, for j = 0 . . . k − 1, is at least

[1− n/(3nk/δ − k)]k =
[
1− 1

k

δ/3
1− δ/n

]k
≥ 1− δ/2,

for small enough δ. All such independence events occur if and only if H ′A has
rank k, and so the probability of the latter is at least 1− δ/2.

Applying a similar argument on the columnspace of H ′ · A, it follows that
with probability at least 1− δ/2− δ/2 = 1− δ, the rank of M = H ′ ·A ·H ′′ is
at least k.

Via a few binary searches, one can design an algorithm using O(log rank(A))
passes and O(rank2(A) log(n/δ)) space to actually compute the rank of A based
on the above decision problem. We omit the details.

Theorem 5.4. Any randomized 1-pass algorithm which solves the Rank Deci-
sion Problem with probability of error at most 1/3 must use Ω(k2) bits of space.

Proof. We reduce from the IND problem on strings x of length k2/4. Recall
that Alice has x ∈ {0, 1}k2/4 and Bob has i ∈ [k2/4]. Let I be the k/2 × k/2
identity matrix, Z the k/2 × k/2 all zeros matrix, and M a k/2 × k/2 matrix
whose entries agree with the values of x under some arbitrary correspondence.
Alice creates the k × k block matrix A:

A =
(

I Z
M I

)
Suppose xi equals the (r, s)-th entry of M . Bob creates a k × k matrix B as
follows: Bs,s = 1, Bk/2+r,k/2+r = 1, Bs,k/2+r = −1, and all other entries are
set to 0. Alice and Bob engage in a 1-round protocol for the Rank Decision
Problem on the matrix A− B. If the rank is determined to be at least k, Bob
outputs 0 as his guess for xi, otherwise he outputs 1.

40

To show this protocol is correct for IND with probability at least 2/3, it
suffices to show that rank(A−B) = k iff Mr,s = 0. The important observation
is that by using the top k/2 rows of A−B, excluding the s-th row, as well as the
last k/2 columns of A−B, excluding the (k/2 + r)-th column, one can row and
column-reduce A−B to a matrix A′ for which A′`,` = 1 for all ` /∈ {k, k/2 + r},
A′k/2+r,s = Mr,s, A′s,k/2+r = 1, and all other entries are 0. It follows that if
Mr,s = 1 then A′ is a permutation matrix, and thus of rank k. Otherwise A′ has
rank k − 1. As rank(A′) = rank(A − B), the protocol is correct for IND with
probability at least 2/3, and so the space complexity of any 1-pass randomized
algorithm for the Rank Decision Problem is Ω(k2) bits.

Any algorithm which computes the rank of A also solves the Rank Decision
Problem for k = rank(A), so it has complexity Ω(rank(A)2). As the instance in
the Rank Decision Problem concerns distinguishing a rank-k from a rank-k− 1
square k × k matrix, it also gives an Ω(n2) lower bound for testing if an n× n
matrix is invertible and for approximating the determinant to within any relative
error. By adjusting the diagonal values in the upper left quadrant of the matrix
A in the proof, one easily obtains an Ω(n2) space bound for approximating the
i-th largest eigenvalue for any value of i.

Acknowledgments: We thank the anonymous referees for helpful com-
ments. The second author would also like to thank Dan Feldman, Morteza
Monemizadeh, and Christian Sohler for helpful discussions.

References

[AGMS02] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking
join and self-join sizes in limited storage. J. Comput. Syst. Sci.,
64(3):719–747, 2002. 1.1

[AM07] D. Achlioptas and F. Mcsherry. Fast computation of low-rank ma-
trix approximations. J. ACM, 54(2):9, 2007. 1.1

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. J. Comput. Syst. Sci.,
58(1):137–147, 1999. 1.1, 2.1

[BY02] Z. Bar-Yossef. The complexity of massive data set computations,
2002. 1.1

[BY03] Z. Bar-Yossef. Sampling lower bounds via information theory. In
STOC, pages 335–344, 2003. 1.1

[CCFC02] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent
items in data streams. In ICALP, pages 693–703, 2002. 1.1

[CM05] G. Cormode and S. Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms,
55(1):58–75, 2005. 1.1

41

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited. J.
Complexity, 13(1):42–49, 1997. 2.3

[CS91] J. I. Chu and G. Schnitger. The communication complexity of sev-
eral problems in matrix computation. J. Complexity, 7(4):395–407,
1991. 1.1

[CS95] J. I. Chu and G. Schnitger. Communication complexity of ma-
trix computation over finite fields. Mathematical Systems Theory,
28(3):215–228, 1995. 1.1

[DKM06] P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo
algorithms for matrices III: Computing a compressed approximate
matrix decomposition. SIAM Journal on Computing, 36(1):184–
206, 2006. 4.1.4

[DMM08] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Relative-error
cur matrix decompositions. SIAM Journal on Matrix Analysis and
Applications, 30(2):844–881, 2008. 1.1, 4.1.4

[DMMS07] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós.
Faster least squares approximation. Technical report, 2007.
arXiv:0710.1435. 3.1, 4.1

[DV06] A. Deshpande and S. Vempala. Adaptive sampling and fast low-
rank matrix approximation. In APPROX-RANDOM, pages 292–
303, 2006. 1.1

[FKV04] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms
for finding low-rank approximations. J. ACM, 51(6):1025–1041,
2004. 1

[FMSW09] D. Feldman, M. Monemizadeh, C. Sohler, and D. Woodruff. Core-
sets and sketches for high dimensional subspace approximation
problems, 2009. 1.1, 4.1

[HP98] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication
and applications. J. Complexity, 14(2):257–299, 1998. 2.3

[HP06] S. Har-Peled. Low-rank approximation in linear time, 2006. 1.1

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cam-
bridge University Press, 1997. 1.5

[KNW09] D. Kane, J. Nelson, and D. Woodruff. Revisiting norm estimation
in data streams, 2009. 1.2

[MNSW98] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data
structures and asymmetric communication complexity. J. Comput.
Syst. Sci., 57(1):37–49, 1998. 1.6

42

http://link.aip.org/link/?SMJ/36/184/1
http://link.aip.org/link/?SMJ/36/184/1
http://link.aip.org/link/?SMJ/36/184/1
http://link.aip.org/link/?SML/30/844/1
http://link.aip.org/link/?SML/30/844/1

[Mut05] S. Muthukrishnan. Data streams: algorithms and applications.
Foundations and Trends in Theoretical Computer Science, 2005.
1, 1.1

[Sar06] T. Sarlós. Improved approximation algorithms for large matrices via
random projections. In FOCS ’06: Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science, pages 143–
152, Washington, DC, USA, 2006. IEEE Computer Society. 1, 1.1,
1.1, 2.1, 3.1, 3.1, 4.1

[Vu07] V. H. Vu. Spectral norm of random matrices. Combinatorica,
27(6):721–736, 2007. 1.1

A Proofs of Moment Bounds

A.1 Proof of Lemma 2.3

For convenience, here is a restatement of the lemma.
Lemma 2.3 Given matrices A and B, suppose S is a sign matrix with

m > 15 columns, and A, B, and S have the same number of rows. Then there
is an absolute constant C so that for integer p > 1 with m > Cp,

Ep
[
‖ATSSTB/m−ATB‖2

]
≤ 4((2p− 1)!!)1/p‖A‖2‖B‖2/m.

This bound holds also when S is 4p-wise independent.

Proof. Let

Yijk := (aT:is:ks
T
:kb:j − aT:ib:j)/m = m−1

∑
v 6=w

avisvkbwjswk, (18)

so that EYijk = 0, and

‖ATSSTB/m−ATB‖2 =
∑
i,j

(∑
k

Yijk

)2

=
∑
i,j

∑
k,`

YijkYij` (19)

= m−2
∑
i,j

∑
k,`

∑
v 6=w

avisvkbwjswk
∑
v′ 6=w′

av′isv′`bw′jsw′`

(20)

43

Expanding the pth power of (20) on the previous page, it follows that

E
[
‖ATSSTB/m−ATB‖2p

]
= m−2p

∑
i1,j1,k1,`1,v1,w1,v

′
1,w
′
1

...
ip,jp,kp,`p,vp,wp,v

′
p,w
′
p

av1i1bw1j1av′1i1bw′1j1 · · · avpipbwpjpav′pipbw′pjp
E[sv1k1sw1k1sv′1`1sw′1`1 · · · svpkpswpkpsv′p`psw′p`p],

(21)

where no vq and wq are equal, and also no v′q and w′q pair are equal, for q ∈ [p].
For odd integer z, E[szvk] = 0, and so the summand in the above expression
is nonzero only if each svk appears an even number of times: for example, for
sv1k1 , there must be some other svk such that k = k1 and v = v1. That is, the
equalities of the indices of the s terms form a matching.

Such a matching implies equalities on the ki and `i indices; for every q ≤ 2p,
we will bound the number T (q) of assignments to a set of q such k and ` indices,
and equality constraints on the associated v, w, so that a matching results, and
a summand with that index assignment and those equality constraints can be
nonzero. Consider in particular the set of assignments in [m] to k1, and for
z ≥ 1, a collection of z − 1 k and ` indices assigned the same value. There are
at most (2z − 1)!! = (2z)!/2zz! distinct matchings possible on the associated
vi, wi, v′i, and w′i, where a matching on such variables implies a set of equality
constraints. Thus

T (q) ≤ m
∑

2≤z≤q

(
q − 1
z − 1

)
(2z − 1)!!T (q − z),

with T (0) = 1, T (1) = 0 and T (2) = 2m. (For the T (2) bound the inequality
conditions on the vi, wi and v′i, w

′
i pairs are used.)

Lemma A.1 on the following page states that for T () satisfying these condi-
tions,

T (2p) ≤ 2pmp(2p!)/p! = (4m)p(2p− 1)!!. (22)

For fixed i1, j1, . . . ip, jp, and one such matching, consider the sum of all the
summands that satisfy the matching. For a given s-entry, say sv1k1 , there is
some other s-entry, say sw′2`2 , with k1 = `2 and v1 = w′2. As v1 = w′2 varies
from 1 to n, the product av1i1bw′2j2 takes on the values of the summands in the
dot product aT:i1b:j2 , since v1 = w′2. That is, for a fixed matching, as counted by
T (), the total is the product of a collection of dot products, where each a:i1 and
each b:j2 appears exactly twice. Since x ·y ≤ ‖x‖‖y‖, the total of the summands,
for a fixed matching and fixed i1, j1, . . . ip, jp, is

‖a:i1‖2‖b:j1‖2 · · · ‖a:ip‖2‖b:jp‖2, (23)

and the total, over all matchings, and using (22) on the previous page, is no

44

more than

m−2p
∑

i1,j1,...ip,jp

(4m)p(2p− 1)!!‖a:i1‖2‖b:j1‖2 · · · ‖a:ip‖2‖b:jp‖2

= (4m)p(2p− 1)!!‖A‖2p‖B‖2p.

A given summand may satisfy the index equalities of more than one match-
ing, but (23) on the preceding page is an upper bound even when all summands
are nonnegative; thus multiple appearances can only make the upper bound less
tight. We have

E
[
‖ATSSTB/m−ATB‖2p

]
≤ 4p(2p− 1)!!‖A‖2p‖B‖2p/mp, (24)

and the claims of the theorem follow by taking the p’th root.

Lemma A.1. If T (q) is such that

T (q) ≤ m
∑

2≤z≤q

(
q − 1
z − 1

)
(2z − 1)!!T (q − z),

with T (0) = 1, T (1) = 0 and T (2) = 2m, then

T (2p) ≤ 2pmp(2p!)/p! = (4m)p(2p− 1)!!.

Note that if the recurrence sum for T (q) had only its first term, so that
T (q) ≤ m(q−1)3!!T (q−2), then a bound like (3m)q/2(q−1)!!, or (3m)p(2p−1)!!,
immediately follows. When z = q, the summand includes the term (2q − 1)!! =
(4p − 1)!!, which is too strong a dependence on p; however, that term is only
linear in m, and for m large enough relative to p, this causes no harm, as will
be shown.

Proof. Suppose T (x) ≤ 2x/2mx/2x!/dx/2e! for x < q. From the recurrence,
T (3) satisfies this bound when m ≥ 25/2. Thus it remains to prove the bound
inductively for q ≥ 4.

T (q) ≤ m
∑

2≤z≤q

(
q − 1
z − 1

)
(2z − 1)!!2(q−z)/2m(q−z)/2(q − z)!/d(q − z)/2e!

= m
∑

2≤z≤q

z

q

q!
z!(q − z)!

(2z)!
2zz!

2(q−z)/2m(q−z)/2(q − z)!/d(q − z)/2e!

= 2q/2mq/2q!/dq/2e!
∑

2≤z≤q

z

q

(
2z
z

)
2−3z/2m1−z/2dq/2e!/d(q − z)/2e!, (25)

and we need to show that the sum is no more than one. When z = 2 and q ≥ 4,
the summand is

(2/q)(6)2−3m0dq/2e!/[d(q/2e − 1]! = (3/4)(2/q)dq/2e ≤ 9/10.

45

When z ≥ 3, using
(
2z
z

)
≤ (2e/z)z and dq/2e − d(q − z)/2e ≤ z/2, we have

z

q

(
2z
z

)
2−3z/2m1−z/2dq/2e!/d(q − z)/2e! ≤ 2z(e/2)z

(
q + 2
m

)z/2−1

,

which for q/m less than an absolute constant C, has a sum, for q ≥ 4 and over
z ≥ 3, of no more than 1/10. Thus the sum in (25) on the previous page is no
more than one, and the inductive step follows. For even q = 2p,

T (2p) ≤ 2pmp(2p!)/p! = (4m)p(2p− 1)!!,

as claimed.

A.2 Proof of Lemma 2.7

For convenience, here is a restatement of the lemma.
Lemma 2.7 Given matrix A and sign matrix S with the same number of

rows, there is an absolute constant C so that for integer p > 1 with m > Cp,

Ep
[
[‖STA‖2/m− ‖A‖2]2

]
≤ 4((2p− 1)!!)1/p‖A‖4/m.

This bound holds also when S is 4p-wise independent.

Proof. Let

Yik := (aT:is:ks
T
:ka:i − aT:ia:i)/m = m−1

∑
v 6=w

avisvkswkawi,

so that EYik = 0, and

‖STA‖2 − ‖A‖2 =
∑
i,k

Yik

= m−1
∑

i,k,v 6=w

avisvkswkawi.

Expanding the 2pth power of this expression, we have

E
[
(‖STA‖2 − ‖A‖2)2p

]
= m−2p

∑
i1,k1,v1,w1

...
i2p,k2p,v2p,w2p

av1i1aw1i1 · · · av2pi2p
aw2pi2p

E[sv1k1sw1k1 · · · sv2pk2psw2pk2p],

This expression is analogous to (21) on page 44, with the summand including
products of 4p entries of A in place of 2p entries of A with 2p entries of B. The
bound analogous to (24) on the previous page holds, that is,

E
[
(‖STA‖2 − ‖A‖2)2p

]
≤ 4p(2p− 1)!!‖A‖4p/mp,

and the lemma follows upon taking the pth root.

46

A.3 Extension to Other Matrix Norms

Lemma 2.3 on page 9 can be generalized, and an analog of Theorem 2.2 on
page 9 involving some different matrix norms then follows.

For matrix A, the additional norms are:

• the entrywise maximum norm ‖A‖max := supi,j |aij |,

• the entrywise norms ‖A‖(r) :=
[∑

i,j a
r
ij

]1/r
, for r ≥ 1, and

• the operator norm

‖A‖1→2 := sup
x
‖Ax‖/‖x‖1 = sup

j
‖a:j‖

Note that ‖A‖ = ‖A‖(2), and we can regard ‖A‖max as ‖A‖(∞).

Lemma A.2. Given matrices A and B, suppose S is a sign matrix with m > 15
columns, and A, B, and S have the same number of rows. Then there is an
absolute constant C so that for integer p > 1 with m > Cp, and integer r ≥ 1,

Ep
[
‖ATSSTB/m−ATB‖2(2r)

]
≤ ((2pr − 1)!!)1/pr

[∑
i

a2r
:i

]1/r [∑
i

b2r:i

]1/r

/m.

Proof. To generalize this result to a bound for ‖ATSSTB−ATB‖p(2r), for r > 1,
refer back to (18) on page 43, the definition of Yijk, and generalize (19) on
page 43 to

‖ATSSTB −ATB‖2p(2r) =

 ∑
i,j,k1,k2,...k2r

Yijk1Yijk2 · · ·Yijk2r

p/r

=


∑

ih′ ,jh′ ,k
g′

h′
g′=1...2r
h′=1...p

∏
g=1...2r
h=1...p

Yihjhkg
h



1/r

= m−2p


∑

ih′ ,jh′ ,k
g′

h′ ,v
g′

h′ 6=w
g′

h′
g′=1...2r
h′=1...p

∏
g=1...2r
h=1...p

avg
hih
svg

hk
g
h
bwg

hjh
swg

hk
g
h



1/r

47

LettingX denote the expression inside the brackets, so that the whole expression
is m−2pX1/q, we are interested in E[m−2pX1/q]. By Jensen’s inequality and the
concavity of the q’th root, E[m−2pX1/q] ≤ m−2pE[X]1/q, and so we obtain

E[‖ATSSTB−ATB‖2p(2r)]
r ≤ m−2p

∑
∑
ih′ ,jh′ ,k

g′

h′ ,v
g′

h′ 6=w
g′

h′
g′=1...2r
h′=1...p

∏
g=1...2r
h=1...p

avg
hih
bwg

hjh
E

 ∏
g=1...2r
h=1...p

svg
hk

g
h
swg

hk
g
h

 .

Comparing to (21) on page 44, the same conditions hold for assignments to the
kgh indices, and equality constraints on the vgh and wgh indices, with the quantity
T (q) satisfying the same recurrence. Here, however, the maximum q of interest
is 2pr, because that is the number of s-entries. The analog of (23) on page 44
is

‖a:i1‖2r‖b:j1‖2r · · · ‖a:ip‖2r‖b:jp‖2r, (26)

due to the larger product term, and so our bound is

E[‖ATSSTB −ATB‖2p(2r)] ≤ m
−2p

[
T (2pr)

[∑
i

a2r
:i

][∑
i

b2r:i

]]1/r

≤ m−2p

[
(4m)pr(2pr − 1)!!

[∑
i

a2r
:i

]p [∑
i

b2r:i

]p]1/r

,

and so

Ep[‖ATSSTB −ATB‖2(2r)] ≤ 4((2pr − 1)!!)1/pr
[∑

i

a2r
:i

]1/r [∑
i

b2r:i

]1/r

/m,

as claimed.

The following is an analog of Theorem 2.2.

Theorem A.3. For A and B matrices with n rows, and given δ, ε > 0, there is
m = Θ(log(1/δ)/ε2), as ε→ 0, so that for an n×m independent sign matrix S,

P{‖ATSSTB/m−ATB‖max < ε‖A‖1→2‖B‖1→2} ≥ 1− δ.

When B = A has column vectors of unit norm, this result implies that all
the dot products of the columns may be estimated with bounded absolute error.

Proof. By a proof analogous to that of Theorem 2.2, but using Lemma A.2,

P{‖ATSSTB/m−ATB‖2(2r) < ε

[∑
i

a2r
:i

]1/r [∑
i

b2r:i

]1/r

} ≥ 1− δ. (27)

48

For n-vector x, it holds that

‖x‖∞ ≤ ‖x‖r ≤ n1/r‖x‖∞. (28)

Similarly to the first inequality,

‖ATSSTB/m−ATB‖2max ≤ ‖ATSSTB/m−ATB‖2(2r).

Applying (28) to the vector of squared column norms of A, and with r ≥ log c,
where c is the maximum number of columns of A and B,[∑

i

a2r
:i

]1/r

≤ c1/r‖A‖21→2 < e‖A‖21→2,

and similarly for B. These relations, with (27) on the previous page, and ad-
justing constants, imply the result.

49

	Introduction
	Results and Related Work
	Techniques for the Lower Bounds
	Notation and Terminology
	Bit Complexity
	Communication Complexity

	Matrix Products
	Upper Bounds
	Column-wise Updates
	Faster Products of Sketches
	Lower Bounds for Matrix Product

	Regression
	Upper Bounds
	Lower Bounds for Regression

	Low-Rank Approximation
	Upper Bounds
	Two passes
	One pass for Column-wise Updates
	Three passes for Row-wise Updates, With Small Space
	One pass, and a Bicriteria Approximation

	Lower Bounds for Low-Rank Approximation

	Rank Decision
	Proofs of Moment Bounds
	Proof of [plain]lem:moments
	Proof of [plain]lem:norm moment
	Extension to Other Matrix Norms

