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Many important spectral properties of nonnegative matrices have

recently been successfully extended to higher order nonnegative

tensors; for example, see (Chang et al., 2008, 2011; Friedland et

al., in press; Lim, 2005; Liu et al., 2010; Ng et al., 2010; Qi et al.,

2007; Yang and Yang, 2010) [2,3,9,17,23,24,27,28]. However, most

of these results focus on the H-eigenvalues introduced by Qi (2005,

2007) [25,26]. The key results of this paper reveal some similari-

ties as well as some crucial differences between Z-eigenvalues and

H-eigenvalues of a nonnegative tensor. In particular, neither the

positive Z-eigenvalue nor the associated positive Z-eigenvector of an

irreduciblenonnegative tensorhas tobeunique ingeneral asdemon-

stratedbyExample2.7. Furthermore, theCollatz typemin–maxchar-

acterizations of the largest positive Z-eigenvalue of an irreducible

nonnegative tensor is only partially true in general as seen in Theo-

rem 4.7 and Example 4.6.

Published by Elsevier Inc.

1. Introduction

Let R be the real field, we consider an m-order n-dimensional tensor A consisting of nm entries

in R:

A = (ai1···im), ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

An m-order n dimensional tensor A is called nonnegative, denoted A ≥ 0, if ai1···im ≥ 0.
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A higher order tensor is a multilinear map, which is a natural generalization of a matrix; a matrix

is simply an order two tensor. We shall denote the set of allm-order n-dimensional tensors by R[m,n]
and the set of all nonnegative m-order n-dimensional tensors by R[m,n]

+ throughout the rest of this

paper.

To an n-vector x = (x1, · · · , xn), real or complex, we define the n-vector:

Axm−1 :=
( n∑

i2,...,im=1

aii2···imxi2 · · · xim
)
1≤i≤n

and the n-vector x[m−1] := (xm−1
1 , · · · , xm−1

n ).
The following were first introduced and studied by Qi and Lim [17,25–27].

Definition 1.1. LetA ∈ R[m,n]. A pair (λ, x) ∈ C × (Cn \ {0}) is called an eigenvalue-eigenvector (or

simply eigenpair) of A if they satisfy the equation

Axm−1 = λx[m−1]. (1)

We call (λ, x) an H-eigenpair if they are both real.

Definition 1.2. Let A ∈ R[m,n]. A pair (λ, x) ∈ C × (Cn \ {0}) is called an E-eigenvalue and E-

eigenvector (or simply E-eigenpair) of A if they satisfy the equation⎧⎨
⎩ Axm−1 = λx,

xTx = 1
(2)

We call (λ, x) a Z-eigenpair if they are both real.

Both H-eigenvalues and Z-eigenvalues of a given tensor have found vibrant new applications in

numericalmultilinear algebra, image processing, higher orderMarkov chains, and spectral hypergraph

theory. Although both of these eigenvalue problems for tensors are nonlinear, their chief difference

lies in that the H-eigenvalue problem (1) is equivalent to finding nontrivial solutions of a system of

homogeneous polynomial equations of the same degree in several variables, whereas the Z-eigenvalue

problem (2) is equivalent to finding nontrivial solutions of a system of inhomogeneous polynomial

equations in several variables.

We further introduce the following.

Definition 1.3. [2,17] A tensor A = (ai1···im) ∈ R[m,n] is called reducible if there exists a nonempty

proper index subset I ⊂ {1, . . . , n} such that

ai1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I.

If A is not reducible, then we call A irreducible.

The above definition for irreducibility has been used extensively in the literature; for example, see

[1,2,23,24,28]. In some articles, the alternative notion of weak irreducibility is used; for example,

see [9].

There is abundant literature on the development of H-eigenvalues for nonnegative tensors; for

example, see [2,3,9,17,23,24,27,28]. In particular, the largest positive H-eigenvalue of a nonnegative

tensor is related to measuring higher order connectivity in linked objects [18] and hypergraphs [8].

Many effective algorithms for finding the largest positive H-eigenvalue and the corresponding posi-

tive eigenvector of a nonnegative tensor have been implemented; for more detailed discussions, see

[3,9,23,24].

Equally important, E/Z-eigenvalues play a fundamental role in best rank-one approximation. The

best rank-one approximation of higher order tensors has numerous applications in engineering and
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higher order statistics, such as Statistical Data Analysis. We refer the interested reader to [7,14,29]

for a more systematic treatment on the analysis, algorithms, and applications of the least-squares

approximation of a tensor by a tensor of low multilinear rank or a tensor of low rank, e.g. in the

canonical polyadic decomposition, canonical decomposition, or parallel factor decomposition.

In a series of their recent work [19–22], Ng et al. discovered intriguing new connections of the

Z-eigenvalue problem to the transition probability tensors of higher order Markov chains. They pro-

pose a framework (HAR) that can be used in multi-relational data mining. Some other related work

in this new front have been conducted in [4] and [11]. In [4,11,19,22], an alternative normalization

of Z-eigenvalue problem is employed (using the �1-norm instead of the conventional �2-norm);

this amounts to a rescaling of both the eigenvalue as well as the corresponding eigenvector (cf.

Theorem 1.3 [4]).

Using Z-eigenvalues, Qi et al. [10,16] have recently extended the notion and results regarding the

algebraic connectivity of a graph in spectral graph theory to k-uniform hypergraphs.

It is also worth mentioning that Qi et al. [12] have found a new exciting application of some of

our main results presented here in quantum entanglement problem. In particular, based on the Z-

spectral radius of a nonnegative tensor first introduced in Section 3 of this paper, they establish a

surprising connection to the geometric measure of quantum entanglement for a symmetric pure state

with nonnegative amplitudes.

While the spectral theory ofH-eigenvalues for nonnegative tensors is relatively complete andmore

mature, the spectral theory of Z-eigenvalues for nonnegative tensors is still underdeveloped and in

its early stage. With this in mind, we endeavor to highlight the similarities, but more importantly, the

differences one may encounter when dealing with Z-eigenvalue problems in general.

Our paper is organized as follows. In Section 2, we review the Perron–Frobenius Theorems for both

H- and Z-eigenvalues of nonnegative tensors from the previous work of Chang et al. [2]. Example 2.7

demonstrates thenon-uniquenessofpositiveZ-eigenvaluesandcorrespondingpositiveZ-eigenvectors

of a nonnegative irreducible tensor, which is strikingly different from H-eigenvalues. In Section 3, we

conduct a systematic investigation of the Z-spectrum Z(A) and the nonnegative Z-spectrum�(A) of
a (nonnegative) tensor A. It will be seen that quite different from the H-eigenvalues, Z(A)may be an

infinite set. However, Theorem 3.7 establishes the compactness of Z(A). Next, we review the class of

weakly symmetric tensors and show that for a weakly symmetric tensorA, Z(A)must be a finite set;

this is Proposition 3.10. Consequently, by specializing in the subclass ofweakly symmetric nonnegative

tensors, we obtain Theorem 3.11, which asserts the equalities among the Z-spectral radius (denoted

�(A)), the maximum of the function fA over the unit sphere (denoted λ̄), and the maximum of the

nonnegative Z-spectrum�(A) (denoted λ∗). In Section 4, we study the max–min characterization of

λ∗. Similar to H-eigenvalues, the irreducibility of tensors is imposed. In particular, we shall prove:

�(A) = λ∗ = λ = maxx∈P∩Sn−1 min1≤i≤n

(Axm−1)i

xi
,

under the assumptions thatA is nonnegative, weakly symmetric, and irreducible. Examples are given

to illustrate that all these assumptions cannot be avoided. In Section 5,we adapt the Shifted Symmetric

Higher-Order PowerMethod (SS-HOPM)proposedbyKolda andMayo [13] to compute somenumerical

examples.

2. The Perron–Frobenius Theorem for nonnegative tensors

In thispaper,wewillmostlybeworkingwithnonnegative tensors.Oneof thepinnaclesof the theory

of nonnegative matrices is the classical Perron–Frobenius Theorem. The idea of extending powerful

results regarding the spectral properties from the realm of nonnegative matrices to the higher order

nonnegative tensors setting can be traced back to Lim [17] and subsequently carried out by a number

of research teams worldwide; for example, see [2,3,8,9,23,24,28]. To make the comparisons between

H- and Z-eigenvalues more transparent, we list some recent progress in this area below, beginning

with H-eigenvalues.
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Theorem 2.1. (cf. Theorem 1.3 in [2]) If A ∈ R[m,n]
+ , then there exists λ0 ≥ 0 and a nonnegative

vector x0 	= 0 such that Ax
m−1
0 = λ0x

[m−1]
0 . In particular, λ0 is a nonnegative eigenvalue in terms of

Definition 1.1.

Theorem 2.2. (cf. Theorem 1.4 in [2]) If A ∈ R[m,n]
+ is irreducible, then the pair (λ0, x0) in the previous

theorem satisfy:

(1) The H-eigenvalue λ0 is positive.

(2) The H-eigenvector x0 is positive, i.e. all components of x0 are positive.

(3) If λ is an eigenvalue with nonnegative eigenvector, then λ = λ0. Moreover, the nonnegative

H-eigenvector is unique up to a multiplicative constant.

(4) If λ is an eigenvalue of A, then |λ| ≤ λ0.

The spectral radius of a tensor is defined as follows in [28].

Definition 2.3. Let A ∈ R[m,n]. We define the (H)-spectral radius of A, denoted ρ(A), to be ρ(A) =
max{|λ| : λ is an eigenvalue of A}, where |λ| denotes the modulus of λ.

It is established, for instance in [28], that ρ(A) is itself the largest positive H-eigenvalue of a non-

negative tensor A.

Let P = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n} denote the positive cone in Rn and P◦ =
{(x1, . . . , xn) ∈ P | xi > 0, 1 ≤ i ≤ n} its interior. We have the following min–max characterizations

of ρ(A).

Theorem 2.4. (cf. Theorem 4.2 in [2]) If A ∈ R[m,n]
+ is irreducible, then

minx∈P◦ max{i|xi>0}
(Axm−1)i

x
m−1
i

= ρ(A) = maxx∈P◦ min{i|xi>0}
(Axm−1)i

x
m−1
i

. (3)

In addition, from a practical viewpoint, one can effectively implement the analog of the power

method to numerically compute ρ(A), provided A ∈ R[m,n]
+ is irreducible. For a more systematic

treatment of this topic, we refer the interested readers to [3,9,24] for details.

Similar to H-eigenvalues, we also have the following statements for Z-eigenvalues:

Theorem 2.5. If A ∈ R[m,n]
+ , then there exists a Z-eigenvalue λ0 ≥ 0 and a nonnegative Z-eigenvector

x0 	= 0 of A such that Ax
m−1
0 = λ0x0.

Theorem 2.6. If A ∈ R[m,n]
+ is irreducible, then the pair (λ0, x0) in Theorem 2.5 satisfy:

(1) The eigenvalue λ0 is positive.

(2) The eigenvector x0 is positive, i.e. all components of x0 are positive.

In [2], a more general version of Theorems 2.1, 2.2, 2.5, and 2.6 was established. To avoid de-

touring from our current goal, we shall present the proofs of Theorems 2.5 and 2.6 in the appendix.

These proofs are modified from our original proof given in Section 2 [2] to specifically address Z-

eigenvalues.

However, unlike H-eigenpairs for a nonnegative irreducible tensor A, neither the

positive Z-eigenvalue nor the associated positive Z-eigenvector of A has to be unique in general.

This has been pointed out by a counterexample in the Errata of [2], which is similar to the

following.
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Example 2.7. Let A ∈ R[4,2]
+ be defined by

a1111 = a2222 = 4√
3
, a1112 = a1121 = a1211 = a2111 = 1,

a1222 = a2122 = a2212 = a2221 = 1, and aijkl = 0 elsewhere.

It is not difficult to check A is irreducible. It is straightforward to compute, whose detailed cal-

culation will be carried out in the subsequent section hence omitted here, that A has two positive

Z-eigenvalues:

λ0 = 2 + 2√
3

≈ 3.1547 with corresponding positive Z-eigenvector x0 =
(√

2
2
,

√
2

2

)
;

λ1 = 11

2
√

3
≈ 3.1754 with corresponding positive Z-eigenvectors x1 =

(√
3

2
, 1
2

)
and x2 =(

1
2
,

√
3

2

)
.

It was shown in [5], for m > 2, the degree of the E-characteristic polynomial ψA(λ) of a generic

tensor A is

dE = ((m − 1)n − 1)/(m − 2) = (m − 1)n−1 + (m − 1)n−2 + · · · + (m − 1)+ 1.

It was shown in [15], the E-characteristic polynomial, hence Z-eigenvalues, are in fact invariant under

the action of the orthogonal group. Hence, many results we prove for Z-eigenvalues of nonnegative

tensors remain valid for a broader class of tensors which are not necessarily nonnegative themselves

but are orthogonally similar to nonnegative tensors. Unfortunately,H-eigenvalues are not orthogonally

invariant.

Consequently, froman invariance theoryperspective, Z-eigenvalues seemmoredesirable. However,

as we shall see in the latter part of this paper, for nonnegative tensors, Z-eigenvalues lack certain

important minimax characterization such as the Collatz type Theorem 2.4.

3. The nonnegative Z-spectrum of A

The main focus of this section is to study the nonnegative Z-eigenvalues of an m-order

n-dimensional tensor A if A is a nonnegative tensor or A is a weakly symmetric tensor. Some im-

portant characterizations of the largest Z-eigenvalue of A are established at the end of this section if

A is both nonnegative and weakly symmetric. We begin with some definitions.

Similar to H-eigenvalues, we may define the Z-spectrum of A as follows.

Definition 3.1. Let A ∈ R[m,n]. We define the Z-spectrum of A, denoted Z(A) to be the set of all

Z-eigenvalues of A. Assume Z(A) 	= ∅, then the Z-spectral radius of A, denoted �(A), is defined as

�(A) := sup
{|λ| | λ ∈ Z(A)}.

Similar to H-eigenvalues, the set Z(A)may be the empty set; see the following:

Example 3.2. Let n = 2. Let A be given by

a12...2 = 1, a21...1 = −1, and ai1···im = 0 elsewhere.

Then the Z-eigenvalue problem is to solve⎧⎨
⎩ x

m−1
2 = λx1,

−x
m−1
1 = λx2,

which by elimination, yields no nonzero real solution ifm is even.

We now justify �(A) is well defined. The proof is a routine exercise and resembles that of ρ(A).
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Proposition 3.3. Let A ∈ R[m,n]
+ . Then �(A) ≤ √

nmax1≤i≤n

∑n
i2,...,im=1 aii2···im .

Proof. Since A ∈ R[m,n]
+ , we have Z(A) 	= ∅ by Theorem 2.5. Let (λ, x) be a Z-eigenpair of A. Since

x = (x1, · · · , xn)with x21 + · · · + x2n = 1, there exists an index i0 ∈ {1, . . . , n} such that |xi0 | ≥ 1√
n
.

We also have:

n∑
i2,...,im=1

ai0i2···imxi2 · · · xin = λxi0 .

Since |xi| � 1, we have:

1√
n
|λ| ≤ |λ||xi0 | ≤

n∑
i2,...,im=1

ai0i2···im;

our assertion now follows. �

Indeed, the assumption on the non-negativity of A is too strong; as long as Z(A) 	= ∅, we have

�(A) ≤ √
nmax1≤i≤n

∑n
i2,...,im=1 |aii2···im |.

In contrast to theH-spectral radiusρ(A), the Z-spectral radius�(A) of a nonnegative tensorAmay

not be itself a positive Z-eigenvalue of A. This is demonstrated by the following example.

Example 3.4. Let A ∈ R[4,2]
+ be defined by

a1112 = 30, a1212 = 1, a1222 = 1, a2111 = 6,

a2112 = 13, a2122 = 37, and aijkl = 0 elsewhere.

The Z-eigenvalue problem is to solve:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

30x21x2 + x1x
2
2 + x32 = λx1,

6x31 + 13x21x2 + 37x1x
2
2 = λx2,

x21 + x22 = 1.

Note A is irreducible and we calculate the three Z-eigenpairs of A to be:

1. The Z-eigenvalue λ1 = 63
5

with its corresponding Z-eigenvectors ±
(√

10
10
, 3

√
10

10

)
.

2. The Z-eigenvalue λ2 = − 64
5

with its corresponding Z-eigenvectors

(
±

√
5

5
,∓ 2

√
5

5

)
.

3. The Z-eigenvalue λ3 = −15 with its corresponding Z-eigenvectors

(
±

√
2

2
,∓

√
2

2

)
.

In this case,�(A) = |λ3| = 15, but15 isnot aZ-eigenvalueofA. To see this, using thecomputational

commutative algebra system CoCoA[6], we consider the ideal generated by

{30x21x2 + x1x
2
2 + x23 − λx1, 6x31 + 13x21x2 + 37x1x

2
2 − λx2, x21 + x22 − 1}.

By computing the elimination ideal via eliminating the variables x1 and x2, we come up with the

E-characteristic polynomialψA of A:

ψA(λ) = 25λ4 + 755λ3 + 1743λ2 − 119835λ− 907200;
whose four real zeros are λ1 = 63

5
, λ2 = − 64

5
, and λ3 = −15 with algebraic multiplicity two.
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Definition 3.5. LetA ∈ R[m,n]
+ . We define the nonnegative spectrum ofA, denoted�(A) to be the set

of all λ ≥ 0 such that there exists x ∈ P ∩ Sn−1 satisfying Axm−1 = λx, where Sn−1 is the standard

unit sphere in Rn.

It is important to notice the set�(A) (thus Z(A)) is not necessarily a finite set in general. This is a

very notable distinction from the H-spectrum, since the set of all H-eigenvalues of A is always finite.

This very distinction stems from the homogeneous versus inhomogeneous systems involved in solving

the two types of eigenvalue problems. We consider the following example.

Example 3.6. Let A ∈ R[4,2]
+ be defined by

a1112 = a2122 = 2 and aijkl = 0 elsewhere.

The Z-eigenvalue problem is to solve:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x21x2 = λx1,

2x1x
2
2 = λx2,

x21 + x22 = 1.

Let (x1, x2) ∈ P ∩ S1. If x1 = 0 (implying x2 = 1) or x2 = 0 (implying x1 = 1), then λ = 0. Let

(x1, x2) ∈ P◦ ∩ S1 satisfy 0 < 2x1x2 ≤ 1. By taking λ = 2x1x2, we see (λ, (x1, x2)) is a Z-eigenpair.

Hence,�(A) = [0, 1], the whole closed interval.

Theorem 3.7. Let A ∈ R[m,n]
+ . Then ∅ 	= �(A) ⊂ Z(A) ⊂ R is a compact subset.

Proof. Weproceed in the following steps. First, the fact that�(A) is nonempty follows from Theorem

2.5. Second, the boundedness of both Z(A) and �(A) follow from Proposition 3.3. Third, the fact

that Z(A) and �(A) are both closed follow from the compactness of the unit sphere Sn−1 and the

continuity of the mapping x �→ Axm−1. To be more explicit, we shall only present the details to show

�(A) is closed since a similar argument shows Z(A) is also closed. Choose a sequence {λk} ⊂ �(A)
and a sequence {xk} ⊂ P ∩ Sn−1 with Ax

m−1
k = λkxk such that λk → λ̃ as k → ∞. We must show

λ̃ ∈ �(A). Clearly, such λ̃ ≥ 0. Since {xk} ⊂ Sn−1, there exists a convergent subsequence of {xk};
without loss of generality, we still denote it by {xk}, such that xk → x̃ ∈ P ∩ Sn−1 as k → ∞. By

continuity, we see that Ax
m−1
k → Ax̃m−1 and λkxk → λ̃x̃ as k → ∞; hence, Ax̃m−1 = λ̃x̃, i.e.

λ̃ ∈ �(A). �

Consequently, for A ∈ R[m,n]
+ , we can modify the definition of �(A) to be

�(A) = max
{|λ| | λ ∈ Z(A)}.

We hereby define the following two special values associated with�(A):

λ∗ := maxλ∈�(A) λ and λ∗ := minλ∈�(A) λ.
It is obvious λ∗ ≤ �(A). We shall investigate the possible circumstances for which λ∗ = �(A). With

this in mind, we next target the class of (weakly) symmetric tensors.

We first recall the following from [1,25].

Definition 3.8. A ∈ R[m,n] is called symmetric if

ai1···im = aσ(i1···im) for all σ ∈ Sm,

where Sm denotes the permutation group ofm indices.
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The notion of weakly symmetric tensors is introduced in [1].

Definition 3.9. A ∈ R[m,n] is called weakly symmetric if the associated homogeneous polynomial

fA(x) :=
n∑

i1,i2,...,im=1

ai1i2···imxi1xi2 · · · xim

satisfies ∇fA(x) = mAxm−1. In the tensor notation, according to [25], the homogeneous polynomial

fA(x) is also denoted by Axm.

Although this definition is not as intuitive as symmetric tensors, it nevertheless provides the same

desired variational (extremal) property as symmetric tensors. It should also be noted form = 2, sym-

metricmatrices andweakly symmetricmatrices coincide. However, it is shown in [1] that a symmetric

tensor is necessarilyweakly symmetric form > 2, but the converse is not true in general. Furthermore,

if A ∈ R[m,n] is weakly symmetric, by homogeneity, we find

Axm = fA(x) = 1

m
〈∇fA(x), x〉 = 〈Axm−1, x〉, (4)

where 〈·, ·〉 denotes the standard inner product on Rn.

Proposition 3.10. Let A ∈ R[m,n] be weakly symmetric.

(1) Z(A) consists precisely of all critical values of fA(x) = Axm on Sn−1, hence it is nonempty.

(2) The cardinality of Z(A) is finite.

Proof. From Eq. (4), we see that λ ∈ Z(A) if and only if λ is a critical value of fA(x) on the constraint

manifold Sn−1. Furthermore, since fA(x) is a continuous function defined on the compact set Sn−1, it

must attain both its absolute maximum value and its absolute minimum value, hence Z(A) 	= ∅; this
proves (1). To prove (2), we will show the set of E-eigenvalues of A is in fact finite. It is shown in [5]

that the number of E-eigenvalues for a symmetric tensor is finite. The argument for weakly symmetric

tensors is essentially identical, hence omitted. �

For simplicity, we define

λ̄ := maxx∈Sn−1 fA(x) = maxx∈Sn−1 Axm.

By specializing in the subclass of weakly symmetric nonnegative tensors, we arrive at another major

result of this section.

Theorem 3.11. Assume A ∈ R[m,n]
+ is weakly symmetric. Then

λ̄ = λ∗ = �(A).

Proof. It will suffice to establish the following chain of inequalities:

λ̄ ≤ λ∗ ≤ �(A) ≤ λ̄.

First we show λ̄ ≤ λ∗. From Proposition 3.10, we have λ̄ ∈ Z(A). Since A is weakly symmetric, using

the Lagrange multipliers, we can find a maximizer, say x̄, of the functionAxm on the smooth manifold

Sn−1. We have the following equation

∇Ax̄m = mAx̄m−1 = mλx̄

for some multiplier λ. However, since 〈Ax̄m−1, x̄〉 = λ̄, we see that λ = λ̄. So Ax̄m−1 = λ̄x̄, i.e.

(λ̄, x̄) is a Z-eigenpair of A. We now show (λ̄, |x̄|) is also a Z-eigenpair of A, where the n-vector
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|x̄| := (|x̄1|, . . . , |x̄n|) for x̄ = (x̄1, . . . , x̄n). Since x̄ ∈ Sn−1, by definition, A|x̄|m ≤ λ̄. However, from

the inequality:

λ̄ = Ax̄m =
n∑

i1,i2,...,im=1

ai1···im x̄i1 · · · x̄im ≤
n∑

i1,i2,...,im=1

ai1···im |x̄i1 | · · · |x̄im | = A|x̄|m,

it follows |x̄| is also a maximizer of Axm on Sn−1. Using the Lagrange multipliers, it yields A|x̄|m−1 =
λ̄|x̄|, i.e. λ̄ ∈ �(A). Thus, λ̄ ≤ λ∗.

Since�(A) ⊂ Z(A), λ∗ ≤ �(A) holds.
Lastly, we show �(A) ≤ λ̄. Let x0 ∈ Sn−1 be a corresponding Z-eigenvector of �(A). We then have:

�(A) = 〈Ax
m−1
0 , x0〉 = Axm0 ≤ A|x0|m ≤ λ̄;

hence, it completes the proof. �

Corollary 3.12. Let A ∈ R[m,n]
+ be weakly symmetric and not equal to the zero tensor. Then λ∗ =

maxx∈P∩Sn−1 Axm > 0.

Proof. The fact that λ∗ = maxx∈P∩Sn−1 follows immediately from Theorem 3.11. Suppose λ∗ = 0.

Since λ∗ = λ̄ and A ≥ 0, it follows that Axm = 0 for all x ∈ P ∩ Sn−1. Hence A must be the zero

tensor itself, a contradiction. �

4. A max–min characterization of λ∗

In this section, we establish a max–min property of λ∗, which is similar to half of the Collatz’s

type (see Theorem 2.4) of characterizations of the largest positive H-eigenvalue of A. However, the

other half of the statement fails as will be illustrated by a specific example at the end of this sec-

tion.

In order to explore the max–min property of a nonnegative tensor, we assume tensors to be irre-

ducible, as we did for H-eigenvalue problems.

Definition 4.1. Let A ∈ R[m,n]
+ . We say A is non-degenerate if for all x ∈ P \ {0}, (Axm−1)i and xi do

not vanish simultaneously for all i ∈ {1, · · · , n}.
We now show if A is irreducible, then A is non-degenerate. Suppose for some x̄ ∈ P \ {0}, x̄i0 = 0

and (Ax̄m−1)i0 = ∑n
i2,...,im=1 ai0i2···im x̄i2 · · · x̄in = 0 for some i0 ∈ {1, · · · , n}. Since each summand

in (Ax̄m−1)i0 is nonnegative and x̄ik cannot all be zero, this is only possible if ai0i2···im = 0 for all

1 ≤ i2, · · · , im ≤ n. In particular, ai0i2···im = 0 for all i2, · · · im ∈ {1, · · · , n} \ {i0}, which implies A
is reducible. The converse is not true in general, e.g. see example 4.6.

Definition 4.2. Let A ∈ R[m,n]
+ be non-degenerate. We define the following two functions for all

x ∈ P \ {0}:

ν∗(x) := min1≤i≤n

(Axm−1)i

xi
and ν∗(x) := max1≤i≤n

(Axm−1)i

xi
.

Since A is non-degenerate, the fractions

{
(Axm−1)i

xi
|1 ≤ i ≤ n

}
are well defined over the extended

reals for all x ∈ P \ {0}. Hence, ν∗(x) and ν∗(x) are both well defined. Note ν∗(x) = ∞ can only

happen on the boundary ∂P \ {0}. Since ν∗(x) ≤ ν∗(x) pointwise and ν∗(x) ≤ ν∗(x) < ∞ for all

x ∈ P◦ ∩ Sn−1, ν∗(x) and ν∗(x) are both continuous in P◦ ∩ Sn−1.
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Definition 4.3. We define

�∗ := supx∈P◦∩Sn−1 ν∗(x) and �∗ := infx∈P◦∩Sn−1 ν∗(x).

Lemma 4.4. Let A ∈ R[m,n]
+ be non-degenerate. There exist two vectors x∗ and x∗ ∈ P ∩ Sn−1 such that

�∗ = ν∗(x∗) and �∗ = ν∗(x∗), i.e.

maxx∈P∩Sn−1 min1≤i≤n

(Axm−1)i

xi
= �∗

minx∈P∩Sn−1 max1≤i≤n

(Axm−1)i

xi
= �∗.

Proof. By definition, the function ν∗ is nonnegative and continuous on P ∩ Sn−1. Therefore,

maxx∈P∩Sn−1 ν∗(x) = supx∈P◦∩Sn−1 ν∗(x) = �∗. Consequently, there exists x∗ ∈ P ∩ Sn−1 such that

ν∗(x∗) = maxx∈P∩Sn−1 ν∗(x) = �∗.
Similarly, the function ν∗ is nonnegative and lower semi-continuous on P \ {0}, which is bounded

below by �∗. By the compactness of P ∩ Sn−1, there exists x∗ ∈ P ∩ Sn−1 such that ν∗(x∗) =
minx∈P∩Sn−1 ν∗(x) = �∗. �

Weshall prove that�∗ and�∗ are the respective lower and upper bounds of�(A) ifA is irreducible,

namely,

Theorem 4.5. IfA ∈ R[m,n]
+ is irreducible, then for all λ ∈ �(A), we have: 0 < �∗ ≤ λ ≤ �∗, i.e.�(A)

is contained in the closed interval [�∗, �∗].
Proof. We first prove �∗ > 0 by contradiction. Suppose �∗ = 0. Then there exists x0 ∈ P ∩ Sn−1 such

that ν∗(x0) = 0, which implies Ax
m−1
0 = 0, i.e. x0 is an eigenvector with eigenvalue 0. Since A ≥ 0

is irreducible, this contradicts Theorem 2.6. Let λ ∈ �(A). Again by irreducibility, we see that λ > 0

and there exists x ∈ P◦ ∩ Sn−1 such that Axm−1 = λx. Hence, ν∗(x) = λ = ν∗(x), which implies

�∗ ≤ λ ≤ �∗. �

In order to ensure �(A) ⊆ [�∗, �∗], the assumption of irreducibility on A is crucial. Otherwise,

we have the following example.

Example 4.6. Let A ∈ R[4,2]
+ be a symmetric tensor defined by

a1122 = 2

3
and aijkl = 0 elsewhere.

Then the corresponding function Ax4 = 4x21x
2
2 on the quarter unit circle P ∩ S1 is equivalent, in

polar form, to

Ax4 = 4 cos2 θ sin2 θ = sin2(2θ) = 1

2
− 1

2
cos(4θ) for 0 ≤ θ ≤ π/2.

This function achieves its absolute and local maximum at the point

(√
2

2
,

√
2

2

)
with its maximal value

of 1; it also achieves its absolute but not localminimumat the points (0, 1) and (1, 0)with itsminimal

value of 0. It is easy to see that

1. λ∗ = 1 with its corresponding Z-eigenvector

(√
2

2
,

√
2

2

)
;

2. λ∗ = 0 with its corresponding Z-eigenvectors (0, 1) and (1, 0);
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3. ν∗(x) = min{2x22, 2x21} =
⎧⎨
⎩ 2x22, for 0 ≤ x2 ≤ x1

2x21, for x1 ≤ x2 ≤ 1;

4. ν∗(x) = max{2x22, 2x21} =
⎧⎨
⎩ 2x21, for 0 ≤ x2 ≤ x1

2x22, for x1 ≤ x2 ≤ 1.

Hence, �∗ = �∗ = 1/2; it is clear�(A) = {0, 1} � [�∗, �∗] = {1/2}.
Remark. It is possible to have the strict inequality �∗ < �∗; see Example 2.7.

If A is further assumed to be irreducible, we can extend the equalities obtained in Theorem 3.11

and obtain the following:

Theorem 4.7. Assume A ∈ R[m,n]
+ is weakly symmetric and irreducible. Then �(A) = λ̄ = λ∗ = �∗.

Proof. It follows from Theorem 4.5 �∗ ≤ λ∗ ≤ λ∗ ≤ �∗. It remains to show λ∗ ≥ �∗. By Lemma 4.4,

there exists x0 ∈ P ∩ Sn−1 such that ν∗(x0) ≥ �∗. So we have:

ν∗(x0) = min1≤i≤n

(Ax
m−1
0 )i

(x0)i
≥ �∗.

It follows that (Ax
m−1
0 )i ≥ (�∗)(x0)i for all 1 ≤ i ≤ n. We thereby obtain:

Axm0 = 〈Ax
m−1
0 , x0〉 ≥ �∗.

Thus, we have λ∗ = λ̄ ≥ �∗. This completes our proof. �

It is important to point out the equality λ∗ = �∗ may not hold in general if we drop the weakly

symmetric assumption. We demonstrate this by revisiting Example 3.4. We consider the function

g1(x) := (Ax3)1

x1
= 30x1x2 + x22 + x32

x1

and the function

g2(x) := (Ax3)2

x2
= 6

x31

x2
+ 13x21 + 37x1x2.

Changing to polar coordinates, we have for 0 ≤ θ ≤ π/2

g1(θ) = 30 cos θ sin θ + sin2 θ + sin3 θ

cos θ

g2(θ) = 6
cos3 θ

sin θ
+ 13 cos2 θ + 37 cos θ sin θ.

We find that �∗ ≈ 16.08381 but the two curves intersect at λ∗ = 12.6.
In a similar fashion, we can validate the calculation of the values �∗ and �∗ for Example 2.7. For

simplicity, we set the function

g1(x) := (Ax3)1

x1
=

4√
3
x31 + 3x21x2 + x32

x1
= 4√

3
x21 + 3x1x2 + x32

x1

and the function
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g2(x) := (Ax3)2

x2
=

x31 + 3x1x
2
2 + 4√

3
x32

x2
= x31

x2
+ 3x1x2 + 4√

3
x22.

Changing to polar coordinates, we have for 0 ≤ θ ≤ π/2

g1(θ) = 4√
3
cos2 θ + 3 cos θ sin θ + sin3 θ

cos θ

g2(θ) = cos3 θ

sin θ
+ 3 cos θ sin θ + 4√

3
sin2 θ

Therefore,

g1(θ)− g2(θ) = 2 cos(2θ)

[
2√
3

− 1

sin(2θ)

]
.

The two curves g1(θ) and g2(θ) intersect at three different points where θ = π
6
, π
4
, and π

3
.

It is evident

�∗ = g1

(
π

4

)
= g2

(
π

4

)
= 2 + 2√

3

and

�∗ = g1

(
π

6

)
= g2

(
π

6

)
= g1

(
π

3

)
= g2

(
π

3

)
= 11

2
√

3
.

From the discussions given above, one expects some kind of duality result between the pair (�∗, λ∗)
and the pair (�∗, λ∗) for weakly symmetric nonnegative irreducible tensors. Unfortunately, we have

an example to show the equality �∗ = λ∗ fails to hold in certain cases.

Example 4.8. Let A ∈ R[4,2]
+ be a symmetric tensor defined by

a1111 = 1

2
, a2222 = 3, and aijkl = 1

3
elsewhere.

We then have:

(Ax3)1 = 1

2
x31 + x21x2 + x1x

2
2 + 1

3
x32 and (Ax3)2 = 1

3
x31 + x21x2 + x1x

2
2 + 3x32.

It follows that A is irreducible and the functions g1 := (Ax3)1

x1
and g2 := (Ax3)2

x2
, under polar

coordinates, are given by

g1(θ) = 1

2
x21 + x1x2 + x22 + 1

3

x32

x1
= 1

2
cos2 θ + 1

2
sin(2θ)+ sin2 θ + 1

3

sin3 θ

cos θ

g2(θ) = 1

3

x31

x2
+ x21 + x1x2 + 3x22 = 1

3

cos3 θ

sin θ
+ cos2 θ + 1

2
sin(2θ)+ 3 sin2 θ.

On the interval θ ∈ [0, π/2], the graph of g2(θ) stays above the graph of g1(θ) for 0 ≤ θ ≤
θ∗ ≈ 1.40687. They have only one intersection at θ∗ ≈ 1.40687, which corresponds to the value

λ∗ = �∗ ≈ 3.10921 and the corresponding approximated Z-eigenvector is (0.1632, 0.9866); thus

�(A) = {λ∗ = λ∗ ≈ 3.10921}.
However, since ν∗(x) = g2(x) on the interval [0, θ∗] and ν∗(x) = g1(x) on [θ∗, π/2], �∗ =
minx∈P◦∩S1 ν

∗(x) is attained at θ∗ ≈ 0.42677184 with �∗ ≈ 2.32694 < λ∗.
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When we compare Examples 2.7 and 4.8, we find the tensors in both examples are nonnegative

symmetric and irreducible. However, in Example 2.7, �∗ = λ∗, whereas, in Example 4.8, �∗ < λ∗.
Inspired by Example 4.8, we define λ := minx∈P∩Sn−1 Axm. Then λ ≥ 0. We have the following

partial “dual" result to Theorems 3.11 and 4.7.

Proposition 4.9. LetA ∈ R[m,n]
+ be weakly symmetric and irreducible. Suppose the functionAxm attains

its local minimum value λ in P◦ ∩ Sn−1, then

λ = λ∗ = �∗.

Proof. We proceed by showing λ∗ ≤ λ ≤ �∗ ≤ λ∗. Suppose λ is attained at some interior point

x∗ ∈ P◦ ∩ Sn−1. Since P◦ ∩ Sn−1 is open in Sn−1, it is itself a differentiable manifold. The Lagrange

multipliers therefore yields Axm−1∗ = λx∗; hence, λ∗ ≤ λ. Next we show λ ≤ �∗. By Lemma 4.4,

there exists x0 ∈ P ∩ Sn−1 such that (Ax
m−1
0 )i ≤ �∗(x0)i for all 1 ≤ i ≤ n where (x0)i > 0. So

Axm0 = 〈Ax
m−1
0 , x0〉 =

n∑
i=1

(Ax
m−1
0 )i(x0)i ≤ �∗||x0||2 = �∗.

Since λ = minx∈P∩Sn−1 Axm, we have λ ≤ �∗. The last inequality �∗ ≤ λ∗ follows from

Theorem 4.7. �

Remark. The conclusion of Proposition 4.9 can be verified by Example 5.1 in the subsequent section.

We end this section with a more direct lower bound on �(A):

Corollary 4.10. If A ∈ R[m,n]
+ is weakly symmetric, then �(A) ≥ max{c1, c2}, where

c1 = max1≤i≤n{ai···i} and c2 =
(

1√
n

)m−2

min1≤i≤n

n∑
i2,...,im=1

aii2···im .

Proof. On one hand, we choose {ei | 1 ≤ i ≤ n}, the standard orthonormal basis for Rn. Fix an index

i ∈ {1, . . . , n}, by Theorem 4.7, we have:

�(A) = �∗ ≥ (A(ei)m−1)i

(ei)i
= ai···i;

so �∗ ≥ c1. On the other hand, we choose 1 = (1, · · · , 1), the vector whose entries are all ones. Then

we have:

�∗ ≥ ν∗
(

1√
n

)
= min1≤i≤n

∑n
i2,...,im=1 aii2···im

(
1√
n

)m−1

1√
n

= c2. �

5. The algorithmic aspect

In this section, we adapt an iterative algorithm to compute λ∗ when m is even, known as the

Shifted Symmetric Higher-Order Power Method (SS-HOPM), proposed by Kolda and Mayo; see [13].

Although the algorithm aswell as its convergence analysis are given under the assumptionA ∈ R[m,n]
is symmetric, the entire process nonetheless continues to work successfully when we only assume A
is weakly symmetric. Since the proof is identical, it will be omitted. We refer the interested reader to

[13] for a more in-depth discussion on this subject.

We now adapt the SS-HOPM (cf. Algorithm 2 [13]) as follows. Given a weakly symmetric tensor

A ∈ R[m,n]
+ .
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Step 0. Choose x(0) ∈ P \ {0}, set λ0 = Axm(0), and choose the shift constant

α = �m
n∑

i1,··· ,im=1

ai1...im�,

where �γ � is the ceiling function, i.e. it equals the smallest integer no less than γ . Set k := 0.

Step 1. Set y(k+1) := Ax
m−1
(k) + αx(k).

Step 2. Compute

x(k+1) := y(k+1)

‖y(k+1)‖
λk+1 := Axm(k+1).

The choice of α is far too conservative according to [13]. We now supply a brief outline of the main

idea used in the proof. By choosing the shift constant α > 0 large enough, the function f̂A(x) =
Axm ± α‖x‖m becomes convex or concave on Rn. Hence when the order m is even, based on a result

due to Kofidis and Regalia [14], the convergence of the sequence {λk} is guaranteed.

Example 5.1. Consider the symmetric tensor A ∈ R[4,2]
+ given by

a1111 = 1.1, a2222 = 1.2, a1112 = a1222 = 1

4
, and aijkl = 0 elsewhere.

It defines

Ax4 = 1.1x41 + x31x2 + x1x
3
2 + 1.2x42,

hence we choose α = �4(1.1+ 2+ 1.2)� = 18. After we run 200 iterations usingMATLAB, the above

algorithm produces:

1. If we start with the initial point (1, 1), then λk → 1.3040.
2. If we start with the initial point (0, 1), then λk → 1.3040.
3. If we start with the initial point (1, 0), then λk → 1.2139.
4. For many other randomly chosen initial point x0 ∈ P◦, the iterations will yield either the eigen-

value 1.3040 or 1.2139.

Both of these values are very good approximations. Since this example is of moderate size, we can

compute its eigenpairs directly. We begin with

(Ax3)1 = 1.1x31 + 3

4
x21x2 + 1

4
x32

(Ax3)2 = 1

4
x31 + 3

4
x1x

2
2 + 1.2x32.

The two curves g1(x) = (Ax3)1

x1
and g2(x) = (Ax3)2

x2
intersect at the following points

(approximately):

(i) The point (0.73386, 0.67929) corresponding to the eigenvalue

λ = �∗ = λ∗ ≈ 1.07307.

(ii) The point (0.971953, 0.235176) corresponding to the eigenvalue λ1 ≈ 1.21394.
(iii) The point (0.212318, 0.977201) corresponding to the eigenvalue
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�∗ = λ∗ ≈ 1.30396.

There is however an interesting aspect of the algorithm that deserves mentioning. Since

λ∗≈1.07307 is a local minimum ofAx4, we can also obtain this by reversing the sign of α, i.e. shifting
by −18 instead. We verify the approach by starting with the initial point (1, 1); after 200 iterations,

the algorithm yields the approximated value λ ≈ 1.0731.
We comment that although the exact number of solutions for symmetric tensors of this naturewas

also studied in Section 3.5 [7], the exact number of positive solutions was not deduced.

It is true in general, if λ∗ is a local minimum of Axm on P◦ ∩ Sn−1, then by reversing the sign of α
in the above algorithm, one can also reach λ∗. Furthermore, since we are using a large enough α to

guarantee the convexity of f̂A(x), the upper bound of �(A) is useful, but not the lower bound of �(A).
It is claimed by [13] that the SS-HOPM also works form odd. Lastly, we demonstrate via a concrete

example the SS-HOPM is not strictly limited to weakly symmetric tensors only.

Example 5.2. Let A ∈ R[3,3]
+ be defined by

a122 = a133 = a211 = a311 = 1 and aijk = 0 elsewhere.

The eigenvalue problem is to solve:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x22 + x23 = λx1,

x21 = λx2,

x21 = λx3,

x21 + x22 + x23 = 1.

We choose α = 12 with initial point (1, 1, 1) (among many other choices). After we run 100 it-

erations using MATLAB, the above algorithm produces λk → 0.8381 with the corresponding x̂ ≈
±(0.6652, 0.5280, 0.5280).

On the other hand, using the computational commutative algebra systemCoCoA[6], we consider the

ideal generated by

{x22 + x23 − λx1, x21 − λx2, x21 − λx3, x21 + x22 + x23 − 1}.
By computing the elimination ideal via eliminating the variables x1, x2, and x3, we come up with the

E-characteristic polynomialψA of A:

ψA(λ) = 3λ6 + 6λ4 − 4;
whose only two real zeros are λ∗ ≈ 0.8381016549 and −0.8381016549.
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A. Appendix

• Proof of Theorem 2.5. As for the H-eigenvalue problem, we reduce the algebraic problem to a fixed

point problem. Let D = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, 1 ≤ i ≤ n,
∑n

i=1 xi = 1} be the unit simplex,

then D is a closed convex set. Suppose there exists some u0 ∈ D such that Au
m−1
0 = 0. Let λ0 = 0
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and x0 = u0/||u0||, then (λ0, x0) is a solution to equation (2), and we are done. Thus, one may

assume Axm−1 	= 0 for all x ∈ D; the following map F : D → D is therefore well defined:

F(x)i = (Axm−1)i∑n
j=1(Axm−1)j

, 1 ≤ i ≤ n,

where (Axm−1)i represents the i-thcomponentofAxm−1. Themap F : D → D is clearly continuous.

According to the Brouwer’s Fixed Point Theorem, there exists a v0 ∈ D such that F(v0) = v0,

i.e. Av
m−1
0 = τv0 for some τ = ∑n

j=1(Av
m−1
0 )j ≥ 0. Finally, we normalize v0 to produce the

nonnegative Z-eigenvector x0 = v0/||v0|| with the normalized Z-eigenvalue λ0 = τ/||v0||m−2 as

required.
• Proof of Theorem 2.6. We first prove x0 ∈ P◦, i.e. assertion (2). Note P \ P◦ = ∂P = ∪I∈�FI , where

� is the set of all index subsets I of {1, . . . , n} and
FI = {(x1, . . . , xn) ∈ P | xi = 0 ∀i ∈ I and xj 	= 0 ∀j /∈ I}.

Suppose x0 /∈ P◦. Since x0 	= 0, there must be a maximal proper index subset I ∈ � such that

x0 ∈ FI , i.e. (x0)i = 0 ∀i ∈ I and (x0)j > 0 ∀j /∈ I. Let δ = min{(x0)j | j /∈ I}, we then have δ > 0.

Since x0 is an eigenvector, Ax
m−1
0 ∈ FI , i.e.

n∑
i2,...,im=1

aii2···im(x0)i2 · · · (x0)im = 0, ∀i ∈ I.

It follows that

δm−1
∑

i2,...,im /∈I

aii2···im ≤ ∑
i2,...,im /∈I

aii2···im(x0)i2 · · · (x0)im = 0, ∀i ∈ I,

hence we have aii2···im = 0 for all i ∈ I and for all i2, . . . , im /∈ I; according to Lemma 2.2 [2], A is

reducible, which is a contradiction.
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