
Letters
https://doi.org/10.1038/s41562-018-0321-8

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Management Science and Engineering Department, Stanford University, Stanford, CA, USA. *e-mail: jugander@stanford.edu

The observation that individuals tend to be friends with 
people who are similar to themselves, commonly known as 
homophily, is a prominent feature of social networks. While 
homophily describes a bias in attribute preferences for simi-
lar others, it gives limited attention to variability. Here, we 
observe that attribute preferences can exhibit variation 
beyond what can be explained by homophily. We call this 
excess variation monophily to describe the presence of indi-
viduals with extreme preferences for a particular attribute 
possibly unrelated to their own attribute. We observe that 
monophily can induce a similarity among friends-of-friends 
without requiring any similarity among friends. To simulate 
homophily and monophily in synthetic networks, we propose 
an overdispersed extension of the classical stochastic block 
model. We use this model to demonstrate how homophily-
based methods for predicting attributes on social networks 
based on friends (that is, 'the company you keep') are funda-
mentally different from monophily-based methods based on 
friends-of-friends (that is, 'the company you’re kept in'). We 
place particular focus on predicting gender, where homophily 
can be weak or non-existent in practice. These findings offer 
an alternative perspective on network structure and predic-
tion, complicating the already difficult task of protecting pri-
vacy on social networks.

Homophily is a commonly observed phenomenon in social 
networks whereby interactions occur frequently among similar 
individuals1,2. Homophily can originate from an individual’s per-
sonal preference to become friends with similar others (choice 
homophily), structural opportunities to interact with similar  
others (induced homophily) or a combination of both3. The 
study of homophily focuses on aggregate patterns of interac-
tion4, whereas we highlight the need to jointly consider both the 
bias and excess variance in attribute preferences when studying 
social networks. To define excess variance, also called overdis-
persion, we first operationalize homophily as a bias parameter 
within a statistical model of interaction preferences in network 
data. Overdispersion then amounts to observing more variance in 
interaction preferences than expected under this homophily-only 
model. We refer to an overdispersion of preferences as monophily 
('love of one') to indicate it as distinct from the preference bias 
introduced by homophily ('love of same'). Our analysis follows 
other advances in incorporating variance and overdispersion in 
social data analysis, such as estimating the size of subpopulations5, 
documenting variations in the homophily of political ideologies6, 
assessing gender variation in linguistic patterns7, inferring social 
structure based on indirectly observed data8 and leveraging link 
heterogeneity in label propagation9.

An important consequence of homophily in a network—the typi-
cally assumed setting—is that even if an individual does not disclose 

private attribute information about themselves (such as their gen-
der, age, race or political affiliation), methods for relational learn-
ing10–15 can leverage attributes disclosed by that individual’s similar 
friends to possibly predict their private attributes. However, when 
homophily is weak or non-existent, attribute prediction16 is tradi-
tionally thought to be a difficult problem. We show that monoph-
ily in a network implies the existence of individuals with extreme 
preferences for a particular attribute possibly unrelated to their own 
attribute. The presence of these extreme preferences means that 
friends-of-friends are more likely to be similar. As a result, being 
friends with an individual with extreme attribute preferences is a 
strong predictive signal of one’s own attributes. We motivate the 
empirical importance of monophily most strongly in the case of 
predicting gender on social networks (taken from the FB100 (ref. 17) 
and Add Health18 datasets, respectively; see Methods), where gen-
der homophily can be weak in both online and offline settings19–23. 
We observe that monophily can still lead to accurate predictions in 
these weakly homophilous settings. We also observe the presence of 
monophily in settings known to exhibit strong homophily, specifi-
cally in the political affiliations of online blogs24 and the contact net-
work of terrorist group members and non-members in the Noordin 
Top Terrorist Network25 (for dataset details, see Methods), demon-
strating that there is additional structure to exploit for prediction 
beyond homophily.

This paper proceeds by first establishing how we choose to 
define the bias (homophily) and overdispersion (monophily) of 
attribute preferences. We then propose an extension of the sto-
chastic block model—a classic model of biased preferences in 
networks26—that we call an overdispersed stochastic block model 
(oSBM). The oSBM can model homophily and monophily sep-
arately and allows us to compare our ability to predict missing 
attributes relative to the strength of homophily and monophily 
in a network. We show how the two-hop structural relationship 
induced by overdispersion (monophily) can exist in the complete 
absence of any one-hop bias (homophily). In terms of prediction, 
we thus find that overdispersed friendship preferences can drive 
successful classification even in the complete absence of any 
homophily. We conclude that friends-of-friends ('the company 
you’re kept in') can disclose private attribute information that is 
otherwise undisclosed by friends ('the company you keep'). This 
finding extends the importance of privacy policies that protect 
networked data, while also proposing monophily as an intuitive 
structural property of social networks of independent interest. 
Finally, we highlight empirical results for predicting attributes 
where monophily-based prediction can perform well even in 
real-world networks with weak homophily.

The traditional homophily index of a graph27,28 measures the 
aggregate pattern of individuals’ biases in forming friendships with 
people of their own attribute class relative to people from other 
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classes. For a generic attribute class r and assuming there are k =​ 2 
classes, the homophily index ĥr with respect to class r is defined as:
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where di denotes its observed total degree, di,in denotes node i's 
observed in-class degree and di,out denotes its observed out-class 
degree. For notational simplicity, we use i∈​r to index the set of 
nodes with attribute class r. Further, we let nr represent the total 
number of nodes with attribute r and let N denote the total popu-
lation: = ∑ =N nr

k
r1 . To describe the notation in the case of gender 

homophily among females (r =​ F), the homophily index for indi-
viduals i∈​F captures the relative number of interactions with other 
females (di,in) relative to their total number of interactions (di).

We now show that the homophily index can be interpreted as 
the intercept term of a generalized linear model (GLM)29. For a 
comparison of the homophily index and the related measure (based 
on Pearson’s correlation coefficient) known as assortativity30, see 
Supplementary Note 1.4. This interpretation will later connect to a 
natural measure of monophily in terms of an overdispersed exten-
sion of that model. In measuring homophily for binary attributes 
(that is, between two attribute classes r and s), we illustrate how to 
measure homophily for the first class, r. The set-up is analogous for 
the other class. We assume that each individual i∈​r forms in-class 
connections with the other nr individuals at a rate pin,r and out-class 
ties with the other ns individuals at a rate pout. We therefore expect 
for each individual i∈​r that their class-specific degrees obey the  
following distributions:

∣ ~D p n pBinom( , ) (2)i r r r,in in, in,

∣ ~D p n pBinom( , ) (3)i s,out out out

∣ = ∣ + ∣D p p D p D p, (4)i r i r iin, out ,in in, ,out out

where Di,in is a random variable describing the in-class degree, Di,out 
describes the out-class degree and Di describes the total degree of 
node i in class r. We explicitly condition these random variables on 
the parameters pin,r and pout to make clear that these parameters are, 
for now, fixed and constant. Note that the random variables in equa-
tions (2)–(4) are approximately independent, but not completely: 
constraints on the joint distribution of the degrees corresponding to 
the constraints of the Erdős–Gallai theorem (since the degrees must 
correspond to a graph) create a dependence, but this dependence 
is small for graphs of modest size or larger31 and we safely ignore it 
here. These distributions also correspond to situations where self-
loops are allowed in the graph, which simplifies the derivation with-
out any practical consequence.

We can model relative in-class preferences given the observed 
degree data using a GLM as follows. Let the observed degree data 
for class r be {(di,in, di), i∈​r}. Among the individuals with attri-
bute class r, their in-class degree distribution conditional on their 
total observed degree is approximately binomially distributed 
(Supplementary Note 1.1):

∣ ~ ∕ +D d p p d n p n p n p, , Binom( , ( )) (5)i i r i r r r r s,in in, out in, in, out

We refer to the quantity hr =​ nrpin,r/(nrpin,r +​ nspout) in the 
above expression as the 'homophily parameter', since it charac-
terizes the bias for individuals to interact with similar others. By 
applying a logistic-binomial model32,33 to the degree data, we 
can then obtain the maximum likelihood estimate (MLE) of this 

homophily parameter. The logistic link function is specified as 
nrpin,r β∕ + = = ∕ +β β−n p n p e e( ) logit ( ) (1 )r r s rin, out

1
0

r r0 0  assuming there 
are no additional covariates (which could otherwise be incorpo-
rated). For this model, the MLE of β0r (Supplementary Note 1.2) is 
then simply:
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, where 
ĥr is exactly the homophily index specified in equation (1) above. 
Thus we see that the homophily index is precisely the MLE of the 
homophily parameter in this model, showing that it can also be 
computed from the intercept term estimated from a GLM applied 
to the observed degree data. An advantage of interpreting the 
homophily index within the GLM framework is that it provides a 
principled approach to computing statistical significance34 using the 
P value for the intercept term.

While this simple model captures the bias towards interactions 
occurring among similar individuals, it is a poor fit of the empiri-
cal variances in preferences that we observed in social data. That 
is, we observe that the empirical variance of attribute preferences 
can far exceed the variance expected under this homophily-only 
model (Supplementary Note 1.3). Fortunately, the GLM frame-
work permits a straightforward way to test for overdispersion and  
then to extend the model in cases where overdispersion is statisti-
cally significant.

A variety of methods have been proposed to measure and model 
extra variation in count data29,35–37. We employ a quasi-likelihood 
approach36, the least presumptive approach to modelling overdis-
persion compared with alternative methods. The quasi-likelihood 
set-up allows each node i in class r to have an individual latent 
preference for in-class friendships, hi,r, such that E =h h[ ]i r r,  and 
Var[hi,r]=​ ϕrhr(1−​hr) for some ϕr ≥​ 0. The parameter ϕr is introduced 
to incorporate the extra variation, and the variance is parameterized 
as such for notational convenience (Supplementary Note 1.3). This 
set-up can be thought of as loosely hierarchical, where hi,r is per-
mitted to be random, but it does not specify a distribution on hi,r.  
It instead uses ϕr to quantify how much nodes in class r vary in allo-
cating their in-class versus out-class friendships. When ϕr =​ 0, there 
is no excess variation. ϕr >​ 0 captures variation beyond the conven-
tional model (Supplementary Note 1.3). Through an iterative pro-
cedure that maximizes a quasi-likelihood function (Supplementary 
Note 1.4), we jointly re-estimate the homophily index as well as the 
new monophily index captured by ϕr.

We visually illustrate the distinction between homophily and 
monophily in one representative FB100 network, Amherst College, 
which has nearly balanced proportions of male and female students. 
Figure 1a shows histograms of individual relative proportions 
of same-gender friendships, illustrated separately for males and 
females. If this network was homophilous, we would expect to see 
the mean of these distributions deviate significantly from the rela-
tive class proportions, which is not the case for Amherst. We can see 
how the empirical distributions of preferences are more dispersed 
(less concentrated) than the homophily-only null distributions 
(for details of null model sampling, see Methods; for other schools, 
see Supplementary Note 3.2). Figure 1b provides an example net-
work showing how similarity can emerge among friends-of-friends  
due to monophily, even in the complete absence of homophily  
or heterophily.

Next, we observe the existence of monophily across the net-
works we study. In Fig. 2a, we see that gender homophily indices are  
concentrated around the relative class proportions, and in Fig. 2b, 
we see that gender monophily is common across the full popula-
tion of co-educational FB100 networks, shown as a function of class 
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proportion (proportion male or female). In Supplementary Table 3,  
we report the bias (homophily) and overdispersion (monophily) 
estimates for gender in the Amherst College network, political affil-
iations in a blog network and terrorist group membership in a com-
munication network. We also test the statistical significance of these 
estimates33,36 (Supplementary Note 1.4).

To examine the impact of monophily on network structure, we 
introduce a variation on the stochastic block model26 (SBM) with 
overdispersed preferences so that we can independently simulate 
networks with known homophily and monophily. The stochastic 
block model, also known as the planted partition model38, is a widely 
studied statistical distribution over graphs that is commonly used to 
model network association patterns. The SBM models preferences 
among k classes of nodes by specifying a set of block sizes n1,…​,nk 
and a preference matrix P where Pa ai j

 denotes the independent prob-
ability of an edge between nodes i and j in attribute classes ai and 
aj. For modelling associations between two classes using an SBM, 
the matrix P is simply a 2 ×​ 2 matrix denoting the edge probabilities 
within and between classes. An assortative block structure is present 
when in-class probabilities are greater than out-class probabilities 
(pin >​ pout). We introduce overdispersion into the model by relaxing 
the usual restriction of fixed-class probabilities among all nodes in a 
given class. Instead, we assume a latent beta distribution on in- and 
out-attribute affinities39. Other latent distributions or other means 
of incorporating overdispersion40,41 could be considered (for details 
of the oSBM, see Methods). The oSBM allows us to explore over-
dispersed preferences in a generative setting. In Fig. 3a we see that 
this model can capture the preference distributions we observe in 
empirical data. It also allows us to explore the relative performance 
of node inference methods on graphs with and without homophily 
and/or monophily.

We first provide a categorization of relational inference meth-
ods and then we examine the performance of these methods on 
oSBM graphs. Motivated by monophily, we observe that relational  
inference methods can be categorized based on the neighbourhood 
relationships they can exploit for classification, either using one-hop 

(friend) or two-hop (friend-of-friend) relations. This distinction 
amounts to more than just a difference in the number of relations: 
it is a direct analogue of a key distinction between the PageRank42 
and Hubs and Authorities43 algorithms in graph ranking. PageRank 
is based on the principle that 'a node is important if it is linked to 
by other important nodes', while Hubs and Authorities is based on 
the principle that 'a node is important if it is linked to by nodes 
that link to important nodes'. These differing principles can extract 
very different notions of importance in graph ranking. Hubs and 
Authorities is motivated by web ranking problems where, for exam-
ple, car companies don’t link to other car companies but should still 
appear high in search results for 'cars'. Analogously, we observe that 
two-hop and one-hop methods are differently well-suited for differ-
ent node classification problems.

Classification methods based on a node’s one-hop (immediate) 
relations include:

•	 The one-hop majority vote (one-hop MV) classifier—also called 
the weighted-vote relational neighbour classifier12—builds 
directly on similarities between connected nodes. Unlabelled 
nodes are scored based on the proportion of labels among their 
neighbours. When a node does not have any labelled neigh-
bours, the relative class proportions in the training data are used 
(Supplementary Note 2.1).

•	 The Zhu, Ghahramani and Lafferty (ZGL) method44 scores unla-
belled nodes by computing the relative probabilities of reaching 
each node in a graph under a random walk originating at the 
labelled node sets. The ZGL method can be characterized as an 
iterated/semi-supervised adaptation of one-hop MV14.
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Fig. 1 | Overdispersion in attribute preferences. a, Amherst College 
Facebook network. Empirical distribution (filled bars) of in-class 
preferences for females and males compared with a null distribution 
(solid lines) based on preferences with binomial variation (see Methods). 
We observe overdispersion for females and males as the observed 
empirical variance is greater than under the null. b, A sample network 
without homophily or heterophily, but with monophily. We also show the 
link structure of the adjacency matrix (A) and the two-hop adjacency 
matrix (A2). The matrices are grouped by attribute class where the red 
line separates classes. Monophily results in a block structure in the ties 
between friends-of-friends, but not between friends.
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Fig. 2 | Homophily and monophily across a population of friendship 
networks. a,b, Gender homophily and monophily measured across the 
population of FB100 networks, showing the homophily index ĥr (a) and the 
monophily index ϕ�r

 (b) among both male (black) and female (red) students 
in each of the 97 co-educational college networks. The homophily indices 
are concentrated around relative class proportions (dashed line), while the 
monophily indices all show overdispersed preferences (ϕ >� 0r

; P <​ 10−3 for 
all networks) independent of the relative class proportions. Dashed lines 
indicate the lines of no homophily and no monophily, respectively.
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Methods that exploit two-hop (neighbour-of-neighbour) relations 
include:

•	 The two-hop majority vote (two-hop MV) classifier uses the 
relationship between a node and its two-hop neighbours 
weighted by the number of length-2 paths. Unlabelled nodes are 
scored based on the weighted proportion of labels among their 
two-hop neighbours.

•	 LINK-logistic regression45 uses labelled nodes to fit a regular-
ized logistic regression model (Supplementary Note 2.2) that 
interprets rows of the adjacency matrix as sparse binary feature 
vectors, performing classification based on these features. The 
trained model is then applied to the feature vectors (adjacency 
matrix rows) of unlabelled nodes, which are scored based on 
the probability estimates from the model. Small variations that 
use the same feature set but employ, for example, support vec-
tor machines or random forests instead of logistic regression 
give qualitatively similar performance. We find that using the 
LINK feature set as part of a Naive Bayes classifier gives a clear 
view of LINK as a family of two-hop methods (Supplementary  
Note 2.3).

In Fig. 3b, we compare the relative performance of one-hop 
MV, ZGL, two-hop MV and LINK when attempting node classi-
fication on oSBM networks from each of four settings. We explore 
a typical node classification set-up where individuals reveal infor-
mation completely at random12,46–48 (that is, uniformly), meaning 
that the likelihood to be labelled or to provide public information 
does not depend on other attributes. The prediction task is then to 
infer private attributes using public attributes and the social net-
work relationships. We compare these classification methods rela-
tive to a baseline model that assigns scores based on the relative 
class proportions observed in the training sample. We evaluate per-
formance based on a weighted area under the curve (AUC) score. 
AUC is a typical metric for summarizing receiver operating char-
acteristic curves across a range of decision thresholds49 and is com-
monly employed for evaluating classifier performance in networked  
settings50,51. For a fuller discussion of alternative performance met-
rics such as accuracy, see Supplementary Note 2.4. We observe that in 
oSBM networks configured with only homophily (pin >​ pout, ϕr =​ 0),  

all inference methods perform well. Meanwhile, in networks with 
only monophily (pin =​ pout, ϕr >​ 0), one-hop MV and ZGL have no 
predictive power while LINK-logistic regression and two-hop MV 
show impressive performance despite the complete lack of homoph-
ily. We conclude that the presence of monophily can be sufficient, 
even in the complete absence of homophily, for accurate attribute 
inference in networks (for additional details, see Supplementary 
Note 2.5).

We examine predictive performance in applied settings where 
we have previously observed significant monophily and varying 
degrees of homophily. We focus on predicting gender, political affil-
iation and terrorist group membership in the networks previously 
introduced. In Fig. 4a, we observe limited performance using one-
hop methods (one-hop MV and ZGL) to predict gender in Amherst 
College, our representative Facebook network (for additional FB100 
networks, see Supplementary Note 3.2). Meanwhile, we see that 
the two-hop methods (two-hop MV and LINK) have higher per-
formance, corroborating our intuition for two-hop methods being 
able to surface structural signals for classification in the presence 
of overdispersed preferences. In Fig. 4b, we observe that classify-
ing gender on Facebook networks by two-hop MV consistently 
outperforms classification based on one-hop MV when evaluating 
classification performance across fully labelled networks, and two-
hop MV in turn outperforms three-hop, four-hop and five-hop MV.  
We attribute the success of two-hop MV to monophily in this 
weakly homophilous setting.

Next, we evaluate prediction in homophilous networks—the 
typically assumed setting. For predicting political affiliation in a 
strongly homophilous network, Fig. 4c shows that all classifica-
tion methods perform equivalently as long as a modest number of 
nodes are initially labelled. Since most individuals in this setting 
exhibit strong preferences for similar friends, similarity will also 
exist for friends-of-friends. That said, we observe the presence of 
overdispersed preferences in this network as well (Supplementary 
Note 3.4). The presence of monophily along with homophily 
in this setting raises additional considerations for monophily’s 
impact on other social processes (for example, information dif-
fusion processes that traditionally only consider homophily52). 
Finally, for predicting terrorist group membership, in Fig. 4d we 
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Fig. 3 | Four different oSBMs and the associated performance of one-hop and two-hop classifiers. a, Attribute preference distributions for four instances 
of oSBMs (filled bars) varying pin, pout and ϕr parameters: no homophily and no monophily (pin =​ pout, ϕr =​ 0); monophily but no homophily (pin =​ pout, ϕr >​ 0); 
homophily but no monophily (pin >​ pout, ϕr =​ 0); and both homophily and monophily (pin >​ pout, ϕr >​ 0). A null distribution (solid line) is shown based on 
affinities with binomial variation (see Methods). b, Across the same corresponding oSBM settings, we compare the relative classification performance for 
the different inference methods described in the text. Points represent the mean AUC score and error bars denote s.d. across 100 cross-validated samples 
varying the percentage of initially labelled nodes in the network (see Methods). We observe a clear separation of performance in the case of monophily 
but no homophily.
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observe higher performance for one-hop MV relative to two-hop 
MV. A critical operational assumption for terrorist networks is 
that these are homophilous networks53 or that the 'company you 
keep' is the predominant network characteristic. We observe non-
significant monophily among the membership class, although the 
lack of statistical significance may be due to the small network size 
(Supplementary Note 3.5). Our analysis emphasizes that additional 
consideration should be given to monophily in intelligence applica-
tions54 since focusing only on homophily overlooks the friend-of-
friend correlations caused by monophily that may still exist even 
after accounting for homophily.

This work introduces monophily as a fundamental property of 
social network preferences deserving broad consideration. In the 
spirit of a solution-oriented science55,56 we have focused on the prac-
tical consequences of monophily for inferring missing attributes on 
social networks. These findings provide a new perspective on social 
network structure in general and attribute classification in particu-
lar, as well as further complicating the already difficult task of pre-
serving privacy in social networks. By also introducing the oSBM 
as a modelling tool, we show how it is possible for overdispersed 
preferences to explain the 'predictability' of attributes in relational 
inference via two-hop similarity in settings with weak or even non-
existent homophily. The empirical overdispersion of preferences 
documented in this work motivates a re-examination of two-hop net-
work structure in network analysis very broadly; for example, devel-
oping community detection methods57 that engage with relations  
among friends-of-friends, or studying the evolution and dynam-
ics of preference variance in temporal networks58,59. Methods for 
studying privacy in bipartite affiliation networks45,60 should also be 
revisited. We believe that the overdispersion of preferences deserves 

study as a social structure in its own right and encourage inves-
tigations into correlates of extreme preferences. While preference 
biases have long been the predominant focus of social structure in 
networks, this work highlights the need to simultaneously give seri-
ous parallel consideration to variability.

Methods
Description of data. When studying gender, we analysed populations of networks 
from two sources—the FB100 network dataset17 (Supplementary Note 3.1) and the 
Add Health in-school friendship nomination dataset18 (Supplementary Note 3.3). 
FB100, analysed in the main paper, consists of online friendship networks from 
Facebook collected in September 2005 from 100 US colleges primarily consisting 
of college-aged individuals61. Traud et al.17,61 provide extensive documentation 
of the descriptive statistics of these networks. We excluded Wellesley College, 
Smith College and Simmons College from our analysis, all of which are single-sex 
institutions with >​98% female nodes in the original network datasets. For political 
affiliation, we analysed the undirected version of the hyperlink network between 
US political blogs, where an edge exists as long as at least one weblog links to 
another24. For persons of interest, we analysed the communication network among 
members and non-members of the Noordin Top splinter group, where membership 
is defined by individuals who participated in a Noordin operation, were disclosed 
as being a member of Noordin’s inner circle and/or were family or close friends of 
Noordin25. For all networks, we restricted the analysis to only nodes that disclose 
their attributes, completely removing those with missing labels. We also restricted 
the analyses to nodes in the largest (weakly) connected component to benchmark 
against classification methods44 that assume a connected graph.

Null distribution of preferences. To visualize variation in attribute preferences 
in empirical networks across degrees, we compared the variance of the empirical 
distribution of di,in/di across all nodes i in the same class r with the variance of a 
binomial null distribution without overdispersion. Since the basic model assumes 
that ĥ∣ = ~D D d d( ) Binom( , )i i i i r,in , we simulated draws from this distribution by 
repeatedly sampling from ĥdBinom( , )i r  for each node i to produce a distribution of 
samples under the null.
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Fig. 4 | Predicting gender, political affiliation and terrorist group affiliation. Relative performance of one-hop (one-hop MV and ZGL) and two-hop (two-hop 
MV and LINK) relational learning classifiers across three demonstration networks: a, Amherst College, Facebook with 1,015 females (F) and 1,017 males (M), 
where ĥ ***

F  =​ 0.55, ĥ ***
M  =​ 0.51, ϕ� ***

F
 =​ 0.04 and ϕ� ***

M
 =​ 0.04. c, Political blogs (586 liberal (L) and 636 conservative (C)), where ĥ ***

L  =​ 0.90, ĥ ***
C  =​ 0.91, 

ϕ� ***
L

 =​ 0.23 and ϕ� ***
C

 =​ 0.19. d, Noordin Top Terrorist Network with 47 members (M) and 27 non-members (N), where ĥ ***
M  =​ 0.89, ĥN =​ 0.55, ϕ�M

 =​ 0.02 and 
ϕ�N

 =​ 0.00. For the homophily and monophily indices, we indicate statistical significance (*P <​ 0.1, **P <​ 0.05, ***P <​ 0.01). Points in the figures represent mean 
AUC scores and error bars denote s.d. across 100 cross-validated samples varying the percentage of initially labelled nodes in the network (see Methods). 
For additional Facebook colleges, see Supplementary Note 3.2. b, Across the 97 Facebook colleges (Amherst in black), the AUC for k-hop MV on fully labelled 
networks when predicting gender, varying the number of hops k at which k-hop MV is performed. The AUC at k =​ 2 is highest for all 97 colleges.
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oSBM. The proposed oSBM was defined by the block sizes n1,…​,nk, k ×​ k 
preference matrix P and additional overdispersion parameters ϕ ≥* 0in  and ϕ ≥* 0out .  
Networks were generated from the model via a hierarchical approach. First, each 
node’s in- and out-class degrees were generated by sampling class preference 
parameters (pi,in and pi,out) from an appropriate latent beta distribution with 
specified means pin and pout for in- and out-class probabilities, respectively.  
We assumed the same mean across all attribute classes r, so we denoted this mean 
by pin instead of pin,r for a given class r. Given the sampled individual preferences, 
a graph was generated analogously to how the degree-corrected SBM62 attains 
prescribed degrees using a Chung–Lu construction63, with expected in-degrees 
di,in =​ nrpi,in and expected out-degrees di,out =​ (N −​ nr)pi,out (Supplementary Note 4). 
We note that this oSBM complements related work on overdispersion in social 
network surveys5 where an individual’s relations within a class are taken to be 
distributed gamma–Poisson. The oSBM provides a full network model beyond 
mere counts. The number of connections a node has from a specific class will 
approximately follow a beta-binomial distribution in an oSBM, a close relative of 
the gamma–Poisson distribution64.

Description of cross-validation. We varied the percentage of initially 
labelled nodes by selecting a labelled sample uniformly at random12. We 
trained our models varying the percentage of initially labelled nodes in the 
network. For a given fixed percent of labelled individuals (training dataset), 
we measure classification performance on the remaining unlabelled nodes 
(testing dataset), using the same train/test splits across the different inference 
methods. We evaluated performance for 100 different random samples of 
initially labelled nodes, reporting the mean weighted AUC for each given 
fixed percent of initially labelled nodes where the weights were based on the 
relative number of true class training labels. For predicting membership in 
the Noordin Top group, we enforced a stratified random sampling set-up due 
to the small dataset size. The vertical error bars denote the s.d. in AUC scores 
across the 100 samples.

Code availability. IPython notebooks and all corresponding code are available at 
https://github.com/kaltenburger/homophily_monophily_NHB, documenting all 
results and figures. All code was run using Python version 2.7.12.

Data availability. The FB100 dataset is publicly available at https://archive.org/
details/oxford-2005-facebook-matrix and other public repositories. The Add 
Health dataset can be obtained from the Carolina Population Center at the 
University of North Carolina by contacting addhealth_contracts@unc.edu.  
The Political Blogs dataset used in this paper is available from http://www-
personal.umich.edu/~mejn/netdata/ and elsewhere. The Noordin Top  
Terrorist Network is available from https://sites.google.com/site/sfeverton18/
research/appendix-1.

Received: 7 April 2017; Accepted: 15 February 2018;  
Published online: 19 March 2018

References
	1.	 Lazarsfeld, P. F. & Merton, R. K. Friendship as a social process: a substantive 

and methodological analysis. Freedom Control Mod. Soc. 18,  
18–66 (1954).

	2.	 McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: homophily 
in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).

	3.	 Kossinets, G. & Watts, D. J. Origins of homophily in an evolving social 
network. Am. J. Sociol. 115, 405–450 (2009).

	4.	 Raftery, A. E. Statistics in sociology, 1950–2000: a selective review.  
Sociol. Methodol. 31, 1–45 (2001).

	5.	 Zheng, T., Salganik, M. J. & Gelman, A. How many people do you know in 
prison? Using overdispersion in count data to estimate social structure in 
networks. J. Am. Stat. Assoc. 101 409–423 (2006).

	6.	 Boutyline, A & Willer, R. The social structure of political echo chambers: 
variation in ideological homophily in online networks. Pol. Psychol. 38  
551–569 (2017).

	7.	 Bamman, D., Eisenstein, J. & Schnoebelen, T. Gender identity and lexical 
variation in social media. J. Socioling. 18, 135–160 (2014).

	8.	 McCormick, T. H. et al. A practical guide to measuring social structure  
using indirectly observed network data. J. Stat. Theory Pract. 7,  
120–132 (2013).

	9.	 Peel, L. Graph-based semi-supervised learning for relational networks. In 
Proc. 2017 SIAM Int. Conf. Data Mining 435–443 (SIAM, 2017).

	10.	Neville, J. & Jensen, D. Supporting relational knowledge discovery: lessons in 
architecture and algorithm design. In Proc. Data Mining Lessons Learned 
Workshop, 19th Int. Conf. Machine Learning (JMLR, 2002).

	11.	Jensen, D., Neville, J. & Gallagher, B. Why collective inference improves 
relational classification. In Proc. 10th ACM SIGKDD Int. Conf. Knowledge 
Discovery and Data Mining 593–598 (ACM, 2004).

	12.	Macskassy, S. A. & Provost, F. Classification in networked data: a toolkit and 
a univariate case study. J. Mach. Learn. Res. 8, 935–983 (2007).

	13.	Sen, P. et al. Collective classification in network data. AI Mag. 29,  
93–106 (2008).

	14.	Bhagat, S., Cormode, G. & Muthukrishnan, S. in Social Network Data 
Analytics 115–148 (Springer, Boston, MA, 2011).

	15.	Taskar, B., Abbeel, P. & Koller, D. Discriminative probabilistic models for 
relational data. In Proc. 18th Conf. Uncertainty in Artificial Intelligence 
485–492 (Morgan Kaufmann, 2002).

	16.	Duncan, G. T. & Lambert, D. Disclosure-limited data dissemination. J. Am. 
Stat. Assoc. 81, 10–18 (1986).

	17.	Traud, A. L., Mucha, P. J. & Porter, M. A. Social structure of Facebook 
networks. Physica A Stat. Mech. Appl. 391, 4165–4180 (2012).

	18.	Resnick, M. D. et al. Protecting adolescents from harm: findings from the 
national longitudinal study on adolescent health. JAMA 278,  
823–832 (1997).

	19.	Ugander, J., Karrer, B., Backstrom, L. & Marlow, C. The anatomy of the 
Facebook social graph. Preprint at https://arxiv.org/abs/1111.4503 (2011).

	20.	Thelwall, M. Homophily in MySpace. J. Am. Soc. Inf. Sci. Technol. 60, 
219–231 (2009).

	21.	Shrum, W., Cheek, N. H. & Hunter, S. Friendship in school: gender and racial 
homophily. Sociol. Edu. 61, 227–239 (1988).

	22.	Neal, J. W. Hanging out: features of urban children’s peer social networks.  
J. Soc. Pers. Rel. 27, 982–1000 (2010).

	23.	Laniado, D., Volkovich, Y., Kappler, K. & Kaltenbrunner, A. Gender homophily 
in online dyadic and triadic relationships. EPJ Data Sci. 5, 19 (2016).

	24.	Adamic, L. A. & Glance, N. The political blogosphere and the 2004 US 
election: divided they blog. In Proc. 3rd Int. Workshop Link Discovery  
36–43 (ACM, 2005).

	25.	Roberts, N. & Everton, S. F. Roberts and Everton Terrorist Data: Noordin Top 
Terrorist Network (Subset) [Machine-readable data file] (2011).

	26.	Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: first 
steps. Social. Netw. 5, 109–137 (1983).

	27.	Coleman, J. Relational analysis: the study of social organizations with survey 
methods. Human Organ. 17, 28–36 (1958).

	28.	Currarini, S., Jackson, M. O. & Pin, P. An economic model of friendship: 
homophily, minorities, and segregation. Econometrica 77,  
1003–1045 (2009).

	29.	McCullagh, P. & Nelder, J. A. Generalized Linear Models Vol. 37 (CRC Press, 
London, 1989).

	30.	Newman, M. E. J. Assortative mixing in networks. Phys. Rev. Lett. 89,  
208701 (2002).

	31.	Van Der Hofstad, R. Random Graphs and Complex Networks Vol. 1 
(Cambridge Univ. Press, Cambridge, 2016).

	32.	Agresti, A. & Kateri, M. Categorical Data Analysis (Springer, Berlin, 2011).
	33.	Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/

Hierarchical Models (Cambridge Univ. Press, Cambridge, 2006).
	34.	Signorile, V. & O’Shea, R. M. A test of significance for the homophily index. 

Am. J. Sociol. 70, 467–470 (1965).
	35.	Wedderburn, R. W. Quasi-likelihood functions, generalized linear models, 

and the Gauss–Newton method. Biometrika 61, 439–447 (1974).
	36.	Williams, D. A. Extra-binomial variation in logistic linear models. J. R. Stat. 

Soc. C Appl. Stat. 31, 144–148 (1982).
	37.	Morel, J. G. & Nagaraj, N. K. A finite mixture distribution for modelling 

multinomial extra variation. Biometrika 80, 363–371 (1993).
	38.	Condon, A. & Karp, R. M. Algorithms for graph partitioning on the planted 

partition model. Random Struct. Algor. 18, 116–140 (2001).
	39.	Crowder, M. J. Beta-binomial ANOVA for proportions. J. R. Stat. Soc. C Appl. 

Stat. 27, 34–37 (1978).
	40.	DiPrete, T. A. & Forristal, J. D. Multilevel models: methods and substance. 

Annu. Rev. Sociol. 20, 331–357 (1994).
	41.	Guo, G. & Zhao, H. Multilevel modeling for binary data. Annu. Rev. Sociol. 

26, 441–462 (2000).
	42.	Page, L., Brin, S., Motwani, R. & Winograd, T. The PageRank Citation 

Ranking: Bringing Order to the Web (Stanford Univ. InfoLab, 1999).
	43.	Kleinberg, J. M. Authoritative sources in a hyperlinked environment. J. ACM 

46, 604–632 (1999).
	44.	Zhu, X., Ghahramani, Z. & Lafferty, J. Semi-supervised learning using 

Gaussian fields and harmonic functions. In Proc. 20th Int. Conf. Machine 
Learning 912–919 (JMLR, 2003).

	45.	Zheleva, E. & Getoor, L. To join or not to join: the illusion of privacy in 
social networks with mixed public and private user profiles. In Proc. 18th Int. 
Conf. World Wide Web 531–540 (IW3C2, 2009).

	46.	He, J., Chu, W. W. & Liu, Z. V. Inferring privacy information from social 
networks. In Int. Conf. Intelligence and Security Informatics 154–165  
(Springer, 2006).

	47.	Rubin, D. B. Inference and missing data. Biometrika 63, 581–592 (1976).
	48.	Heitjan, D. F. & Basu, S. Distinguishing “missing at random” and “missing 

completely at random”. Am. Stat. 50, 207–213 (1996).

Nature Human Behaviour | VOL 2 | APRIL 2018 | 284–290 | www.nature.com/nathumbehav 289

https://github.com/kaltenburger/homophily_monophily_NHB
https://archive.org/details/oxford-2005-facebook-matrix
https://archive.org/details/oxford-2005-facebook-matrix
http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
https://sites.google.com/site/sfeverton18/research/appendix-1
https://sites.google.com/site/sfeverton18/research/appendix-1
https://arxiv.org/abs/1111.4503
http://www.nature.com/nathumbehav


© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Letters NaTure Human Behaviour

	49.	Bradley, A. P. The use of the area under the ROC curve in the evaluation of 
machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997).

	50.	Gallagher, B. & Eliassi-Rad, T. in Advances in Social Network Mining and 
Analysis 1–19 (Springer, Berlin, 2010).

	51.	Gong, N. Z. et al. Joint link prediction and attribute inference using a 
social-attribute network. ACM Trans. Intell. Syst. Technol. 5, 27 (2014).

	52.	Golub, B. & Jackson, M. O. How homophily affects the speed of learning and 
best-response dynamics. Q. J. Econ. 127, 1287–1338 (2012).

	53.	Stohl, C. & Stohl, M. Networks of terror: theoretical assumptions and 
pragmatic consequences. Commun. Theory 17, 93–124 (2007).

	54.	Carrington, P. J. in The SAGE Handbook of Social Network Analysis 236–255 
(SAGE, Los Angeles, CA, 2011).

	55.	Hofman, J. M., Sharma, A. & Watts, D. J. Prediction and explanation in social 
systems. Science 355, 486–488 (2017).

	56.	Watts, D. J. Should social science be more solution-oriented? Nat. Hum. 
Behav. 1, 0015 (2017).

	57.	Decelle, A., Krzakala, F., Moore, C. & Zdeborová, L. Asymptotic analysis of 
the stochastic block model for modular networks and its algorithmic 
applications. Phys. Rev. E 84, 066106 (2011).

	58.	McPherson, J. M. & Ranger-Moore, J. R. Evolution on a dancing landscape: 
organizations and networks in dynamic Blau space. Social. Forces 70, 19–42 (1991).

	59.	Yang, Y. et al. Gender differences in communication behaviors, spatial 
proximity patterns, and mobility habits. Preprint at https://arxiv.org/
abs/1607.06740 (2016).

	60.	Kosinski, M., Stillwell, D. & Graepel, T. Private traits and attributes are 
predictable from digital records of human behavior. Proc. Natl Acad. Sci. USA 
110, 5802–5805 (2013).

	61.	Traud, A. L., Kelsic, E. D., Mucha, P. J. & Porter, M. A. Comparing 
community structure to characteristics in online collegiate social networks. 
SIAM Rev. 53, 526–543 (2011).

	62.	Karrer, B. & Newman, M. E. J. Stochastic blockmodels and community 
structure in networks. Phys. Rev. E 83, 016107 (2011).

	63.	Chung, F. & Lu, L. Connected components in random graphs with given 
expected degree sequences. Ann. Comb. 6, 125–145 (2002).

	64.	Chatfield, C. & Goodhardt, G. J. in Mathematical Models in Marketing 53–57 
(Springer, Berlin, 1976).

Acknowledgements
We thank B. Fosdick, J. Kleinberg, I. Kloumann, D. Larremore, J. Nishimura,  
M. Porter, M. Salganik and S. Way for helpful comments. We thank attendees of the 
2016 International Conference on Computational Social Science and the 2016 SIAM 
Workshop on Network Science for comments. This work was supported in part by the 
Department of Defense (DoD) through the National Defense Science and Engineering 
Graduate Fellowship (NDSEG) programme, the Akiko Yamazaki and Jerry Yang 
Engineering Fellowship and a David Morgenthaler II Faculty Fellowship. The funders 
had no role in study design, data collection and analysis, decision to publish or 
preparation of the manuscript.

Author contributions
K.M.A. and J.U. designed and performed the research and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41562-018-0321-8.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to J.U.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Nature Human Behaviour | VOL 2 | APRIL 2018 | 284–290 | www.nature.com/nathumbehav290

https://arxiv.org/abs/1607.06740
https://arxiv.org/abs/1607.06740
https://doi.org/10.1038/s41562-018-0321-8
https://doi.org/10.1038/s41562-018-0321-8
http://www.nature.com/reprints
http://www.nature.com/nathumbehav

	Monophily in social networks introduces similarity among friends-of-friends

	Methods

	Description of data
	Null distribution of preferences
	oSBM
	Description of cross-validation
	Code availability
	Data availability

	Acknowledgements

	Fig. 1 Overdispersion in attribute preferences.
	Fig. 2 Homophily and monophily across a population of friendship networks.
	Fig. 3 Four different oSBMs and the associated performance of one-hop and two-hop classifiers.
	Fig. 4 Predicting gender, political affiliation and terrorist group affiliation.




